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ABSTRACT

The 59-terminal 88 nt of poliovirus RNA fold into a cloverleaf RNA structure and form ribonucleoprotein complexes
with poly(rC) binding proteins (PCBPs; AV Gamarnik, R Andino, RNA, 1997, 3:882–892; TB Parsley, JS Towner, LB
Blyn, E Ehrenfeld, BL Semler, RNA, 1997, 3:1124–1134). To determine the functional role of these ribonucleoprotein
complexes in poliovirus replication, HeLa S10 translation-replication reactions were used to quantitatively assay
poliovirus mRNA stability, poliovirus mRNA translation, and poliovirus negative-strand RNA synthesis. Ribo-
homopoly(C) RNA competitor rendered wild-type poliovirus mRNA unstable in these reactions. A 5 9-terminal
7-methylguanosine cap prevented the degradation of wild-type poliovirus mRNA in the presence of ribohomopoly(C)
competitor. Ribohomopoly(A), -(G), and -(U) did not adversely affect poliovirus mRNA stability. Ribohomopoly(C)
competitor RNA inhibited the translation of poliovirus mRNA but did not inhibit poliovirus negative-strand RNA
synthesis when poliovirus replication proteins were provided in trans using a chimeric helper mRNA possessing the
hepatitis C virus IRES. A C24A mutation prevented UV crosslinking of PCBPs to 5 9 cloverleaf RNA and rendered
poliovirus mRNA unstable. A 5 9-terminal 7-methylguanosine cap blocked the degradation of C24A mutant poliovirus
mRNA. The C24A mutation did not inhibit the translation of poliovirus mRNA nor diminish viral negative-strand RNA
synthesis relative to wild-type RNA. These data support the conclusion that poly(rC) binding protein(s) mediate the
stability of poliovirus mRNA by binding to the 5 9-terminal cloverleaf structure of poliovirus mRNA. Because of the
general conservation of 5 9 cloverleaf RNA sequences among picornaviruses, including C24 in loop b of the cloverleaf,
we suggest that viral mRNA stability of polioviruses, coxsackieviruses, echoviruses, and rhinoviruses is mediated by
interactions between PCBPs and 5 9 cloverleaf RNA.
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INTRODUCTION

Poliovirus is the prototypic member of the enterovirus
genus of the Picornaviridae family of positive-strand
RNAanimal viruses+The genome of poliovirus is a single-
stranded positive-sense RNA molecule approximately
7,500 nt in length+ The 59-terminus of poliovirus RNA is
covalently linked to VPg, a 22 amino acid long viral
protein (Lee et al+, 1977; Nomoto et al+, 1977; Ambros
& Baltimore, 1978)+ The viral RNA possesses a 742-
base 59 nontranslated region, an open reading frame
encoding the viral polyprotein, a 39 nontranslated re-
gion, and a 39-terminal poly(A) tail+ Poliovirus RNA
serves two temporally sequential roles in the cyto-
plasm of an infected cell; first, as a mRNA for viral
protein synthesis, and second, as a template RNA for

viral negative-strand RNA synthesis during RNA repli-
cation (Novak & Kirkegaard, 1994)+ As with other
positive-strand RNA viruses, the genome RNA of polio-
virus is sufficient to initiate a complete round of viral
replication in the cytoplasm of a susceptible cell+ Upon
the delivery of poliovirus RNA into the cytoplasm of an
infected cell, VPg is removed by a cellular enzyme
(Ambros & Baltimore, 1980)+Therefore, poliovirus mRNA
does not possess a 59-terminal cap structure typical of
eukaryotic mRNAs but rather a 59-terminal pUpU (Hew-
lett et al+, 1976; Nomoto et al+, 1976)+ Normally, un-
capped mRNAs are rapidly degraded by 59 exonuclease
(reviewed in Decker & Parker, 1994)+ Poliovirus mRNA
is very stable despite the absence of a 59-terminal cap
structure+

The 59-terminal 88 nt of poliovirus mRNA forms a
cloverleaf RNA structure (Andino et al+, 1990)+ This
cloverleaf RNA structure is highly conserved among
enteroviruses, parechoviruses, and rhinoviruses; sug-
gesting a common function (Zell & Stelzner, 1997)+ For
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poliovirus, this 59-terminal RNA sequence and struc-
ture has been shown to possess the ability to form
various ribonucleoprotein complexes (Andino et al+,
1990, 1993; Harris et al+, 1994; Gamarnik & Andino,
1997; Parsley et al+, 1997)+ In one of these ribonucleo-
protein complexes, cellular poly(rC) binding proteins
bind to the cloverleaf structure (Gamarnik & Andino,
1997)+ Poly(rC) binding proteins 1 and 2 form a UV-
light induced covalent bond with nt 24 of the 59-terminal
cloverleaf of poliovirus RNA (Andino et al+, 1993)+ In a
second ribonucleoprotein complex, both poly(rC) bind-
ing protein(s) and viral protein 3CD bind to the 59-
terminal cloverleaf structure (Gamarnik & Andino, 1997;
Parsley et al+, 1997)+A mutation of poliovirus nt 24 from
C to A diminishes the ability of poly(rC) binding proteins
to form these ribonucleoprotein complexes in vitro
(Andino et al+, 1993)+ A C24A mutation also diminishes
viral replication in vivo, producing plaques 20% to
40% smaller than wild-type virus (Andino et al+, 1993),
suggesting that the 59-terminal ribonucleoprotein
complexes containing poly(rC) binding protein(s) are
required for viral replication+ The role(s) of these 59-
terminal ribonucleoprotein complexes in poliovirus rep-
lication are under active investigation (Xiang et al+, 1995;
Parsley et al+, 1997; Gamarnik & Andino, 1998)+ Some
possible functions for these 59-terminal ribonucleopro-
tein complexes include the regulation of translation ini-
tiation (Gamarnik & Andino, 1998), the initiation of
negative-strand RNA synthesis (Barton et al+, 2001),
and the initiation of positive-strand RNA synthesis (An-
dino et al+, 1993)+

Poly(rC) binding proteins 1 and 2 are related KH
domain RNA binding proteins (Kiledjian et al+, 1995;
Leffers et al+, 1995)+ Poly(rC) binding proteins 1 and 2
are expressed in most human tissues with especially
high levels of poly(rC) binding protein 1 expressed in
skeletal muscle (Aasheim et al+, 1994; Leffers et al+,
1995)+ The normal function of these proteins in cells
may involve the metabolism of cellular mRNAs+ Poly(rC)
binding proteins 1 and 2 have been shown to be as-
sociated with a-globin messenger ribonucleoprotein
complexes (Kiledjian et al+, 1995; Wang et al+, 1995)
and erythropoietin messenger ribonucleoprotein com-
plexes (Czyzyk-Krzeska & Bendixen, 1999)+ a-globin
and erythropoietin mRNAs are very stable+The 39 NTRs
of these mRNAs mediate their stability via ribonucleo-
protein complexes containing poly(rC) binding proteins
1 and 2 (Kiledjian et al+, 1995, 1997;Wang et al+, 1995;
Russell et al+, 1998;Czyzyk-Krzeska & Bendixen, 1999)+
Ribohomopoly(C) competitor RNA has been used to
disrupt these ribonucleoprotein complexes in vitro (Wang
et al+, 1995; Czyzyk-Krzeska & Bendixen, 1999)+ In this
study, the functional role of the poliovirus 59-terminal
ribonucleoprotein complexes containing poly(rC) bind-
ing proteins were studied+ HeLa S10 translation-
replication reactions were used to assay poliovirus
mRNA stability, poliovirus mRNA translation, and polio-

virus negative-strand RNA synthesis+ HeLa S10
translation-replication reactions are advantageous be-
cause they support authentic translation and replica-
tion of the exogenous viral mRNA used to program the
reaction (Molla et al+, 1991; Barton & Flanegan, 1993,
1997; Barton et al+, 1995)+ Furthermore, the stability of
the exogenous viral mRNA incubated in these reac-
tions can be easily assayed+ The data in this report
support the conclusion that poly(rC) binding proteins
mediate the stability of poliovirus mRNA by binding to
the 59-terminal cloverleaf of poliovirus mRNA+

RESULTS

Ribohomopolymers [poly(A), poly(G), poly(C), and
poly(U)] were added to HeLa S10 translation-replication
reactions as competitor RNAs to determine whether
cellular ribohomopolymer RNA binding proteins were
essential for poliovirus mRNA stability, mRNA transla-
tion, or negative-strand RNA synthesis+

Ribohomopolymers and poliovirus
mRNA stability

Poliovirus mRNA stability was assayed in HeLa S10
translation-replication reactions by programming the re-
actions with 32P-labeled viral mRNA and following the
integrity of the viral mRNA over time of incubation
(Fig+ 1)+ Poliovirus mRNA was synthesized by T7 tran-
scription of a cDNA clone encoding RNA2, a subgeno-
mic RNA replicon possessing an in-frame deletion of
capsid genes (Collis et al+, 1992)+ This RNA construct is
advantageous because the capsid proteins are unnec-
essary for poliovirus RNA replication and the deletion
of the capsid genes dramatically reduces the biosafety
concerns relative to the use of infectious poliovirus RNA+
Furthermore, RNA2 translates and replicates more ro-
bustly in HeLa S10 translation-replication reactions than
full-length transcripts of poliovirus RNA+ Thus, for the
experiments described in this article, T7 transcripts of
RNA2 were defined as “wild-type poliovirus mRNA+” T7
transcripts of RNA2 possess two 59-terminal nonviral G
residues, an in-frame deletion of capsid genes, and a
39-terminal poly(A) tail 80 bases in length+ The follow-
ing experiments do not address the effect, if any, of the
59-terminal nonviral G residues on poliovirus mRNA
stability+

Wild-type poliovirus mRNA is remarkably stable in
HeLa S10 translation-replication reactions despite the
absence of a 59-terminal cap structure (Fig+ 1)+ In
the absence of ribohomopolymer competitor, 49% of
the 32P-labeled viral mRNA programmed into the reac-
tion remained intact after 3 h of incubation at 34 8C
(Fig+ 1B, lane 3 versus lane 2)+ Ribohomopoly(A) and
-(U) had little effect on the stability of poliovirus mRNA
whereas ribohomopoly(G) improved the stability of polio-
virus mRNA slightly (Fig+ 1B, lanes 4, 5, and 7 versus
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lane 3)+ In contrast, ribohomopoly(C) dramatically di-
minished the stability of the poliovirus mRNA incubated
in the reaction (Fig+ 1B, lane 6 versus lane 3)+ Ethidium
bromide staining of the gel was used to visualize RNA
size markers and to ensure that each lane was loaded
with equal portions of RNA from the reactions (Fig+ 1A)+
Ribohomopoly(C) had no effect on the stability of ribo-
somal RNAs in the HeLa S10 translation-replication
reaction (Fig+ 1A, lane 6 versus lanes 2–5 and lane 7)+
Thus, of the four ribohomopolymers tested, only ribo-
homopoly(C) competed with the stability of wild-type
poliovirus mRNA+ Because poly(rC) binding proteins 1
and 2 bind tightly to ribohomopoly(C) in vitro (Kiledjian
et al+, 1995), these results suggest that poly(rC) bind-
ing protein(s) may be required for the stability of polio-
virus mRNA+

Ribohomopolymers and poliovirus mRNA
translation/polyprotein processing

Poliovirus mRNA translation was assayed in HeLa S10
translation-replication reactions by the incorporation of
[35S]methionine into acid-precipitable material (Fig+ 2A)+
Poliovirus polyprotein processing was examined

using SDS-PAGE and fluorography (Fig+ 2B)+ Ribo-
homopoly(A) and -(U) had no effect on poliovirus mRNA
translation or viral polyprotein processing (Fig+ 2)+ Ribo-
homopoly(G) increased the amount of poliovirus mRNA
translation modestly (Fig+ 2A) and had no effect on viral
polyprotein processing (Fig+ 2B, lanes 7–9 versus
lanes 1–3)+ In contrast, ribohomopoly(C) completely
blocked viral mRNA translation (Fig+ 2)+ These results
suggested that poly(rC) binding protein(s) were re-
quired for viral mRNA translation (as previously re-
ported; Blyn et al+, 1996, 1997) or that the viral mRNA
was degraded before it could be translated+

Ribohomopolymers and poliovirus
negative-strand RNA synthesis

Viral negative-strand RNA synthesis was assayed by
the incorporation of [32P]CTP into viral negative-strand
RNA synthesized by preinitiation RNA replication
complexes formed in HeLa S10 translation-replication
reactions (Barton & Flanegan, 1997)+ Two nonviral G
residues at the 59 terminus of poliovirus RNA2 T7
RNA transcripts inhibit positive-strand RNA synthe-
sis (Barton et al+, 1999); therefore, the preinitiation

FIGURE 1. Ribohomopolymer RNA competitors and poliovirus mRNA stability+ Poliovirus mRNA stability was assayed in
HeLa S10 translation-replication reactions as described in Materials and Methods+ 32P-labeled wild-type poliovirus mRNA
(77,000 CPM/mg) was incubated in 50 mL HeLa S10 translation-replication reactions at 34 8C for 0 min (lane 2) or for 3 h
(lanes 3–7)+ The poliovirus mRNA was at a concentration of 50 mg/mL of reaction+ Homopolymer RNAs (25 mg/mL) were
added to the indicated reactions before incubation+ A: The RNAs from the reactions were separated by electrophoresis in
1% agarose and visualized by ethidium-bromide staining and UV light+ B: 32P-labeled poliovirus mRNA was detected by
autoradiography and quantitated using a phosphorimager+
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RNA replication complexes described in this report
were incapable of synthesizing positive-strand RNA+
32P-labeled negative-strand RNA was detected by auto-
radiography following denaturing agarose gel electro-
phoresis (Fig+ 3)+ HeLa S10 translation-replication
reactions containing poliovirus mRNA and 2 mM
guanidine HCl were incubated at 34 8C for 3 h in the
absence (Fig+ 3, lane 1) and presence (Fig+ 3,
lanes 2–5) of the indicated ribohomopolymers+ Pre-
initiation RNA replication complexes formed in these
reactions were isolated and incubated in labeling
reactions containing [a-32P]CTP under conditions per-
missive for the initiation and synthesis of negative-
strand RNA+ Preinitiation RNA replication complexes
formed in the absence of ribohomopolymer synthe-
sized viral negative-strand RNA (Fig+ 3, lane 1)+ Like-
wise, preinitiation RNA replication complexes were
formed in the presence of ribohomopoly(A), -(G), and
-(U) and were capable of synthesizing negative-strand
RNA (Fig+ 3, lanes 2, 3, and 5)+ Poly(U) partially in-
hibited poliovirus negative-strand RNA synthesis (Fig+ 3,
lane 5), potentially due to its complementarity to the
39 poly(A) tail on poliovirus mRNA+ Preinitiation RNA
replication complexes were not formed in the pres-

ence of ribohomopoly(C) (Fig+ 3, lane 4); primarily
due to the lack of viral protein synthesis in the pres-
ence of ribohomopoly(C) (Fig+ 2)+

To more precisely determine the role, if any, for
poly(rC) binding proteins in poliovirus negative-strand
RNA synthesis, we assayed poliovirus negative-strand
RNA synthesis in a trans-replication experiment (Fig+ 4)+
In this experiment, DNVR2 RNA was used as a helper
mRNA to provide the poliovirus replication proteins in
trans to DJB14 RNA+ DNVR2 mRNA encodes the polio-
virus replication proteins downstream of the hepatitis C
virus internal ribosome entry site (Fig+ 4A)+ DJB14
mRNA represents poliovirus mRNA with deletions of
poliovirus nt 629–6011 and nt 6057–6516+ DJB14
mRNA does not express any functional proteins re-
quired for replication, but does express a protein frag-
ment corresponding to the COOH-terminus of 3DPol,
which we call D3D (Fig+ 4B)+ In this experiment, DJB14
mRNA was made with a 59 7-methylguanosine cap
to prevent its degradation in the presence of ribo-
homopoly(C) (see Fig+ 8)+ When cotranslated with
DNVR2 mRNA in the absence of ribohomopoly(C), both
DNVR2 and DJB14 mRNAs were translated efficiently
(Fig+ 4B, lanes 1 and 2)+ Ribohomopoly(C) inhibited the

FIGURE 2. Ribohomopolymer RNA competitors and poliovirus mRNA translation+ Poliovirus mRNA translation was as-
sayed in HeLa S10 translation-replication reactions containing [35S]methionine and 50 mg/mL of poliovirus mRNA as
described in Materials and Methods+ The reactions also contained ribohomopolymer RNAs (25 mg/mL) as indicated+ A: The
kinetics and magnitude of poliovirus mRNA translation were assayed by determining the incorporation of [35S]methionine
into acid precipitable material+ Reactions were incubated without ribohomopolymer competitor (n), with ribohomopoly(U)
(m), ribohomopoly(A) (d), ribohomopoly(G) (n), and ribohomopoly(C) (▫)+ B: [35S]methionine-labeled poliovirus proteins
were detected by SDS-PAGE and fluorography+
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translation of DJB14 mRNA (Fig+ 4B; note the absence
of D3D in lanes 3 and 4) but did not inhibit the trans-
lation of DNVR2 mRNA (Fig+ 4B, lanes 3 and 4)+ Pre-
initiation RNA replication complexes formed in these
cotranslation reactions were assayed for negative-
strand RNA synthesis in the absence and presence of
ribohomopoly(C) (Fig+ 4C)+As previously published (Bar-
ton & Flanegan, 1997), 2 mM guanidine HCl inhibited
poliovirus negative-strand RNA synthesis (Fig+ 4C,
lanes 1 and 3)+ In the absence of 2 mM guanidine,
preinitiation RNA replication complexes containing
DJB14 mRNA synthesized poliovirus negative-strand
RNA coincident in size with the DJB14 mRNA template
(Fig+ 4C, lane 2)+ Although ribohomopoly(C) inhibited
the translation of DJB14 mRNA (Fig+ 4B, lanes 3 and
4), it did not prevent the formation of preinitiation RNA
replication complexes containing DJB14 mRNA nor did
ribohomopoly(C) inhibit the synthesis of negative-strand
RNA within such complexes (Fig+ 4C, lane 4)+

These experiments demonstrated that ribo-
homopoly(C) inhibited the stability of poliovirus mRNA
and prevented poliovirus mRNA translation but did
not directly inhibit the ability of poliovirus mRNA to
function as a template for viral negative-strand RNA
synthesis+ These results suggest that poly(rC) bind-
ing proteins are required for poliovirus mRNA stability
and mRNA translation but not for negative-strand RNA
synthesis+

C24A mutation rendered poliovirus
mRNA unstable

A C24A mutation was engineered into poliovirus mRNA
(RNA 2) as described in Materials and Methods+ Pre-
vious studies established that a C24A mutation dis-
rupted the interaction of poly(rC) binding proteins with
the 59-terminal cloverleaf RNA (Andino et al+, 1993)+
Two independent clones containing the C24A mutation
were used to make 32P-labeled poliovirus mRNA+ The
stability of the 32P-labeled mutant C24A mRNA was
compared to the stability of 32P-labeled wild-type mRNA
by incubation in HeLa S10 translation-replication reac-
tions at 34 8C+ Wild-type poliovirus mRNA is remark-
ably stable in HeLa S10 translation-replication reactions
(Fig+ 5A, lanes 1–4, and Fig+ 5B)+ In contrast, the viral
mRNA with the C24A mutation was dramatically less
stable than the wild-type mRNA (Fig+ 5A,B)+After 2 h of
incubation at 34 8C, the mutant C24A mRNA was present
at 20% the amount of wild-type mRNA (Fig+ 5A, lanes 8
and 12 versus lane 4, and Fig+ 5B)+ Thus, a C24A
mutation rendered poliovirus mRNA unstable+

C24A mutation and viral mRNA translation

Next, the effect of the C24A mutation on viral mRNA
translation and viral polyprotein processing was de-
termined+ Despite the instability of the C24A mRNA
in HeLa S10 translation-replication reactions, viral pro-
tein synthesis was only marginally affected by the
mutation (Fig+ 6)+ The initial rate of viral protein syn-
thesis was the same in the reaction containing C24A
mRNA as that in the reaction containing wild-type
mRNA (Fig+ 6, 20-min and 40-min time points)+ After
40 min, the reaction containing C24A mRNA was ob-
served to have a slight decrease in the accumulation
viral proteins relative to the reaction containing wild-
type mRNA (Fig+ 6)+ This decrease only occurred af-
ter the time in which the degradation of C24A mRNA
would lead to nonsaturating concentrations of C24A
mRNA+ The C24A mutation did not affect polyprotein
processing (Fig+ 6B)+ Thus, the C24A mutation did
not affect the rate of translation initiation on the mu-
tant mRNA and only slightly diminished the total yield
of viral proteins in the reaction due to the eventual
degradation of the mutant viral mRNA+

FIGURE 3. Ribohomopolymer RNAs and poliovirus negative-strand
RNA synthesis+ Poliovirus negative-strand RNA synthesis was as-
sayed using preinitiation RNA replication complexes formed in HeLa
S10 translation-replication reactions+Preinitiation RNAreplication com-
plexes were formed in HeLa S10 translation-replication reactions
containing poliovirus mRNA (50 mg/mL) and the indicated ribohomo-
polymer RNAs (25 mg/mL) by incubation at 34 8C for 3 h+ Preinitiation
RNA replication complexes were isolated from the HeLa S10
translation-replication reactions, resuspended in labeling reaction mix
containing [32P]CTP, and incubated at 37 8C to allow for the synthe-
sis of negative-strand RNA and the corresponding incorporation of
[32P]CTP into the newly synthesized negative strands+ The RNA from
the reactions was denatured with 50 mM methylmercury hydroxide
and separated by electrophoresis in 1% agarose+ 32P-labeled negative-
strand RNA synthesized by the preinitiation RNA replication com-
plexes was detected by autoradiography+
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C24A mutation and viral negative-strand
RNA synthesis

Poliovirus preinitiation RNA replication complexes
formed in HeLa S10 translation-replication reactions
were used to determine if the C24A mutation affected
viral negative-strand RNA synthesis+ Preinitiation RNA
replication complexes were isolated from HeLa S10
translation-replication reactions containing wild-type
RNA (Fig+ 7, lanes 1 and 2) and C24A mRNA (Fig+ 7,
lanes 4 and 5)+ The preinitiation RNA replication com-
plexes were then incubated in labeling reactions con-
taining [a-32P]CTP in the presence (Fig+ 7, lanes 1
and 4) and absence (Fig+ 7, lanes 2 and 5) of 2 mM
guanidine HCl+ The products of the reactions were
denatured with 50 mM methylmercury hydroxide and
separated by electrophoresis in 1% agarose+ The gel
was stained with ethidium bromide to visualize the
RNA in each lane (Fig+ 7A)+ Then, the gel was dried

and 32P-labeled negative-strand RNA was detected
by autoradiography (Fig+ 7B)+ The instability of the
C24A mRNA was apparent in the ethidium stained
gel (Fig+ 7A, lanes 4 and 5 versus lanes 1 and 2)+
Despite the presence of less template RNA within the
isolated preinitiation complexes from the reactions con-
taining C24A mRNA, normal amounts of negative-
strand RNA were made (Fig+ 7B, lane 5 versus lane 2)+
Only small amounts of the input template RNA are
copied into negative-strand RNA in this experimental
system; therefore, the reduced C24A template con-
centration was sufficient to support normal negative-
strand RNA synthesis+ Thus, the C24A mutation did
not prevent the formation of preinitiation RNA replica-
tion complexes or the synthesis of viral negative-
strand RNA+

The experiments above demonstrated that the only
significant phenotype associated with the C24A muta-
tion was the dramatic defect in viral mRNA stability+

FIGURE 4. Trans-replication of poliovirus mRNA in the presence of ribohomopoly(C) competitor+ DNVR2 mRNA and 59
7-methylguanosine capped DJB14 mRNA were cotranslated for 3 h at 34 8C in HeLa S10 translation-replication reactions
containing 2 mM guanidine HCl in the absence (lanes 1 and 2) and presence (lanes 3 and 4) of 25 mg/mL ribohomopoly(C)
competitor RNA+ A: Diagrams of viral RNAs+ B: SDS-PAGE+ Proteins synthesized in the cotranslation reactions were
radiolabeled with [35S]methionine, fractionated by SDS-PAGE, and detected by autoradiography+ C: Negative-strand RNA
synthesis+ Preinitiation RNA replication complexes formed during cotranslation reactions were assayed for their ability to
synthesize poliovirus negative-strand RNA in the absence and presence of 25 mg/mL ribohomopoly(C) competitor and in
the absence and presence of 2 mM guanidine HCl as indicated+
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59 exonuclease degradation
of poliovirus mRNA

To determine if the C24A mutation rendered poliovirus
mRNA sensitive to degradation by 59 exonuclease, 59
7-methylguanosine caps were used on wild-type and
mutant mRNAs (Fig+ 8)+ 59 7-methylguanosine caps
prevent the degradation of mRNA by 59 exonuclease+
32P-labeled viral mRNAs were synthesized by T7 poly-
merase in the presence (Fig+ 8, lanes 9–16) and ab-
sence (Fig+ 8, lanes 1–8) of 7-methylguanosine such
that the resulting viral mRNAs were capped and un-
capped, respectively+ The radiolabeled viral mRNAs
were then incubated in HeLa S10 translation-replication
reactions and the integrity of the viral mRNA over time
of incubation was determined by agarose gel electro-
phoresis, autoradiography, and phosphorimaging
(Fig+ 8)+ Wild-type poliovirus mRNA was stable over
time both with and without a 59 cap structure (Fig+ 8A,
lanes 1–4 and 9–12; Fig+ 8B)+ As before, the C24A
mutation rendered uncapped poliovirus mRNA unsta-
ble (Fig+ 8A, lanes 5–8)+ A 59 7-methylguanosine cap
restored stability to C24A mRNA (Fig+ 8A, lanes 13–16

versus 5–8; Fig+ 8B)+ These results support the con-
clusion that the C24A mutant mRNA was degraded by
59 exonuclease activity+

To test whether the instability of wild-type polio-
virus mRNA in the presence of ribohomopoly(C) com-
petitor observed in Figure 1 was due to degradation
by 59 exonuclease, we determined whether a 59
7-methylguanosine cap restored stability to wild-type
poliovirus mRNA in the presence of ribohomopoly(C)
competitor (Fig+ 8C,D)+ Uncapped wild-type poliovirus
mRNA was stable in the absence of ribohomopoly(C)
competitor and unstable in the presence of ribo-
homopoly(C) competitor (Fig+ 8C, lanes 1–8 and
Fig+ 8D)+ The kinetics and magnitude of wild-type polio-
virus mRNA degradation in the presence of ribo-
homopoly(C) competitor was virtually identical with the
kinetics and magnitude of degradation of C24A mRNA
(Fig+ 8A, lanes 5–8 compared to Fig+ 8C, lanes 5–8;
Fig+ 8B,D)+ In addition, a 59 7-methylguanosine cap re-
stored stability to poliovirus mRNA in the presence of
ribohomopoly(C) competitor (Fig+ 8C, lanes 13–16;
Fig+ 8D)+ Although it is not possible to determine pre-
cisely the efficiency of 59 capping in T7 transcription

FIGURE 5. C24A mutation and poliovirus mRNA stability+ 32P-labeled wild-type poliovirus mRNA and 32P-labeled C24A
mutant poliovirus mRNAs from two independent cDNA clones (125,000 CPM/mg) were incubated in 100 mL HeLa S10
translation-replication reactions at 34 8C+ The poliovirus mRNAs were at a concentration of 25 mg/mL of reaction+ Samples
(20 mL) of each reaction were solubilized in 0+5% SDS buffer after 0, 0+5, 1, and 2 h of incubation+ RNA from the samples
were denatured with 50 mM methylmercury hydroxide and separated by electrophoresis in 1% agarose+ A: 32P-labeled
poliovirus mRNAs in the gel were detected by autoradiography+ B: The amounts of full-length 32P-labeled wild-type polio-
virus mRNA (n) and C24A mutant poliovirus mRNA (d) in the gel were quantitated using a phosphorimager and plotted
versus time+
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reactions, we can see from this data that approximately
80% of 59-capped poliovirus mRNA was stable under
conditions in which uncapped poliovirus mRNA was
unstable (Fig+ 8D)+ Thus, the phenotype of 59 capped
poliovirus mRNA relative to uncapped poliovirus mRNA
suggests that $80% of the poliovirus mRNA synthe-
sized in the presence of cap analog was actually capped+
This is consistent with the capping efficiency predicted
in bacteriophage T7 transcription reactions containing
3 mM cap analog and 0+75 mM GTP (Materials and
Methods)+

DNVR2 mRNA stability was unaffected by ribo-
homopoly(C) competitor (Fig+ 9)+ DNVR2 mRNA is 39
coterminal with poliovirus mRNA but possesses the 59
NTR of HCV as diagramed in Figure 4A+ Thus, polio-
virus mRNA instability in the presence of ribo-
homopoly(C) was specifically associated with the 59
NTR of poliovirus mRNA as ribohomopoly(C) did not
activate ribonuclease activity capable of degrading
DNVR2 mRNA+ The results of these experiments sup-
port the conclusion that both the C24A mutation and
the ribohomopoly(C) competitor RNA rendered polio-
virus mRNA susceptible to degradation by a 59
exonuclease+

Poly(rC) binding protein–5 9 cloverleaf
RNA interactions

Previous studies established that poly(rC) binding pro-
teins 1 and 2 bind to the 59 terminal cloverleaf of polio-
virus RNA (Gamarnik & Andino, 1997; Parsley et al+,
1997) and that a C24A mutation within the cloverleaf
RNA disrupts the interaction with poly(rC) binding pro-
teins (previously known as p36 due to the apparent
molecular weight of poly(rC) binding proteins; Andino
et al+, 1993)+ We used UV crosslinking to detect the
interaction of poly(rC) binding proteins with the 59 ter-
minal cloverleaf of poliovirus mRNA (Fig+ 10)+ 32P-
labeled 59 cloverleaf RNA was crosslinked to a small
number of cellular proteins in HeLa cell extract (Fig+ 10A,
lane 2)+ Two crosslinked proteins approximately 36 kDa
in size immunoprecipitated specifically with antibodies
to poly(rC) binding proteins 1 and 2 (Fig+ 10A, lanes 3
and 4)+ Of the four ribohomopolymers, only ribo-
homopoly(C) prevented the crosslinking of poly(rC)
binding proteins to the poliovirus 59 cloverleaf RNA
(Fig+ 10B)+ When ribohomopoly(C) prevented binding
of poly(rC) binding proteins with the 59 cloverleaf RNA,
the amount of cloverleaf RNA crosslinked to a 90-kDa

FIGURE 6. C24A mutation and poliovirus mRNA translation+ HeLa S10 translation-replication reactions containing [35S]me-
thionine and the indicated poliovirus mRNAs at 75 mg/mL were incubated at 34 8C as described in Materials and Methods+
Samples were removed after incubation for the indicated periods of time+ A: Incorporation of [35S]methionine into acid-
precipitable material was plotted versus time+ Wild-type mRNA (n), C24A mRNA (d), and no RNA (m)+ B: Samples were
separated by SDS-PAGE and 35S-labeled proteins were detected by fluorography+ No proteins were detected in SDS-PAGE
from the mock (no viral mRNA) reaction (data not shown)+
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cellular protein increased (Fig+ 10B, lane 5)+ The iden-
tity of this 90-kDa cellular protein is yet unknown+ A
C24A mutation in the 59 cloverleaf RNA also prevented
crosslinking with poly(rC) binding proteins (Fig+ 10C,
lane 4)+ The C24A mutation did not affect the inter-
action of the cloverleaf RNA with the 90-kDa protein
(Fig+ 10C, lane 4)+ Indeed, the amount of 90-kDa pro-
tein crosslinked to C24A 59 cloverleaf was similar to the
increased amount crosslinked to wild-type cloverleaf in
the presence of ribohomopoly(C) (Fig+ 10C, lanes 3
and 4)+ Thus, both ribohomopoly(C) and a C24A mu-
tation disrupted the interaction of poly(rC) binding pro-
teins with the 59 terminal cloverleaf of poliovirus RNA+

DISCUSSION

Poly(rC) binding proteins 1 and 2 interact with two
distinct RNA structures within the poliovirus 59 NTR
(Fig+ 11A)+ Poly(rC) binding proteins 1 and 2 bind to the
cloverleaf RNA structure at the extreme 59 terminus of
poliovirus RNA (Gamarnik & Andino, 1997;Parsley et al+,
1997)+ In addition, poly(rC) binding protein 2 binds to
stem-loop IV of the poliovirus IRES (Blyn et al+, 1996)+
In this study, ribohomopoly(C) competitor RNA (Fig+ 11B)
and a C24A mutation (Fig+ 11C) were used to block the
binding of poly(rC) binding proteins to poliovirus RNA
in HeLa S10 translation-replication reactions+ Quanti-
tative assays were used to measure poliovirus mRNA

stability, poliovirus mRNA translation, and poliovirus
negative-strand RNA synthesis in the context of these
reactions+ In the presence of ribohomopoly(C) compet-
itor RNA, poliovirus mRNA stability was greatly dimin-
ished and poliovirus mRNAwas not translated (Fig+ 11B);
yet when poliovirus replication proteins were provided
in trans from a helper mRNA impervious to translation
inhibition by ribohomopoly(C), poliovirus mRNA (DJB14
mRNA, Fig+ 4) functioned as a template for poliovirus
negative-strand RNA synthesis+ Therefore, we con-
clude that poliovirus negative-strand RNA synthesis
does not require poly(rC) binding proteins (Fig+ 11B)+ A
C24A mutation, which specifically diminishes the inter-
action of poly(rC) binding proteins with the 59-terminal
cloverleaf RNA (Fig+ 10C; Andino et al+, 1993), ren-
dered poliovirus mRNA susceptible to degradation by
59 exonuclease (Fig+ 11C)+ The C24A mutation did not
affect the efficiency of translation initiation nor affect
the ability of the viral mRNA to serve as a template for
viral negative-strand RNA synthesis (Fig+ 11C)+ These
results support the conclusion that poly(rC) binding pro-
teins mediate poliovirus mRNA stability by binding to
the 59-terminal cloverleaf of poliovirus mRNA+

Poly(rC) binding proteins and poliovirus
mRNA stability

Poliovirus mRNA is stable despite the absence of a 59
cap structure+ In theory, poliovirus mRNA stability could

FIGURE 7. C24A mutation and poliovirus negative-strand RNA synthesis+ Preinitiation RNA replication complexes were
formed in HeLa S10 translation-replication reactions containing 75 mg/mL of wild-type poliovirus mRNA (lane 1 and 2) and
reactions containing C24A mutant poliovirus mRNA (lanes 4 and 5) after incubation for 3 h at 34 8C+ To assay negative-
strand RNA synthesis within the preinitiation RNA replication complexes, they were isolated from the HeLa S10 translation-
replication reactions by centrifugation and resuspended in labeling reactions containing [32P]CTP in the presence (lanes 1
and 4) and absence (lanes 2 and 5) of 2 mM guanidine HCl and incubated at 37 8C for 30 min+ The RNA products of each
reaction were denatured with 50 mM methylmercury hydroxide and separated by electrophoresis in 1% agarose along with
an RNA marker ladder (lane 3)+ A: RNAs in the gel were stained with ethidium bromide and visualized using UV light+
B: 32P-labeled poliovirus negative-strand RNA was detected by autoradiography and quantitated using a phosphorimager+
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be mediated by an RNA structure alone, or by a ribo-
nucleoprotein complex+ A well-characterized cloverleaf
RNA structure exists at the 59-terminus of poliovirus
mRNA (Andino et al+, 1990), and this cloverleaf RNA

structure forms various ribonucleoprotein complexes
(Andino et al+, 1990, 1993; Harris et al+, 1994; Gama-
rnik & Andino, 1997; Parsley et al+, 1997)+ As shown in
this article, ribohomopoly(C) competed with the stabil-

FIGURE 8. 59 7-methylguanosine caps and poliovirus mRNA stability+ To assay poliovirus mRNA stability, 32P-labeled
poliovirus mRNAs (125,000 CPM/mg; 25 mg/mL) were incubated in HeLa S10 translation-replication reactions at 34 8C as
described in Materials and Methods+ Samples of each reaction were solubilized in 0+5% SDS buffer after incubation for 0
(lanes 1, 5, 9, 13), 0+5 (lanes 2, 6, 10, 14), 1 (lanes 3, 7, 11, 15), and 2 h (lanes 4, 8, 12, 16) of incubation+ RNA from the
samples was denatured with 50 mM methylmercury hydroxide and separated by electrophoresis in 1% agarose+ RNAs in
the gel were stained with ethidium bromide and visualized using UV light+ Observation of ribosomal RNA in the gel indicated
that each lane was loaded with equal portions of each reaction (data not shown)+ A: 32P-labeled poliovirus mRNAs in the
gel were detected by autoradiography+ Reactions contained wild-type poliovirus mRNA (lanes 1–4), C24A mutant poliovirus
mRNA (lanes 5–8), 59 capped wild-type poliovirus mRNA (lanes 9–12), and 59 capped C24A mutant poliovirus mRNA
(lanes 13–16) at 25 mg/mL of reaction+ B: The amounts of full-length 32P-labeled poliovirus mRNAs in each lane of the gel
in A were quantitated using a phosphorimager and plotted versus time+ Wild-type mRNA (n), C24A mRNA (d), 59 capped
wild-type mRNA (▫), and 59 capped C24A mRNA (C)+ C: 32P-labeled wild-type poliovirus mRNA, without or with 59
7-methylguanosine caps, was incubated in reactions in the absence and presence of 25 mg/mL ribohomopoly(C), fraction-
ated by electrophoresis in 1% agarose, and detected by autoradiography+ Reactions contained wild-type poliovirus mRNA
(lanes 1–4), wild-type poliovirus mRNA and 25 mg/mL ribohomopoly(C) (lanes 5–8), 59 capped wild-type poliovirus mRNA
(lanes 9–12) and 59 capped wild-type poliovirus mRNA and 25 mg/mL ribohomopoly(C) (lanes 13–16)+ D: The amounts of
full-length 32P-labeled poliovirus mRNAs in each lane of the gel in C were quantitated using a phosphorimager and plotted
versus time+Wild-type poliovirus mRNA (n), wild-type poliovirus mRNA in reactions containing 25 mg/mL ribohomopoly(C)
(d), 59 capped wild-type poliovirus mRNA (▫), and 59 capped wild-type poliovirus mRNA in reactions containing 25 mg/mL
ribohomopoly(C) (C)+
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ity of wild-type poliovirus mRNA (Figs+ 1 and 8)+ Ribo-
homopoly(C) was used previously to disrupt both
a-globin and erythropoietin messenger ribonucleopro-
tein complexes containing poly(rC) binding proteins
(Wang et al+, 1995;Czyzyk-Krzeska & Bendixen, 1999)+
We demonstrated that ribohomopoly(C) disrupted the
interaction of poly(rC) binding proteins with the 59 ter-
minal cloverleaf of poliovirus RNA (Fig+ 10B)+ The abil-
ity of ribohomopoly(C) to compete with the stability of
poliovirus mRNA suggested that ribohomopoly(C) bind-
ing protein(s) mediated, in part, poliovirus mRNA sta-
bility and that RNA structure alone was not sufficient to
mediate mRNA stability+ Poly(rC) binding proteins bind
to the 59-terminal cloverleaf structure of poliovirus mRNA
(Gamarnik & Andino, 1997; Parsley et al+, 1997)+ UV-
crosslinking studies indicate that poly(rC) binding pro-
teins 1 and 2 specifically interacted with nt 24 of the
cloverleaf RNA structure (Andino et al+, 1993)+ Indeed,
a C24A mutation prevented interaction of the poliovirus

FIGURE 9. No effect of ribohomopoly(C) on DNVR2 mRNA stability+
32P-labeled DNVR2 mRNA stability was assayed in the presence
and absence of 25 mg/mL ribohomopoly(C) as described in Figure 8+
DNVR2 mRNA possesses the 59 NTR of HCV in place of the 59 NTR
of poliovirus mRNA (as illustrated in Fig+ 4)+

FIGURE 10. Ribohomopoly(C) and C24A mutation disrupt poly(rC) binding protein–59 cloverleaf RNA interactions+ 32P-
labeled 59 cloverleaf RNA was crosslinked to HeLa cell proteins as described in Materials and Methods+ UV-crosslinked
proteins were fractionated by SDS-PAGE and detected by phosphorimaging+ Poliovirus proteins expressed from RNA2 were
used as molecular weight markers (lane 1 in A, B, and C); P3, 84 kDa; 3CD, 72 kDa; P2, 65 kDa; 2BC, 48 kDa; 2C, 37 kDa;
3C, 20 kDa; 2A, 17 kDa; 3AB, 12 kDa+ A: Immunoprecipitation of poly(rC) binding proteins crosslinked to cloverleaf RNA+
32P-labeled 59 cloverleaf RNA was crosslinked to HeLa cell IFs+ A portion of the crosslinked proteins were fractionated by
SDS-PAGE before (lane 2) and after immunoprecipitation with preimmune rabbit serum (lane 3) or a-poly(rC) binding
protein 1 and 2 immune serum (lane 4)+ B: Ribohomopolymer competition of UV-crosslinking+ 32P-labeled 59 cloverleaf RNA
was crosslinked to HeLa cell IFs in the presence of 25 mg/mL ribohomopolymers as indicated (lanes 2–6)+ C: Wild-type and
C24A 59 cloverleaf RNAs+ Wild-type 59 cloverleaf and C24A 59 cloverleaf RNAs were crosslinked with HeLa cell IFs in the
absence (lanes 2 and 4) and presence (lanes 3 and 5) of 25 mg/mL ribohomopoly(C)+
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cloverleaf structure with poly(rC) binding proteins
(Fig+ 10C;Andino et al+, 1993)+ In vivo, a C24A mutation
leads to a 20% to 40% reduction in plaque size (Andino
et al+, 1993), but the step(s) of poliovirus replication
affected by this mutation are not known+ In this article,
we demonstrate that the C24A mutation rendered polio-
virus mRNA unstable in HeLa S10 translation-replication
reactions (Figs+ 5 and 8)+ These results strongly sup-
port the conclusion that poly(rC) binding proteins
mediate poliovirus mRNA stability by binding to the 59-
terminal cloverleaf of poliovirus mRNA+ 59 7-methyl-
guanosine caps restored stability to C24A mutant mRNA
(Fig+ 8)+ 59 7-methylguanosine caps also restored sta-
bility to wild-type poliovirus mRNA in reactions contain-
ing ribohomopoly(C) competitor (Fig+ 8)+ Because 59
cap structures block 59 exonuclease, these results sug-
gest that cellular 59 exonuclease is responsible for the

degradation of poliovirus mRNA+ Poly(rC) binding pro-
tein bound to the cloverleaf RNA may simply block the
ability of 59 exonuclease to access the 59-terminus of
poliovirus mRNA+ The modest reduction in plaque size
associated with a C24A mutation could be due to a
defect in poliovirus mRNA stability; although the mag-
nitude of mRNA instability in HeLa S10 translation-
replication reactions may be larger than that in vivo+

Previous studies (Simoes & Sarnow, 1991; Andino
et al+, 1993) examined the effects of 59-terminal clover-
leaf RNA mutations on poliovirus mRNA stability; how-
ever, in contrast to the results of this study, no defects
in poliovirus mRNA stability were observed+ In these
studies, poliovirus mRNAs were transfected into cells
and the stability of the poliovirus mRNAs was assayed
by RNase protection (Simoes & Sarnow, 1991) or by
reporter protein (luciferase) accumulation (Andino et al+,
1993)+ Neither of these assays were validated using
unstable mRNA controls to prove their reliability in de-
tecting unstable mRNAs (Simoes & Sarnow, 1991;
Andino et al+, 1993)+ In contrast, exogenous mRNAs
incubated in cytoplasmic extracts of HeLa cells appear
to exhibit regulated mRNA stability under appropriate
conditions, as shown in this article with HeLa S10 ex-
tracts and with HeLa S100 extracts previously (Ford &
Wilusz, 1999)+ Nonetheless, we must emphasize that
in vivo experiments confirming the results presented
here have not been done+ The stability of poliovirus
mRNA in vivo requires examination following the vali-
dation of the experimental system to be used+

Poly(rC) binding proteins and poliovirus
mRNA translation

Poly(rC) binding protein 2 binds two distinct cis-active
RNA structures within the 59 NTR of poliovirus, the
59-terminal cloverleaf structure as discussed above and
stem-loop IV of the IRES (Fig+ 11; Blyn et al+, 1996)+
Binding of poly(rC) binding protein 2 to stem-loop IV in
the IRES is required for poliovirus mRNA translation
(Blyn et al+, 1997;Walter et al+, 1999)+Ribohomopoly(C)
competitor completely prevented poliovirus mRNA trans-
lation in HeLa S10 translation-replication reactions
(Fig+ 2)+ This inhibition could have been due to the
degradation of the viral mRNA induced by ribo-
homopoly(C) competitor RNA (Fig+ 1) or to a require-
ment for poly(rC) binding protein(s) in the mechanism
of translation initiation itself+ A C24A mutation, which
rendered poliovirus mRNA unstable (Fig+ 5), did not
inhibit poliovirus mRNA translation (Fig+ 6)+ This result
suggests that under the conditions of saturating con-
centrations of viral mRNA used in HeLa S10 translation-
replication reactions, the instability of viral mRNA does
not by itself prevent observable translation+ Unstable
mRNA can be translated before being degraded if the
mRNA contains a functional IRES (Fig+ 6)+ Therefore,

FIGURE 11. Poly(rC) binding proteins bind distinct cis-active RNA
structures to separately mediate poliovirus mRNA stability and polio-
virus mRNA translation+ A: The 59-terminal cloverleaf RNA structure
of wild-type poliovirus mRNA binds poly(rC) binding proteins 1 and 2
(Gamarnik & Andino, 1997; Parsley et al+, 1997)+ In addition, poly(rC)
binding protein 2 binds to stem-loop IV of the poliovirus IRES (Blyn
et al+, 1996)+ B: Ribohomopoly(C) competitor RNA prevented the
binding of poly(rC) binding proteins to the 59 NTR of poliovirus+ In the
presence of ribohomopoly(C), poliovirus mRNA was degraded and
translation of the mRNA was prevented+ Ribohomopoly(C) did not
prevent poliovirus RNA (DJB14 RNA) from functioning as a template
for negative-strand RNA synthesis+ C: A C24A mutation blocked
poly(rC) binding proteins from binding to the 59-terminal cloverleaf
without affecting the interaction of poly(rC) binding protein 2 with the
IRES+ The C24A mutation rendered poliovirus mRNA susceptible to
degradation by 59 exonuclease+ The C24A mutation did not diminish
the efficiency of poliovirus mRNA translation initiation+ The C24A
mutation did not diminish the ability of the viral RNA to serve as a
template for negative-strand RNA synthesis+
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ribohomopoly(C) most likely prevented poliovirus mRNA
translation by competing with the available poly(rC) bind-
ing protein required by the IRES for the mechanism of
translation initiation+ Thus, the results of this study sup-
port previous conclusions (Blyn et al+, 1997; Walter
et al+, 1999) that poly(rC) binding protein 2 is required
for poliovirus IRES-mediated translation initiation+

Binding of poly(rC) binding protein to the 59-terminal
cloverleaf structure of poliovirus mRNA was not re-
quired for efficient translation initiation (Fig+ 6)+ The ini-
tial rate of viral mRNA translation was the same in
reactions containing wild-type poliovirus mRNA and
C24A mRNA (Fig+ 6, 20- and 40-min time points)+ Di-
minished translation of viral mRNA with a C24A muta-
tion was only evident at times corresponding to those
in which significant amounts of the input C24A mRNA
would have been degraded (Fig+ 5, after 60 min of
incubation)+ Degradation of significant amounts of the
input C24A mRNA would lead to nonsaturating concen-
trations of C24A mRNA in the HeLa S10 translation-
replication reaction and diminished translation relative
to reactions containing higher concentrations of wild-
type mRNA+ Parsley et al+ (1997) previously reported
that 59-terminal cloverleaf RNA mutations diminished
poliovirus mRNA translation and prevented RNA repli-
cation+ These authors used less subtle mutations to
diminish poly(rC) binding protein interactions with the
cloverleaf RNA than the C24A mutation described in
this article+ Furthermore, these authors did not exam-
ine the stability of mutant viral mRNA within the in vitro
translation reactions (Parsley et al+, 1997)+ The results
of this study suggest that the primary role of poly(rC)
binding protein interactions with the 59-terminal clover-
leaf RNA is to mediate poliovirus mRNA stability+

Poly(rC) binding proteins and poliovirus
negative-strand RNA synthesis

The 59-terminal cloverleaf RNA and associated ribonu-
cleoprotein structures have been proposed to function
as cis-active structures necessary for viral negative-
strand RNA synthesis (Gamarnik & Andino, 1998; Bar-
ton et al+, 2001)+Clearly, degradation of poliovirus mRNA
would prevent its ability to become the template RNA
within a replication complex+ Therefore, we predicted
that a C24A mutation would diminish viral negative-
strand RNA synthesis+ Nonetheless, a C24A mutation
did not diminish the ability of poliovirus mRNA to form
preinitiation RNA replication complexes in HeLa S10
translation-replication reactions nor did the mutation
diminish the ability of these complexes to catalyze the
initiation and synthesis of viral negative-strand RNA
(Fig+ 7)+ This result suggests that only a small portion of
the viral mRNA in HeLa S10 translation-replication re-
actions is converted into template RNA for viral negative-
strand RNA synthesis within preinitiation RNA replication
complexes+ More importantly, this result suggests that

poly(rC) binding protein may not need to bind the 59-
terminal cloverleaf RNA to mediate the initiation and
synthesis of negative-strand RNA+ Alternatively, the
C24A mutation may not completely block the binding of
poly(rC) binding proteins with the 59-terminal cloverleaf
RNA in the context of preinitiation RNA replication
complexes+

In a trans-replication experiment, we found that polio-
virus negative-strand RNA synthesis was not inhibited
by the constant presence of 25 mg/mL ribohomopoly(C)
(Fig+ 4)+ This amount of ribohomopoly(C) competitor
was sufficient to render poliovirus mRNA unstable, com-
pletely inhibit PCBP-dependent translation, and block
UV crosslinking of PCBPs to 59 cloverleaf RNA+ To
assay poliovirus negative-strand RNA synthesis in the
presence of ribohomopoly(C), we took advantage of
the ability of DNVR2 mRNA to translate efficiently in
the presence of ribohomopoly(C)+ In contrast with the
IRES of poliovirus, the hepatitis C virus IRES does not
require PCBPs for translation (Fig+ 4B)+ In addition, we
used 59 7-methylguanosine caps to prevent the degra-
dation of DJB14 mRNA templates in the presence of
ribohomopoly(C)+ Thus, these conditions stringently as-
sayed the requirement for PCBPs in poliovirus negative-
strand RNA synthesis and demonstrated that PCBPs
are not directly required for poliovirus negative-strand
RNA synthesis+

The results of this study suggest that the interaction
of poly(rC) binding protein(s) with the 59-terminal clo-
verleaf of poliovirus RNA is necessary for the stability
of poliovirus mRNA+ Because the poliovirus 59-terminal
cloverleaf RNA sequence and structure is highly con-
served among enteroviruses and rhinoviruses (Zell &
Stelzner, 1997), poly(rC) binding proteins likely medi-
ate, in part, mRNA stability for all of these viruses+ The
poly(rC) binding protein–RNA cloverleaf interaction is
not directly required for efficient translation initiation+
Furthermore, the poly(rC) binding protein–cloverleaf
RNA interaction may not function directly in the initia-
tion and synthesis of negative-strand RNA within pre-
initiation RNA replication complexes+ It will be important
to determine in future studies whether the quantitative
distribution of poly(rC) binding proteins 1 and 2 in dif-
ferent tissues contributes to the pathogenesis of en-
teroviruses+ Skeletal muscle, where poly(rC) binding
protein 1 is expressed at relatively high levels (Aasheim
et al+, 1994; Leffers et al+, 1995), is an important site of
poliovirus replication in the pathogenesis of poliomy-
elitis (Gromeier & Wimmer, 1998)+

MATERIALS AND METHODS

cDNA and cloning

A plasmid containing a cDNA clone of a subgenomic RNA
replicon of poliovirus RNA (Mahoney, Type 1) was kindly pro-
vided by James B+ Flanegan, University of Florida College of
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Medicine, Gainesville, Florida+ This plasmid encoded RNA2,
a subgenomic poliovirus RNA replicon containing an in-frame
deletion of poliovirus nt 1175–2956 within the capsid genes
(Collis et al+, 1992)+ A C24A mutation was engineered into a
subclone of this plasmid using two complementary 59 phos-
phorylated DNA oligonucleotide primers (59-pGCTCTGGGG
TTGTACACACCCCAGAGGCCCACG-39;59-pCGTGGGCCT
CTGGGGTGTGTACAACCCCAGAGC-39) and Strategene’s
“QuickChange” mutagenesis kit (Strategene, La Jolla, Cali-
fornia)+ An MluI to BlpI DNA fragment containing the C24A
mutation in the subclone was then exchanged with the corre-
sponding fragment of the plasmid encoding RNA2+ The pres-
ence of the C24Amutation was confirmed by DNAsequencing+

A plasmid, pNCR-C(AUG), encoding the hepatitis C virus
IRES, was kindly provided by Aleem Siddiqui, University of
Colorado Health Science Center, Department of Microbiol-
ogy, Denver, Colorado+ Plasmid pT7-PV1(A)80, encoding an
infectious cDNA clone of poliovirus RNA, and plasmid pDJB14,
a derivative of pT7-PV1(A)80 containing deletions of polio-
virus nt 629–6011 and nucleotides 6057 to 6516, were kindly
provided by James B+ Flanegan+

pDNVR1

PCR-based cloning was used to removed nonviral nucleo-
tides between the T7 promoter of pNCR-C(AUG) and the
59 nontranslated region of HCV in pNCR-C(AUG), creating
pDNVR1 plasmid+ PCR primers (59-CTGTAATACGACTCA
CTATAGGCCAGCCCCCTGAG-39 and 59-CTGGCCATTGA
GGTTTAGGATTCGTGCTCATGG-39) were used to amplify
the HCV 59 NTR from pNCR-C(AUG)+ pNCR-C(AUG) was
cut with PvuII and EcoRI to remove the unwanted T7 pro-
moter and HCV 59 NTR+ The 395-bp PCR product encoding
the T7 promoter immediately upstream of the HCV 59 NTR
was blunt ligated into the PvuII and EcoRI-cut pNCR-C(AUG)+

pDNVR2

pT7-PV1(A)80 and pDNVR1 were used as parental plasmids
to create pDNVR2+ The MscI to PvuI fragment of pDNVR1
was ligated to the SnaBI to PvuI fragment of pT7-PV1(A)80 to
make pDNVR2+

Viral mRNA

Poliovirus mRNA was generated by T7 transcription of MluI
linearized plasmids using a commercial T7 transcription kit
(Epicentre, Madison, Wisconsin)+ MluI linearized plasmids
immediately downstream of the poly(A) tail of the viral cDNA+
The T7-transcribed RNA2 (“wild-type poliovirus mRNA”) was
5,741 bases in length+ This subgenomic wild-type poliovirus
mRNA possessed two 59-terminal nonviral guanosine resi-
dues, poliovirus RNA with an internal deletion of nt 1175–
2956, and a 39-terminal poly(A) tail 83 bases in length+ The
viral mRNA was purified by phenol-chloroform extraction,G-50
desalting, and ethanol precipitation+ Viral mRNA was quanti-
tated by OD260+ For RNA stability assays, radiolabeled viral
mRNA was synthesized by including [a-32P]CTP in the T7
transcription reactions+ The specific radioactivity of the viral
mRNAs was determined by acid-precipitation and scin-
tillation counting along with an OD260+ To synthesize viral

mRNA with a 59 7-methylguanosine cap, 3 mM cap analog
(m7G59ppp59G) was included in the T7 transcription reac-
tions and the concentration of GTP was reduced to 0+75 mM
as recommended by the manufacturer (Epicentre)+ Under
these T7 transcription conditions (a 4:1 ratio of cap analog to
GTP), one could predict that up to 80% of the transcripts
would be capped+

HeLa S10 translation-replication reactions

HeLa cell S10 extract (S10) and HeLa cell translation ini-
tiation factors (IFs) were prepared as previously described
(Barton et al+, 1996)+ HeLa S10 translation-replication reac-
tions contained 50% by volume S10, 20% by volume IFs,
10% by volume 103 nucleotide reaction mix (10 mM ATP,
2+5 mM GTP, 2+5 mM CTP, 2+5 mM UTP, 600 mM KCH3CO2,
300 mM creatine phosphate, 4 mg/mL creatine kinase, 155 mM
HEPES-KOH, pH 7+4), 2 mM guanidine HCl, and viral mRNA
at the indicated concentrations (25 to 75 mg/mL)+ Reactions
were incubated at 34 8C+

mRNA stability

Poliovirus mRNA stability was assayed by incubating 32P-
labeled poliovirus mRNA in HeLa S10 translation-replication
reactions+ Portions of the reactions were solubilized in 0+5%
SDS buffer [0+5% sodium dodecyl sulfate (Sigma Chemical
Company, St+ Louis,Missouri), 10 mM Tris-HCl, pH 7+5, 1 mM
EDTA, 100 mM NaCl] after incubation at 34 8C for the indi-
cated times, extracted with phenol-chloroform, and the RNA
from the reactions was ethanol precipitated+ The RNA from
the reactions was then denatured in 50 mM methylmercury
hydroxide and separated by electrophoresis in 1% agarose+
The RNAs in the gels were stained with ethidium bromide
and visualized by UV light+ The gels were then dried and
radiolabeled poliovirus mRNA was detected by autoradiog-
raphy and quantitated using a phosphorimager (Molecular
Dynamics, Sunnyvale, California or Biorad, Hercules,
California)+

mRNA translation

Poliovirus mRNA translation was assayed by including
[35S]methionine (1+2 mCi/mL, Amersham) in HeLa S10
translation-replication reactions+ Incorporation of [35S]me-
thionine into acid-precipitable material was assayed by col-
lecting 1 mL samples of the HeLa S10 translation-replication
reactions in 100 mL of 0+1% KOH and 1% casaminoacids at
the indicated times+ Samples were then precipitated with 5%
trichloroacetic acid (5 mL) on ice for 10 min+ Precipitated
proteins were collected by filtration on 2+5 cm diameter nitro-
cellulose filters (Millipore) and the radiolabel retained on
the filters was quantitated by scintillation counting+ CPM of
acid-precipitable[35S]methionine was plotted versus time of
incubation+

[35S]methionine-labeled proteins synthesized in HeLa S10
translation-replication reactions were also analyzed by
SDS-PAGE+ Samples (4 mL) of the HeLa S10 translation-
replication reactions containing [35S]methionine were solu-
bilized in Laemmli sample buffer after incubation for the
indicated times+ The samples were heated at 100 8C for 5 min
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and separated by gel electrophoresis in 9–18% SDS-
polyacrylamide gels as previously described (Barton et al+,
1996)+ The gels were fixed by soaking in 50% trichloroacetic
acid+ The gels were then fluorographed using DMSO/PPO,
dried, and [35S]methionine-labeled proteins were detected
on film (Kodak XL1-Blue)+

Negative-strand RNA synthesis

Poliovirus negative-strand RNA synthesis was assayed using
preinitiation RNA replication complexes formed in HeLa S10
translation-replication reactions as previously described (Bar-
ton & Flanegan, 1997)+ Following 3 h of incubation at 34 8C,
preinitiation RNA replication complexes were isolated from
HeLa S10 translation-replication reactions containing wild-
type or C24A mutant poliovirus mRNA by centrifugation at
13,000 3 g+ Pellets containing preinitiation RNA replication
complexes were then resuspended in 50 mL labeling reac-
tions containing [32P]CTP and incubated at 37 8C for 30 min
as previously described (Method 4, Barton & Flanegan, 1997)+
Under these conditions, radiolabel is incorporated into na-
scent negative-strand RNA as it is synthesized by the viral
RNA replication complexes (Barton & Flanegan, 1997)+ Two
nonviral G residues at the 59 end of T7 RNA transcripts pre-
vent positive-strand RNA synthesis within preinitiation RNA
replication complexes (Barton et al+, 1999; Herold & Andino,
2000)+ The reactions were terminated by the addition of 0+5%
SDS buffer+ The products of the reaction were phenol-
chloroform extracted, ethanol precipitated, denatured with
50 mM methylmercury hydroxide, and separated by electro-
phoresis in 1% agarose+ RNA in the gels was stained with
ethidium bromide and visualized by UV light+ 32P-labeled polio-
virus negative-strand RNA was detected by autoradiography
and quantitated by phosphorimaging (Molecular Dynamics or
BioRad)+

UV crosslinking
32P-labeled 59 cloverleaf RNAs (;250,000 CPM/ng) were
synthesized using DdeI linearized DJB14 or C24A DJB14
plasmid templates and bacteriophage T7 RNA polymerase
(Riboscribe Kit, Epicentre)+ Reactions (20 mL) contained
2 mL HeLa cell IFs, 25 ng 32P-labeled 59 cloverleaf RNA,
20 mM HEPES-KOH, pH 7+4, 60 mM KCH3CO2, 2+75 mM
Mg(CH3CO2)2, 5 mM KCl, and 3 mM DTT+ Reactions were
incubated at 34 8C for 15 min before being exposed to UV
light (Stratalinker, Stratagene) for 30 min at 4 8C+ RNase A
(1+5 mL of 8+6 mg/mL; USB, Cleveland, Ohio) was added and
the reactions were incubated at 37 8C for 60 min to digest the
59 cloverleaf RNA+ Reactions were diluted 1:2 with 23 Laem-
mli sample buffer, heated at 100 8C for 5 min, and separated
by electrophoresis in 9–18% SDS polyacrylamide gels+ Gels
were fixed in 50% trichloroacetic acid, dried, and radiolabeled
proteins were detected by phosphorimaging+

Immunoprecipitation

UV-crosslinked proteins (20 mL) were mixed with 20 mL of
immunoprecipitation buffer (1% Triton X-100, 5 mM Tris-HCl,
pH 7+5, 100 mM KCl, 0+05 mM EDTA, 1 mM DTT, 5% glyc-
erol)+ Samples were cleared by centrifugation; 20 s, 4 8C,

12,000 3 g+ Rabbit serum (4 mL of preimmune or a-PCBPs 1
and 2, as indicated), kindly provided by Raul Andino, Univer-
sity of California, San Francisco, was added and the reac-
tions were incubated at room temperature for 35 min+ Protein
A-agarose beads (15 mL equilibrated in immunoprecipitation
buffer; Calbiochem) were added and the reactions were
incubated for 45 min at 0 8C+ Reactions were centrifuged
12,000 3 g for 20 s at 4 8C to pellet immunoprecipitates+
Immunoprecipitates were washed with 300 mL immunopre-
cipitation buffer, repelleted, solubilized in 40 mL of Laemmli
sample buffer, heated 3 min at 100 8C, cleared by centrifu-
gation, and fractionated by electrophoresis in a 9–18% SDS-
polyacrylamide gel+ Gels were fixed in 50% trichloroacetic
acid, dried, and radiolabeled proteins were detected by
phosphorimaging+

Ribohomopolymer competitor RNAs

Ribohomopolymer competitor RNAs (poly(A), poly(G), poly(U),
and poly(C); Sigma; 25 mg/mL) were added to HeLa S10
translation-replication reactions and UV-crosslinking reac-
tions as indicated+
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