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The DA strain of Theiler’s murine encephalomyelitis virus persists in the white matter of the spinal cords
of susceptible mice. Previous results showed that the difference in susceptibility to viral persistence between the
susceptible SJL/J strain and the resistant B10.S strain was due to multiple non-H-2 loci. The respective roles
of hematopoietic and nonhematopoietic cells in this difference have been evaluated with bone marrow chime-
ras. The results show that non-H-2 loci with a major effect on susceptibility are expressed in hematopoietic
cells. However, the study of the SJL.B10-D10Mit180-D10Mit74 congenic line suggests that other loci expressed

in nonhematopoietic cells also play a role.

The primary demyelinating disease induced by Theiler’s mu-
rine encephalomyelitis virus is studied as an animal model for
multiple sclerosis (13, 16). After intracranial inoculation, the
DA strain of Theiler’s virus replicates in neurons of the brain
and spinal cord in all strains of mice (30). This encephalomy-
elitis disappears after 2 weeks regardless of the mouse geno-
type. However, in genetically susceptible mice the virus persists
for the lifetime of the animal in the white matter of the spinal
cord in oligodendrocytes, macrophages, and possibly astrocytes
(3, 15, 18, 25, 26) and induces chronic inflammation and pri-
mary demyelination (1, 8, 17, 22). A previous study accounted
for the variation of viral RNA level in 17 inbred strains by the
interaction of two groups of loci (11). One locus with a major
effect was named Tmevpl for Theiler’s murine encephalomy-
elitis virus persistence locus 1. It is located on chromosome 17
in the H-2D region. Several reports strongly suggest that the
same locus controls not only viral persistence but also demy-
elination (14, 20, 27, 29) and that the H-2D" class I gene plays
a major role in resistance to both (4, 19, 28). The existence of
non-H-2 susceptibility loci is shown by the fact that the SJL/J
strain is more susceptible to viral persistence than the B10.S
strain, although both bear the same H-2° haplotype (11). Two
of these non-H-2 loci, named Tmevp2 and Tmevp3, have been
located on chromosome 10 close to Ifng by studying an
F,(SJL/J X B10.S) X B10.S backcross and SJL/J lines congenic
for different B10.S genetic intervals of chromosome 10 (7, 10).
However, the Ifng gene does not explain the effect of either
Tmevp2 or Tmevp3 (7, 24). One of these studies also showed
that other susceptibility loci, with minor effects, must contrib-
ute to the difference in viral RNA load between these two
mouse strains (10).

The non-H-2 loci responsible for the difference in suscepti-
bility between the SJL/J and the B10.S strains could affect the
efficiency of the immune response against the virus or the viral
life cycle. To distinguish between these possibilities, we mea-
sured the viral RNA load in bone marrow chimeras between
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these two immunocompatible H-2° strains. The SJL.B10-
DI10Mit180-D10Mit74 congenic line, which has a small B10.S
genetic interval containing the Tmevp3 locus (7), was also
studied in an attempt to understand the mechanism of action
of this locus.

Five- to 6-week-old mice were irradiated with a *’Cs source
at 9.5 Gy for B10.S-H2S/Sg McdJ mice and at either 9.5 or 12
Gy for SJL/J mice (Janvier, Saint-Berthevin, France) and
SJL.B10-D10Mit180-D10Mit74 congenic mice (rate of delivery,
1.13 to 1.22 Gy per min). Mice were reconstituted with synge-
neic or allogeneic bone marrow cells that had been harvested
from the tibias and femurs of age- and sex-matched mice. For
the reconstitution, we used 4 X 10° to 6 X 10° bone marrow
cells from SJL/J or congenic mice and 1.2 X107 to 1.5 X 107
bone marrow cells from B10.S mice. Reconstituted and 12- to
14-week-old control mice were anesthetized and inoculated
intracranially with 10* PFU of the molecularly cloned TMDA1
strain (21, 23) in 40 pl of phosphate-buffered saline. Mice were
sacrificed 45 days postinoculation (p.i.). The efficiency of the
reconstitution was assessed with peripheral blood lymphocytes
at the time of sacrifice for each mouse reconstituted with
allogeneic bone marrow cells. The degree of chimerism varied
from 72 to 97% regardless of the genotype of the donor and
recipient strains (data not shown). Viral RNA load in the
spinal cord was quantified by a dot blot assay (11; also see the
discussion in reference 1).

Effect of the mouse genotype and bone marrow reconstitu-
tion on viral RNA load. The amount of viral RNA present in
the spinal cord at 45 days p.i. was measured for the B10.S, the
SJL/J, and the SJL.B10-D10Mit180-D10Mit74 congenic mice
and for the same types of mice that had been reconstituted
with syngeneic bone marrow cells (Fig. 1; Table 1). The effect
of strain origin and reconstitution on viral RNA load was
analyzed using a two-way analysis of variance and the Scheffé
test. The means of the amount of viral RNA were significantly
different among the three strains [F(2; 147) = 19.983; P <
0.0001]. The SJL/J mice were infected at a higher level than the
B10.S mice (P = 0.0066). The congenic mice were infected at
a higher level than the SJL/J mice (P = 0.0002) and the B10.S
mice (P < 0.0001). The mean amount of viral RNA for mice
reconstituted with syngeneic bone marrow was similar to that
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FIG. 1. Viral RNA load at 45 days p.i. in the spinal cords of mice reconstituted with syngeneic bone marrow and of control mice of the same
genotype. The amount of viral RNA is expressed as the highest RNA dilution which gave a hybridization signal in a dot blot assay. Left ordinate,
dilution factor; right ordinate, score (the dilution number in the series). B — B, B10.S mice reconstituted with B10.S bone marrow; C — C, SJL
congenic mice reconstituted with SJL congenic bone marrow; S — S, SJL/J mice reconstituted with SJL bone marrow.

of the nonreconstituted mice [F(1; 147) = 0.006; P = 0.9391].
No interaction between the strain origin and the reconstitution
was detected [F(1; 147) = 0.157; P = 0.8551]. Thus, the three
strains have different susceptibilities to viral load, and the
differences are not affected by the technique used for bone
marrow reconstitution.

Immunological status of the chimeras. The degree of chi-
merism for reconstituted SJL/J and B10.S mice was measured
at 8 weeks postreconstitution, the time at which the mice were
inoculated, by studying the expression of Ly-9.1 on B220",
CD3", CD4*, and CD8" spleen cells with FACScan (Fig. 2;
Table 2). The efficiency of labeling the four cell populations
with the anti-Ly-9.1 monoclonal antibody was always higher
than 96.5% for control mice and mice reconstituted with syn-
geneic bone marrow. The degree of chimerism was close to
100% for B220" splenocytes. The B10.S mice reconstituted
with SJL/J bone marrow showed a high degree of chimerism
for CD3", CD4™", and CD8" splenocytes (85 to 90%). A lower
degree of chimerism (60 to 70%) was detected for CD3™ and
CD4" splenocytes of STL/J mice reconstituted with B10.S bone
Marrow.

TABLE 1. Viral RNA load”

Viral RNA load

Mouse line

(no.) Mean SEM
B (26) 0.5 0.2
C (28) 2.6 0.3
S (27) 1.5 0.3
B — B (12) 0.7 0.3
C—B (13) 1.5 0.4
S — B (19) 1.8 0.4
B — C (13) 1.5 0.3
C — C(20) 2.4 0.3
S — C (26) 2.4 0.3
B — S (15) 0.6 0.2
C—S(24) 1.7 0.3
S — S (40) 1.4 0.2

“ Reconsitution conditions: B — B, B10.S mice reconstituted with B10.S bone
marrow; C — B, B10.S mice reconstituted with SJL congenic bone marrow; S —
B, B10.S mice reconstituted with SJL/J bone marrow; B — C, SJL congenic mice
reconstituted with B10.S bone marrow; C — C, SJL congenic mice reconstituted
with SJL congenic bone marrow; S — C, SJL congenic mice reconstituted with
SJL bone marrow; B — S, SJL/J mice reconstituted with B10.S bone marrow;
C — S, SJL/J mice reconstituted with SJL congenic bone marrow; S — S, SJIL/J
mice reconstituted with SJL bone marrow. SEM, standard error of the mean.
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FIG. 2. Surface staining of spleen cells from representative mice reconstituted with either syngeneic or allogeneic bone marrow. S — S, SIL/J
mice reconstituted with SJL bone marrow; S — B, B10.S mice reconstituted with SJL/J bone marrow; B — B, B10.S mice reconstituted with B10.S

bone marrow; B — S, SJL/J mice reconstituted with B10.S bone marrow.

Viral RNA load of chimeras between the two parental
strains. The means of the amount of viral RNA present in the
spinal cords of the chimeras 45 days p.i. were compared ac-
cording to the nature of the recipient and the donor strains,
using a two-way analysis of variance and the Scheffé test. As
shown in Fig. 3 and Table 1, the means depended on the donor
strain [F(1; 82) = 8.580; P = 0.0044] and not on the recipient

strain [F(1; 82) = 0.475; P = 0.4927]. No interaction between
the origin of the donor and the recipient strain was detected
[F(1; 82) = 0.345; P = 0.5588]. These results indicate that the
resistance of the B10.S strain is mediated mainly by hemato-
poietic cells and that the lower degree of chimerism for CD3*
and CD4™" splenocytes of SJL/J mice reconstituted with B10.S
bone marrow does not affects their phenotype. Therefore, the
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TABLE 2. Degree of chimerism in the spleen at
8 weeks postreconstitution®
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non-H-2 loci with a major effect on viral RNA load are ex-
pressed in the hematopoietic system, most likely in the immune
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FIG. 3. Viral RNA load at 45 days p.i. in the spinal cords of the nine chimeras. The amount of viral RNA is expressed as the highest RNA
dilution which gave a hybridization signal in a dot blot assay. Left ordinate, dilution factor; right ordinate, score (the dilution number in the series).
B — B, B10.S mice reconstituted with B10.S bone marrow; C — B, B10.S mice reconstituted with SJL congenic bone marrow; S — B, B10.S mice
reconstituted with SJL/J bone marrow; B — C, SJL congenic mice reconstituted with B10.S bone marrow; C — C, SJL congenic mice reconstituted
with SJL congenic bone marrow; S — C, SJL congenic mice reconstituted with SJL bone marrow; B — S, SJL/J mice reconstituted with B10.S bone
marrow; C — S, SJL/J mice reconstituted with SJL. congenic bone marrow; S — S, SJL/J mice reconstituted with SJL bone marrow.



VoL. 76, 2002

Also, Trottier et al. (31) recently reported a striking discrep-
ancy during persistent infection between the viral genome load
(10° per spinal cord) and infectious titers (10* to 10* PFU per
spinal cord). They explain this discrepancy by a restriction in
the viral life cycle and/or by the action of neutralizing antibody.
Although our data are consistent with this (9, 11), we offer an
alternative hypothesis. Accordingly, the immune system of the
resistant strains clears the virus by killing infected cells before
viral assembly, whereas that of the susceptible strains kills
infected cells at the beginning of virion assembly, allowing low
infectivity titers to persist. At the time of killing, virus RNA
replication would be already well under way, explaining the
high viral RNA load observed.

Viral RNA load of chimeras between the parental strains
and the SJL.B10-D10Mit180-D10Mit74 congenic line. The viral
RNA load was higher for the congenic line than for the SJL/J
and B10.S strains (Fig. 1). Immunological chimeras between
these three strains were used to test if the high susceptibility of
the congenic line was due to its hematopoietic cells (Fig. 3;
Table 1). The mean RNA loads were compared according to
the nature of the recipient and the donor strain using a two-
way analysis of variance and the Scheffé test. These means
depended on both the donor strain [F(2; 173) = 13.504; P =
0.0013] and the recipient strain [F(2; 173) = 13.741; P =
0.0012]. Chimeras with a B10.S donor strain were infected at
lower levels than chimeras with either an SJL/J (P = 0.0051) or
a congenic (P = 0.0042) donor. When the recipient was the
congenic line, the chimeras were infected at a higher level than
when the recipient was either the SJL/J (P = 0.0012) or the
B10.S (P = 0.0121) strain. These results indicate that the
susceptibility of the congenic line is mediated in part by non-
hematopoietic cells. Since the non-H-2 loci responsible for the
difference in viral RNA load between the two parental strains
cannot explain this result, other susceptibility loci must exist.
Different models were tested to assess the effects of the donor
and the recipient on the phenotypes of the nine chimeras
obtained with the three parental strains. These models assume
that (i) non-H-2 loci are responsible for the difference of sus-
ceptibility of the SJL/J and the B10.S strains and that (ii) other
non-H-2 loci explain the phenotype of the congenic line and
act independently of the first loci. The number and position of
the second group of non-H-2 loci vary according to the model.
In one model, one such locus is located in the B10.S chromo-
some 10 interval of the congenic line and the B10.S haplotype
is susceptible. In another model, the same locus exists, but it
interacts with another locus in the SJL background. This in-
teraction occurs only when the first locus has a B10.S haplotype
and the second one has an SJL/J haplotype. Both models were
tested by one-way analysis of variance against a null model in
which the only loci considered were those that explain the
difference between the SJL/J and B10.S strains. The second
model was the only one which was not rejected in our test when
the phenotype was determined by the genotype of the recipient
strain (the P value was 482 times lower than that of the null
model). A biological consequence of this model is that the two
interacting loci are probably expressed in nonhematopoietic
cells. However, we cannot completely rule out that they are
expressed in some immune cells, such as microglia, which are
radiologically resistant and have a life span longer than the 8
weeks of reconstitution.
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In conclusion, non-H-2 loci with a major effect on the sus-
ceptibility of the SJL/J and the B10.S strains to Theiler’s virus
persistence are most probably expressed in the immune system.
This result, together with the major effect of H-2 class I genes
on persistence, shows that the immune system plays a central
role in the control of Theiler’s virus RNA load in the central
nervous system. Surprisingly, the congenic mouse studied car-
ried a higher viral RNA load than its parents. The study of nine
immunological chimeras showed that this could be due to an
interaction between two loci. The congenic mouse is presently
being studied to clarify the relationship between the interact-
ing locus located in the B10.S chromosome 10 interval and the
Tmevp3 locus.
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