Abstract
Higher plant chloroplasts provide the only experimentally validated example of functional tRNA genes that are disrupted by group II introns. Here, precursor transcripts for tRNA(Gly)(UCC), tRNA(Val)(UAC), and tRNA(Ala)(UGC) were investigated for processing of 5' leader and 3' trailer sequences in vivo. Use of intron-specific primer pairs and inclusion of a barley chloroplast splicing mutant specifically allowed us to evaluate the potential effect of intervening sequences that disrupt tRNA secondary and tertiary structures. The data suggest that (1) neither integrity of the dihydrouridine nor the anticodon domain is required for the nucleotidyltransferase-mediated addition of 3'-terminal CCA; (2) interruption of these two structural elements by group II introns does not interfere with nucleotide-specific 5' maturation by RNase P; (3) processing intermediates of chloroplast tRNAs can be 3' polyadenylated; and (4) plastid DNA-encoded proteins are not required for 3' and 5' maturation of plastid tRNAs.
Full Text
The Full Text of this article is available as a PDF (358.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Choffat Y., Suter B., Behra R., Kubli E. Pseudouridine modification in the tRNA(Tyr) anticodon is dependent on the presence, but independent of the size and sequence, of the intron in eucaryotic tRNA(Tyr) genes. Mol Cell Biol. 1988 Aug;8(8):3332–3337. doi: 10.1128/mcb.8.8.3332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delp G., Igloi G. L., Kössel H. Identification of in vivo processing intermediates and of splice junctions of tRNAs from maize chloroplasts by amplification with the polymerase chain reaction. Nucleic Acids Res. 1991 Feb 25;19(4):713–716. doi: 10.1093/nar/19.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fey J., Tomita K., Bergdoll M., Maréchal-Drouard L. Evolutionary and functional aspects of C-to-U editing at position 28 of tRNA(Cys)(GCA) in plant mitochondria. RNA. 2000 Apr;6(4):470–474. doi: 10.1017/s1355838200992380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes R., Kudla J., Gruissem W. Degrading chloroplast mRNA: the role of polyadenylation. Trends Biochem Sci. 1999 May;24(5):199–202. doi: 10.1016/s0968-0004(99)01388-2. [DOI] [PubMed] [Google Scholar]
- Hess W. R., Hoch B., Zeltz P., Hübschmann T., Kössel H., Börner T. Inefficient rpl2 splicing in barley mutants with ribosome-deficient plastids. Plant Cell. 1994 Oct;6(10):1455–1465. doi: 10.1105/tpc.6.10.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson P. F., Abelson J. The yeast tRNATyr gene intron is essential for correct modification of its tRNA product. Nature. 1983 Apr 21;302(5910):681–687. doi: 10.1038/302681a0. [DOI] [PubMed] [Google Scholar]
- Komine Y., Kwong L., Anguera M. C., Schuster G., Stern D. B. Polyadenylation of three classes of chloroplast RNA in Chlamydomonas reinhadtii. RNA. 2000 Apr;6(4):598–607. doi: 10.1017/s1355838200992252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kudla J., Hayes R., Gruissem W. Polyadenylation accelerates degradation of chloroplast mRNA. EMBO J. 1996 Dec 16;15(24):7137–7146. [PMC free article] [PubMed] [Google Scholar]
- Learn G. H., Jr, Shore J. S., Furnier G. R., Zurawski G., Clegg M. T. Constraints on the evolution of plastid introns: the group II intron in the gene encoding tRNA-Val(UAC). Mol Biol Evol. 1992 Sep;9(5):856–871. doi: 10.1093/oxfordjournals.molbev.a040765. [DOI] [PubMed] [Google Scholar]
- Lisitsky I., Kotler A., Schuster G. The mechanism of preferential degradation of polyadenylated RNA in the chloroplast. The exoribonuclease 100RNP/polynucleotide phosphorylase displays high binding affinity for poly(A) sequence. J Biol Chem. 1997 Jul 11;272(28):17648–17653. doi: 10.1074/jbc.272.28.17648. [DOI] [PubMed] [Google Scholar]
- Lykke-Andersen J., Aagaard C., Semionenkov M., Garrett R. A. Archaeal introns: splicing, intercellular mobility and evolution. Trends Biochem Sci. 1997 Sep;22(9):326–331. doi: 10.1016/s0968-0004(97)01113-4. [DOI] [PubMed] [Google Scholar]
- Maier R. M., Neckermann K., Igloi G. L., Kössel H. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol. 1995 Sep 1;251(5):614–628. doi: 10.1006/jmbi.1995.0460. [DOI] [PubMed] [Google Scholar]
- McClain W. H., Guerrier-Takada C., Altman S. Model substrates for an RNA enzyme. Science. 1987 Oct 23;238(4826):527–530. doi: 10.1126/science.2443980. [DOI] [PubMed] [Google Scholar]
- Meng B. Y., Wakasugi T., Sugiura M. Two promoters within the psbK-psbI-trnG gene cluster in tobacco chloroplast DNA. Curr Genet. 1991 Aug;20(3):259–264. doi: 10.1007/BF00326241. [DOI] [PubMed] [Google Scholar]
- Michel F., Umesono K., Ozeki H. Comparative and functional anatomy of group II catalytic introns--a review. Gene. 1989 Oct 15;82(1):5–30. doi: 10.1016/0378-1119(89)90026-7. [DOI] [PubMed] [Google Scholar]
- Paquin B., Kathe S. D., Nierzwicki-Bauer S. A., Shub D. A. Origin and evolution of group I introns in cyanobacterial tRNA genes. J Bacteriol. 1997 Nov;179(21):6798–6806. doi: 10.1128/jb.179.21.6798-6806.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulsen H., Bogorad L. Diurnal and Circadian Rhythms in the Accumulation and Synthesis of mRNA for the Light-Harvesting Chlorophyll a/b-Binding Protein in Tobacco. Plant Physiol. 1988 Dec;88(4):1104–1109. doi: 10.1104/pp.88.4.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfitzinger H., Weil J. H., Pillay D. T., Guillemaut P. Codon recognition mechanisms in plant chloroplasts. Plant Mol Biol. 1990 May;14(5):805–814. doi: 10.1007/BF00016513. [DOI] [PubMed] [Google Scholar]
- Schuster G., Lisitsky I., Klaff P. Polyadenylation and degradation of mRNA in the chloroplast. Plant Physiol. 1999 Aug;120(4):937–944. doi: 10.1104/pp.120.4.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simos G., Tekotte H., Grosjean H., Segref A., Sharma K., Tollervey D., Hurt E. C. Nuclear pore proteins are involved in the biogenesis of functional tRNA. EMBO J. 1996 May 1;15(9):2270–2284. [PMC free article] [PubMed] [Google Scholar]
- Thomas B. C., Li X., Gegenheimer P. Chloroplast ribonuclease P does not utilize the ribozyme-type pre-tRNA cleavage mechanism. RNA. 2000 Apr;6(4):545–553. doi: 10.1017/s1355838200991465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogel J., Börner T., Hess W. R. Comparative analysis of splicing of the complete set of chloroplast group II introns in three higher plant mutants. Nucleic Acids Res. 1999 Oct 1;27(19):3866–3874. doi: 10.1093/nar/27.19.3866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogel J., Hess W. R., Börner T. Precise branch point mapping and quantification of splicing intermediates. Nucleic Acids Res. 1997 May 15;25(10):2030–2031. doi: 10.1093/nar/25.10.2030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogel J., Hübschmann T., Börner T., Hess W. R. Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids: support for MatK as an essential splice factor. J Mol Biol. 1997 Jul 11;270(2):179–187. doi: 10.1006/jmbi.1997.1115. [DOI] [PubMed] [Google Scholar]
- Yokobori S., Päbo S. Transfer RNA editing in land snail mitochondria. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10432–10435. doi: 10.1073/pnas.92.22.10432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zurawski G., Clegg M. T. The barley chloroplast DNA atpBE, trnM2, and trnV1 loci. Nucleic Acids Res. 1984 Mar 12;12(5):2549–2559. doi: 10.1093/nar/12.5.2549. [DOI] [PMC free article] [PubMed] [Google Scholar]
