JOURNAL OF VIROLOGY, June 2002, p. 5759-5768
0022-538X/02/$04.00+0 DOI: 10.1128/JV1.76.11.5759-5768.2002

Vol. 76, No. 11

Copyright © 2002, American Society for Microbiology. All Rights Reserved.

Retrograde Transport of Transmissible Mink Encephalopathy within

Descending Motor Tracts

Jason C. Bartz,' Anthony E. Kincaid,” and Richard A. Bessen'*

Department of Medical Microbiology and Immunology' and Department of Physical Therapy,>
Creighton University, Omaha, Nebraska 68178

Received 10 December 2001/Accepted 5 March 2002

The spread of the abnormal conformation of the prion protein, PrPS, within the spinal cord is central to the
pathogenesis of transmissible prion diseases, but the mechanism of transport has not been determined. For
this report, the route of transport of the HY strain of transmissible mink encephalopathy (TME), a prion
disease of mink, in the central nervous system following unilateral inoculation into the sciatic nerves of Syrian
hamsters was investigated. PrPS¢ was detected at 3 weeks postinfection in the lumbar spinal cord and ascended
to the brain at a rate of approximately 3.3 mm per day. At 6 weeks postinfection, PrP5 was detected in the
lateral vestibular nucleus and the interposed nucleus of the cerebellum ipsilateral to the site of sciatic nerve
inoculation and in the red nucleus contralateral to HY TME inoculation. At 9 weeks postinfection, PrPSc was
detected in the contralateral hind limb motor cortex and reticular thalamic nucleus. These patterns of PrP5¢
brain deposition at various times postinfection were consistent with that of HY TME spread from the sciatic
nerve to the lumbar spinal cord followed by transsynaptic spread and retrograde transport to the brain and
brain stem along descending spinal tracts (i.e., lateral vestibulospinal, rubrospinal, and corticospinal). The
absence of PrP5¢ from the spleen suggested that the lymphoreticular system does not play a role in neuroin-
vasion following sciatic nerve infection. The rapid disease onset following sciatic nerve infection demonstrated
that HY TME can spread by retrograde transport along specific descending motor pathways of the spinal cord
and, as a result, can initially target brain regions that control vestibular and motor functions. The early clinical
symptoms of HY TME infection such as head tremor and ataxia were consistent with neuronal damage to these

brain areas.

The transmissible spongiform encephalopathies, or prion
diseases, are progressive neurodegenerative diseases of ani-
mals and humans. Prion infection by peripheral routes, such as
intraperitoneal infection, results in prion replication in the
lymphoreticular system (LRS) prior to neuroinvasion of the
peripheral and central nervous system (CNS). In natural prion
diseases, oral exposure is the likely route of infection in bovine
spongiform encephalopathy, transmissible mink encephalopa-
thy (TME), and kuru of humans. Oral transmission is also a
possible route of transmission in scrapie of sheep, chronic
wasting disease of deer and elk, and variant Creutzfeldt-Jakob
disease in humans.

Experimental oral exposure of rodents to scrapie reveals
that initial infection is established in the gut-associated lym-
phoid tissue and autonomic ganglia in the enteric nervous
system (5, 37). Spread of the abnormal isoform of the prion
protein, PrP5°, from the gastrointestinal tract proceeds along
both the splanchnic nerves to the spinal cord and the vagal
nerve to the brainstem (6, 39). Neuroinvasion of the spinal
cord from peripheral sites subsequently results in prion trans-
port to the brain (26, 27). The follicular dendritic cell (FDC),
located in the germinal center of secondary lymphoid tissues, is
the primary location of scrapie replication outside of the ner-
vous system (29, 38). Experimental scrapie infection of mice by
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the peritoneal route demonstrates that replication of murine
scrapie strains ME7 and RML in lymphoid tissue is blocked in
knockout mice that do not contain mature FDCs (35). Repli-
cation of ME7 scrapie is also blocked in peripheral tissues of
chimeric mice that do not express the normal isoform of the
prion protein, PrP<, in FDCs (10). In addition, these murine
scrapie strains do not replicate in the LRSs of wild-type mice
in which FDCs are induced to temporarily undergo dediffer-
entiation (35, 41).

Neuroinvasion of scrapie following peripheral routes of in-
fection has been established in the absence of LRS infection
(16, 36, 44). In one study, peripheral scrapie inoculation was
performed in transgenic mice that had restricted expression of
Syrian hamster PrP€ in a subset of neuronal cells (i.e., cells
controlled by the neuron-specific enolase promoter) and no
expression of PrP< in FDCs (44). In these mice, scrapie infec-
tion was not established in the LRS, but they were susceptible
to scrapie by the intraperitoneal and oral routes of inoculation.
In addition, these mice, which lacked expression of PrP< on
FDCs, had incubation periods similar to those of transgenic
mice in which PrP€ is expressed in many tissue types, including
that of the LRS. Splenectomy, which delays the onset of clin-
ical symptoms in wild-type mice due to the removal of a major
LRS replication site, had no effect on the incubation period in
transgenic mice with neuron-restricted PrP gene expression
following intraperitoneal scrapie inoculation. These findings
demonstrate that in the absence of LRS infection, peripheral
infection, including oral exposure, can lead to scrapie infection
of the CNS and disease (44). The study presented here sup-
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ports an alternate or additional pathway of prion infection that
is LRS-independent and that most likely results in direct in-
fection of nerves and transport to the CNS.

The transport of prions along neural circuitry has been dem-
onstrated in the retinotectal pathway following unilateral in-
traocular scrapie inoculation (14, 15). The spread of scrapie
infectivity can be traced along the optic nerve and tract to the
contralateral superior colliculus and visual cortex. The forma-
tion of spongiform lesions in these brain regions is initially
asymmetrical but, at later time points, develops ipsilaterally to
the site of ocular infection (14, 15). These intraocular inocu-
lation studies demonstrate that scrapie is transported along
optic nerve axons and that in this model, distribution of scrapie
in the brain initially follows the neural circuitry of the visual
system. Since the route of prion transport within the spinal
cord has not been established and PrP5¢ deposits are found in
spinal gray matter (19, 37, 39, 40, 48, 57), the aim of the present
study was to investigate the spread of TME from the sciatic
nerve to the brain in the Syrian hamster. In addition, we ex-
amined the patterns of prion deposition in the spinal cord,
brain stem, and cerebrum in order to establish whether prion
spread took place by axonal transport in spinal tracts, by cell-
to-cell spread within the spinal gray matter, or a combination
of both pathways.

MATERIALS AND METHODS

Animal inoculations and tissue collection. All procedures involving animals
were approved by the Creighton University Institutional Animal Care and Use
Committee and were in compliance with the Guide for the Care and Use of
Laboratory Animals (42a). Weanling, outbred (LVK/LAK) Syrian golden ham-
sters (Harlan Sprague Dawley, Indianapolis, Ind.) were intracerebrally or intra-
peritoneally inoculated with 25 or 100 pl of a 1% (wt/vol) brain homogenate of
the HY strain of the TME agent (HY TME), respectively, as previously de-
scribed (8). For inoculation of the sciatic nerve, minor surgery was performed.
Hamsters were anesthetized with isoflurane (Steris Laboratories, Phoenix,
Ariz.), and the right sciatic nerve was exposed through an incision in the skin and
muscle that was parallel to the femur. The sciatic nerve was grasped with a
smooth-tipped forceps and pulled upward by placing an unclasped forceps be-
hind the nerve. A 30-gauge hypodermic needle was inserted through the
epineurium of the sciatic nerve, and 5 pl of a 1% (wt/vol) brain homogenate
(10°2 50% lethal doses [LDs;]) of HY TME was slowly inoculated (trial 1). To
prevent leakage of inocula from the injection site, the needle was slowly with-
drawn after 30 to 60 s. In trial 2, following insertion of the needle into the
epineurium and prior to inoculation, the 30-gauge needle was moved up and
down parallel to the nerve for a distance of several millimeters for 10 consecutive
strokes. In both trials, the sciatic nerve was repositioned and surgical staples were
used for skin closure. Animals were observed at least three times per week for
onset of neurological disease as previously described (8). Hamsters were sacri-
ficed by CO, asphyxiation, and tissues (e.g., brain, sciatic nerve, spleen, and
spinal cord) were removed for analysis. For intramuscular inoculations, 20 pl of
a 1% (wt/vol) brain homogenate of HY TME was injected into the right femoral
bicep muscle.

To examine the temporal accumulation of PrP5¢ in the spinal cord following
sciatic nerve inoculation, three animals were sacrificed each week postinfection
for 10 consecutive weeks. The spinal cord was dissected into the following
vertebral segments: cervical segments 2 to 4 (C2 to C4) and C5 to C7; thoracic
segments 1 to 3 (T1 to T3), T4 to T6, T7 to T9, and T10 to T13; and lumbar
segments 1 to 5 (L1 to L5). Spleen and sciatic nerve sections were collected for
PrPS¢ analysis, and the brain and brain stem were fixed in formalin and processed
for PrPS¢ immunohistochemistry.

Tissue preparation for PrPS¢ Western blotting. For PrPS¢ analysis of 0.5-mg
tissue equivalents, spinal cord was homogenized to 10% (wt/vol) and an equal
volume of phosphate-buffered saline containing 200 wg per ml of proteinase K
(PK) (USB Corporation, Cleveland, Ohio) was added. Following incubation at
37°C for 1 h, phenylmethylsulfonyl fluoride was added to a final concentration of
2 mM and samples were analyzed for PrPS¢ content by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. PrPS°
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analysis of 20- to 50-mg tissue equivalents was performed by adjusting tissue
homogenates (10% [wt/vol] spinal cord, 20% [wt/vol] spleen and sciatic nerve) to
5 mM MgCl, prior to the addition of 100 U of Benzonase nuclease/ml (Novagen,
Inc., Madison, Wis.) and incubation at 37°C for 1 h with constant shaking. An
equal volume of buffer A (20% [wt/vol] N-lauroylsarcosine in 10 mM Tris-HCl
[pH 7.5]) was added, and the sample was continuously vortexed for 30 min at
room temperature. Tissue homogenates were subjected to ultracentrifugation at
10,000 X g and 10°C for 30 min in a TLA-45 rotor (Beckman Instruments, Palo
Alto, Calif.). The supernatant (S1) was collected, and the pellet (P1) was resus-
pended in half of the original volume of buffer A. The vortex and centrifugation
steps were repeated as described above. S2 was collected and combined with S1;
this was followed by centrifugation of both supernatants at 200,000 X g and 10°C
for 60 min in a TLA-45 rotor. The supernatant (S3) was discarded, and the pellet
(P3) was resuspended in H,O (1 pl per mg of original tissue weight) by using a
cup horn sonicator (Fisher Scientific, Atlanta, Ga.). PK was added to a final
concentration of 10 ug per ml, and the suspension was incubated at 37°C for 30
min with constant shaking. Phenylmethylsulfonyl fluoride was added to reach a
concentration of 5 mM followed by centrifugation at 200,000 X g and 10°C for 60
min in a TLA-45 rotor. The supernatant (S4) was discarded, and the pellet (P4)
was resuspended in SDS-PAGE sample loading buffer.

Western blot analysis. SDS-PAGE and Western blot analysis were performed
as previously described except for modifications in the immunodetection method
(3). Following incubation with monoclonal 3F4 ascites fluid (a gift of Richard
Kascsak, New York State Institute of Mental Health, Staten Island), polyvinyli-
dene difluoride membranes were washed and incubated with goat anti-mouse
immunoglobulin G-alkaline phosphatase conjugate (IgG-AP; Promega, Madi-
son, Wis.) at a 1:30,000 dilution in TTBS (10 mM Tris-HCI [pH 7.4], 150 mM
NaCl, 0.5% Tween 20) containing 3% bovine serum albumin for 1 h at room
temperature. The membranes were washed and developed with enhanced chemi-
fluorescence (ECF) reagent (Amersham Pharmacia Biotech, Piscataway, N.J.)
according to the manufacturer’s directions and scanned on a Storm Phospho-
rImager (Molecular Dynamics, Sunnyvale, Calif.). Quantification of PrPS¢ bands
from Western blots was performed using ImageQuant software. PrP5¢ signal
volumes were normalized by using the local median function to correct for
background and by subtracting the signal volume of an uninfected brain homog-
enate (0.5-mg equivalents) that was digested with PK as described above. The
normalized signal volume of PrPS¢ from each spinal cord sample was expressed
as a percentage of the normalized signal volume from a control standard, an HY
TME-infected hamster brain homogenate (0.5-mg equivalents) digested with PK.
Analysis of the relative PrPS¢ signals among samples could be performed when
data were represented in this manner.

PrP5¢ immunohistochemistry. Immunostaining for PrPS¢ on brain tissue was
performed as previously described (7). Briefly, formalin-fixed, paraffin-embed-
ded tissue sections (7 wm thick) were subjected to antigen retrieval by using
hydrolytic autoclaving (1 to 3 mM HCl) and were incubated with anti-PrP
monoclonal antibody 3F4 at a 1:2,000 dilution. The ABC-HRP Elite (Vector
Laboratories, Burlingame, Calif.) method was used for antibody signal amplifi-
cation, and visualization was performed using 3-amino-9-ethylcarbazole in 50
mM sodium acetate (pH 5.0) and 0.03% H,O,. Brain and brain stem nuclei were
identified in adjacent tissue sections stained with cresyl violet by using a camera
lucida attached to a light microscope to map the PrPS¢ distribution. Hamster (42)
and rat (43) brain atlases were used to aid in the identification of brainstem and
brain nuclei.

Gross dissection of the spinal cord. To determine the vertebral level that
corresponded to the termination of the spinal cord and to the spinal nerves that
contribute to the sciatic nerve, dissection was performed as follows. Four male
hamsters were deeply anesthetized and transcardially perfused with 100 ml of
0.01 M phosphate-buffered saline followed by 100 ml of 4% paraformaldehyde in
0.1 M sodium phosphate buffer. The animals were decapitated and eviscerated.
The vertebral bodies were identified and numbered using the ribs as landmarks.
The spinal cord was then exposed by removal of all vertebral laminae. The conus
medullaris was identified, and the adjacent vertebral level was noted. The sciatic
nerve was identified in the lower extremity and dissected proximally to the
location at which the spinal nerves entered the intervertebral foramen. These
spinal nerves were then followed proximally in the vertebral canal to the location
at which they entered the spinal cord. The adjacent vertebral level was identified
for each of the spinal nerves that contribute to the sciatic nerve.

RESULTS

TME infection of the sciatic nerve. The spread of HY TME
from the peripheral nerves to the CNS in golden hamsters was
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investigated by inoculating the right sciatic nerve with HY
TME. In the first trial, all seven intranerve (i.n.)-inoculated
hamsters developed HY TME but the times to onset of clinical
signs segregated into short and long incubation groups. The
first group of hamsters (n = 4) had a short incubation period
of 73 = 7 days (mean * standard error of the mean), and the
second group had a long incubation period (n = 3), with onset
of clinical signs at 143 = 12 days postinfection (Fig. 1A). Direct
inoculation of HY TME into the femoral bicep muscles of six
Syrian golden hamsters resulted in an incubation period of 142
+ 14 days (n = 7), suggesting that the long incubation time
following sciatic nerve inoculation was not due to direct infec-
tion of the peripheral nerve but to infection by a route similar
to that followed after intramuscular inoculation (Fig. 1A).
Since previous studies (25) reported improved efficiency of
scrapie infection following crushing of the sciatic nerve, in a
second experiment the sciatic nerve was injured by inserting a
30-gauge needle into the epineurium and repeatedly recipro-
cating the needle immediately prior to i.n. inoculation. In this
group, all animals developed clinical signs of HY TME after an
incubation period of 68 = 2 days (Fig. 1B). The incubation
period of the short incubation group in trial 1 was not statis-
tically different (P > 0.1) from the incubation period in trial 2.
Since mild injury to the sciatic nerve prior to HY TME inoc-
ulation resulted in a consistent and short incubation period,
this method of HY TME i.n. inoculation was used in all sub-
sequent experiments. Using the sciatic nerve injury method of
HY TME inoculation, the incubation period was longer than
that of intracerebral inoculation (59 = 2 days; P < 0.01) but
shorter than that of intraperitoneal (101 = 2 days; P < 0.01) or
intramuscular (P < 0.01) inoculation (Fig. 1).

Temporal pattern of PrPS¢ accumulation in the spinal cord.
Gross dissection of the spinal cord determined that the spinal
nerves that constitute the sciatic nerve are the fourth through
sixth segments of the lumbar spinal cord (L4 to L6). These
spinal cord segments anatomically corresponded to thoracic
vertebral segments 11 to 13 (T11 to T13). This difference
between the spinal cord levels and the vertebral levels is due to
the different rates of growth of these two structures. The conus
medullaris was located adjacent to vertebral segment L1. Fol-
lowing sciatic nerve inoculation of HY TME, three hamsters
were sacrificed every week for 10 consecutive weeks and each
spinal cord was dissected into seven parts, each containing
three to five vertebral segments.

Western blot analysis was used to investigate the temporal
distribution of PrP5¢ in the spinal cord. A 5% (wt/vol) spinal
cord homogenate (0.5-mg tissue equivalents) was digested with
PK (100 pg/ml) prior to Western blotting and quantification of
PrP5¢ signals. This method only detects PrPS¢, because PrP®
was degraded during the PK digestion step (data not shown).
Serial dilution of HY TME-infected brain homogenates di-
gested with PK (100 pg per ml) demonstrated that the lower
limit of PrP5¢ detection in 10 ul of a 5% (wt/vol) homogenate
was approximately 100 ng of tissue equivalents (data not
shown). This amount of PrPS° approximately corresponds to
10*® LDy, based on a starting brain titer of 10°-° LDy, per
gram of HY TME (8).

To investigate the temporal deposition of PrP*¢ in the spinal
cord, the relative amounts of PrPS° in each vertebral spinal
cord segment at each weekly interval were quantified from
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FIG. 1. Incubation period following sciatic nerve inoculation of HY
TME. In trial 1 (A), hamsters inoculated in the sciatic nerve with HY
TME segregated into short and long incubation groups based on the
onset of clinical signs. The short incubation group (open circle; n = 4)
had an incubation period of 73 = 7 days, while the long incubation
group (filled circle; n = 3) had an incubation period of 143 * 12 days.
The incubation period for the latter group was not statistically different
(P > 0.01) from that for the intramuscularly inoculated hamsters (142
+ 14 days; diamond, n = 5). Mock-infected hamsters (open square; n
= 5) were clinically normal for the duration of the experiment. In trial
2 (B), with use of a modified sciatic nerve inoculation procedure as
described in the text, hamsters developed clinical disease at 68 = 2
days postinfection (filled triangle; n = 16). Intracerebral and intraperi-
toneal inoculation with HY TME resulted in incubation periods of 59
+ 2 days (filled diamond; n = 5) and 101 = 2 days (filled pentagon; n
= 0), respectively. Mock-infected hamsters were clinically normal for
the duration of the experiment (filled square; n = 9).

Western blots and expressed as percentages of the signal in-
tensity of a hamster brain homogenate from a clinical case of
HY TME. PrP5° was first detected in the spinal cord at 4 weeks
postinfection in vertebral levels T10 to T13 (Fig. 2A), which
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FIG. 2. Temporal distribution of PrP*¢ in the spinal cord following
sciatic nerve inoculation of HY TME. Western blot analysis (A) and
quantification (B) of PrPS¢ (0.5-mg tissue equivalent) in spinal cord
between 3 and 10 weeks postinfection (p.i.). The relative amount of
PrP5¢ in each spinal cord segment (indicated as vertebral level) was
expressed as a percentage of the PrP signal from a HY TME-infected
brain (0.5-mg brain equivalent) at terminal disease. PrPS signal was
measured using a Storm PhosphorImager and ImageQuant software.
Illustrated are Western blots from individual hamsters (A) and the
relative PrP° signal intensities (PrP5¢) from an average of three ani-
mals (B) at each week postinfection. Standard errors are indicated.
Spinal cord vertebral segments refer to lumbar (L), thoracic (T), and
cervical (C). Uninfected (U) brain homogenate controls are indicated.

include the spinal cord segments (L4 to L6) that give rise to the
sciatic nerve. PrPS¢ was detected in vertebral segments T7 to
T9 at 5 weeks postinfection, and for these first two time points
there appeared to be a front edge of PrPS¢ that spread in a
rostral direction along the spinal cord. Between 6 and 7 weeks
postinfection, PrPS¢ was found in the remaining levels of the
thoracic spinal cord and in the cervical spinal cord (Fig. 2A).
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The amount of PrP5 in the spinal cord steadily increased
during the course of HY TME infection without reaching a
plateau (Fig. 2B). For each week between 4 and 8 weeks
postinfection, the amount of PrPS¢ was highest in vertebral
levels T10 to T13 and the amount of PrPS¢ declined in each
consecutive spinal cord segment until reaching the mid-cervi-
cal spinal cord (Fig. 2B). These findings suggest that upon
entering the lumbar spinal cord, HY TME replicated and
spread in a caudal-to-rostral direction along the spinal cord.
When clinical signs first appeared at 10 weeks postinfection,
PrP5 levels were at least 60% of that of the HY TME brain
control (Fig. 2B). PrPS¢ accumulation in lumbar vertebral seg-
ments L1 to L5 was approximately 10% of that of the HY TME
brain control at 10 weeks postinfection, but tissue taken at this
vertebral segment contained the spinal nerves and not the
spinal cord, as the spinal cord ends at L1. Similar results were
obtained for all three animals at each of the weekly time points
(Fig. 2B and data not shown).

Rate of PrPS¢ spread in the nervous system. The rate of
PrP5¢ spread from the site of sciatic nerve inoculation to the
CNS was investigated by measuring the earliest time point at
which PrP5¢ was detected by Western blot analysis in the cau-
dal and rostral vertebral segments of the spinal cord, specifi-
cally in T10 to T13 and C2 to C4. In these experiments, more
than 40 times the amount of tissue was analyzed for PrPSc
content as was analyzed in the experiment whose results are
depicted in Fig. 2. Partial purification of PrP° from 20- to
25-mg tissue equivalents of each spinal cord segment, or more
than 90% of each segment, was performed prior to Western
blotting. In vertebral levels T10 to T13 and C2 to C4, PrPS° was
first detected at 3 weeks and 5 weeks postinfection, respectively
(Fig. 3), which was 1 to 2 weeks prior to detection of PrP° in
brain homogenates containing 0.5-mg tissue equivalents (Fig.
2). The distance from the midpoint of T10 to T13 to the
midpoint of C2 to C4 was approximately 46 mm, which corre-
sponded to a rate of PrP5° spread of 3.3 mm per day.

Peripheral sites of PrP5¢ deposition. To determine whether
HY TME established infection in the LRS following sciatic
nerve inoculation, the presence of PrP5¢ in the spleen was
investigated. Western blot analysis was unable to detect PrPS¢

Vertebral
level: T10-T13 C2-C4 B
Wk p.i.: 2 3 4 ) 10
- 3

\

mg: 25 25 25 25 2525 20 20 20 20 20 20 0.5

FIG. 3. Western blot analysis of spinal cord segments enriched for
PrP5¢ after sciatic nerve infection with HY TME. Thoracic (T) and
cervical (C) spinal cord homogenates were enriched for PrPS¢ by de-
tergent extraction and PK digestion as described in Materials and
Methods and analyzed by Western blotting for PrPS¢ levels at the
indicated intervals postinfection (Wk p.i.). The amounts in milligrams
(mg) of tissue equivalents that were analyzed are indicated for each
lane. Brain (B) homogenates from HY TME-infected hamsters with
clinical symptoms were prepared as described for Fig. 2.
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FIG. 4. Immunodetection of PrP% in spleen and sciatic nerve after infection with HY TME. (A) Western blot analysis of spleen from
uninfected (U) and HY TME-infected hamsters following intracerebral inoculation. Spleens were prepared for analysis as described for spinal cord
homogenates in Fig. 3. (B) Western blot analysis of spleen at 5 and 6 weeks postinfection from hamsters inoculated in the sciatic nerve with HY
TME. A control HY TME-infected brain (lane B) was prepared as described for Fig. 2. Western blot analysis (C) and PhosphorImager and
ImageQuant quantification (D) of PrPS¢ in the sciatic nerve at 10 weeks postinfection. Hamsters were inoculated in the sciatic nerve with HY TME
and the ipsilateral (Ip), contralateral (Co), and uninfected (U) sciatic nerves were removed and prepared for Western blot analysis as described
for spinal cord homogenates in Fig. 3. The amounts in milligrams (mg) of tissue equivalents that were analyzed are indicated for each lane.

in a PrPS“-enriched spleen preparation containing 50-mg tissue
equivalents (i.e., approximately 50% of the total spleen weight)
from 1 to 6 weeks postinfection (Fig. 4A and B). Since PrP%°
was detected at 5 weeks postinfection in C2 to C4 (20-mg
equivalents) following i.n. inoculation (Fig. 3), the absence of
PrP5° from the spleen at 6 weeks postinfection suggests that
PrP5¢ deposition in the spinal cord was not due to HY TME
neuroinvasion of the thoracic spinal cord following establish-
ment of HY TME infection in the spleen or LRS.

Following sciatic nerve inoculation of HY TME, deposition
of PrP5¢ in the sciatic nerve (25-mg tissue equivalents) was not
detected until 9 weeks postinfection. The amount of PrP5° in
the ipsilateral sciatic nerve was greater than that in the con-
tralateral sciatic nerve at 10 weeks postinfection (Fig. 4C and
D). These results suggested that the sciatic nerve was primarily
involved in transport of HY TME to the spinal cord, possibly
via axonal transport, but was not a major site of HY TME
replication.

Spatial distribution of PrPS¢ in the brain and brain stem.
The anatomical location of PrP5¢ in the brain was investigated
in order to identify the structures involved in the accumulation
and transport of HY TME within the CNS. PrPS¢ was first
identified at 6 weeks postinfection in the red nucleus, lateral
vestibular nucleus (LVe), and interposed nucleus of the cere-
bellum (Table 1); these structures are involved in the control of
motor functions, including balance and coordination. The re-
sults of PrPS¢ immunostaining with respect to general appear-
ance were similar for all of these areas during the following
weeks. Initially, PrPS® deposition was only found on one side of
the brain or brain stem. At 8 weeks postinfection, PrPS° de-
posits had a bilateral distribution but more intense PrP5¢ im-
munostaining was found on the side in which PrP5¢ was initially
detected. At 10 weeks postinfection, PrP5¢ deposition had
spread beyond the initial sites of deposition in the brain stem
but deposits in the cerebral cortex maintained a restricted
distribution that did not extend beyond the initial PrP5¢ pat-
tern.

Initially, PrP5¢ deposits were detected in the red nucleus on
the side of the brain contralateral to the site of HY TME
inoculation (Table 1), but by 10 weeks postinfection, strong

PrP5¢ immunostaining was found in both the contralateral and
ipsilateral red nuclei (Fig. 5A). PrP5¢ deposits were more in-
tense in the ventral and ventrolateral portions of the red nu-
cleus (Fig. 5A and B), which are the areas known to contain
neurons that project to the lumbar spinal cord (46, 47). PrPS¢
deposits appeared to be localized within the soma of neurons
in the red nucleus in some cases, but often it was not possible
to determine whether PrP5¢ was extracellular or present within
axons or dendrites. The intense PrPS° staining pattern in the
ventral portion of the red nucleus was accompanied by prom-
inent spongiform lesions (Fig. 5C). The initial distribution of
PrP5¢ was consistent with HY TME transport from the ipsilat-
eral lumbar spinal cord to the contralateral red nucleus via the
rubrospinal tract, since the rubrospinal fibers cross midline in
the ventral tegmental decussation.

At 6 weeks postinfection, PrPS¢ deposition in the LVe and
the interposed nucleus of the cerebellum was ipsilateral to the
site of sciatic nerve inoculation (Table 1 and Fig. 6A and D).
At later time points, PrPS° was identified in both the ipsilateral
and contralateral LVe and the interposed nuclei (Table 1).

TABLE 1. Spatial and temporal distribution of PrP5¢ following
sciatic nerve inoculation with HY TME

Wk postinfection”

CNS region
5 6 7 8 9° 10

Cerebellum-pons

Lateral vestibular nucleus 0 +" nd ++ nd ++++

Interposed nucleus 0 +” nd ++ nd ++++
Mesencephalon

Red nucleus 0 + nd ++ nd ++++
Telecephalon

Hindlimb cortex 0 0 0 qod 4 44
Diencephalon

Reticular thalamic nucleus 0 0 0 0 +< ++

Ventroposterior thalamic nucleus 0 0 0 0 0 +¢

“ Relative intensities of PrPS¢ immunostaining: 0, none; +, rare; ++, weak;
+++, moderate; ++++, heavy.

b Asymmetrical staining pattern ipsilateral to inoculation site.

¢ Asymmetrical staining pattern contralateral to inoculation site.

4 Result is for one of three animals.

¢nd, not done.
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FIG. 5. PrP%¢ deposition in the midbrain following HY TME inoc-
ulation of the sciatic nerve. (A) PrPS° immunohistochemistry indicates
the location of PrPS¢ (red deposits) at 10 weeks postinfection in both
red nuclei (RN). The red nucleus located contralateral (asterisk) to
sciatic nerve inoculation was viewed at higher magnification using
differential interference contrast microscopy (B) to illustrate PrP
deposition in the ventral and ventrolateral (asterisk) areas of the red
nucleus. (C) Hematoxylin-eosin staining of an adjacent brain section
illustrates spongiform lesions in the same area of the red nucleus.
Abbreviations: Contra, contralateral; Ipsi, ipsilateral; PAG, periaque-
ductal gray matter; IP, interpeduncular nucleus; SNr, substantia nigra
par reticulata. Bar, 100 micrometers.

J. VIROL.

PrP5° deposition in the ipsilateral LVe was consistent with
retrograde transport of HY TME in the lateral vestibulospinal
tract, since these neurons project their axons to the ipsilateral
spinal cord, including the lumbar region (32, 45).

Beginning at 8 to 9 weeks postinfection, PrPS¢ deposits were
identified in layer V of the contralateral hind limb motor cor-
tex (Table 1 and Fig. 6B, C, E, and F). At later time points,
PrP5¢ deposits were detected in the ipsilateral motor cortex
and the subependymal cell layer that lies dorsal to the labeled
area of the motor cortex. This pattern of PrP5¢ immunostain-
ing was consistent with retrograde HY TME transport from
the ipsilateral lumbar spinal cord to the contralateral hindlimb
motor cortex via transport along the descending corticospinal
tract (30, 56).

PrP5¢ deposition in the thalamus is a prominent feature in
hamsters following intracerebral inoculation with the 263K
scrapie strain (22, 49) and HY TME (7) but was found to be
restricted following sciatic nerve inoculation of HY TME. At 9
to 10 weeks postinfection, only weak PrPS¢ immunostaining
was detected in the reticular thalamic nucleus that was con-
tralateral to the site of HY TME inoculation. Low levels of
PrP%¢ immunostaining were occasionally found in the con-
tralateral ventroposterior thalamic nucleus (Table 1).

DISCUSSION

TME infection of the sciatic nerve resulted in the shortest
incubation period reported for a peripheral route of prion
infection in the Syrian golden hamster. Our findings indicate
that sciatic nerve inoculation resulted in HY TME transport to
the lumbar spinal cord, subsequent transneuronal spread to
spinal tracts that terminate in the lumbar spinal cord, and then
retrograde axonal transport to nuclei in the brain and brain
stem. The specific targeting of HY TME and spongiform le-
sions to brain nuclei that have a functional role in coordina-
tion, balance, and hind limb motor activity could account for
the early onset of clinical signs, which are symptomatic of
deficits in these structures, following sciatic nerve inoculation.
This is in contrast to the effects of intraocular inoculation,
which also establishes direct nerve infection but does not result
in short incubation periods in either murine (15) or hamster
(11, 28) models compared to the incubation periods for other
routes of peripheral inoculation (28). Previous studies using a
sciatic nerve model for scrapie infection in mice also resulted
in a rapid disease onset that was dependent on either nerve
injury (25) or overexpression of the prion protein gene (17).

The PrPS¢ deposition pattern in the brain and brain stem
indicates that movement of HY TME within the spinal cord
involved retrograde transport in the descending lateral vestib-
ulospinal, rubrospinal, and corticospinal tracts. This finding
was supported by the initial distribution of HY PrPS¢ in the
LVe, red nucleus, and motor cortex, respectively. The asym-
metrical deposition pattern of PrP5¢ in these brain nuclei can
be explained by direct axonal transport along spinal tracts that
terminate in the lumbar spinal cord and are either predomi-
nantly ipsilateral (e.g., lateral vestibulospinal tract) or con-
tralateral (e.g., rubrospinal and corticospinal tracts) to the site
of sciatic nerve inoculation (2, 30, 32, 46, 56). The 1- to 2-week
delay in the appearance of PrP¢ deposits contralateral to the
initial sites of detection could be due to HY TME spread from
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FIG. 6. PrP%¢ deposition in pons, cerebellum, and cerebrum following HY TME inoculation of the sciatic nerve. Cresyl violet (A) and PrPS¢
immunostaining (red deposits) (D) of the ipsilateral (Ipsi) cerebellum and pons in adjacent brain sections at 8 weeks postinfection, demonstrating
the distribution of PrPS¢ in the interposed nucleus of the cerebellum (Int) and lateral vestibular nucleus (LVe), is shown. Cresyl violet (B) and PrP*¢
immunostaining (E) of the contralateral (Contra) hind limb motor cortex in adjacent brain sections at 9 weeks postinfection, demonstrating the
PrPS¢ distribution, is shown. (F) Higher magnification from a different brain section illustrates PrPS® immunostaining in the hind limb motor cortex
with respect to the third (III), fifth (V), and sixth (VI) cortical cell layers as viewed by differential interference contrast microscopy. An adjacent
cresyl violet-stained brain section is illustrated (C). Abbreviations: 4V, fourth ventricle; HL-AgL, hind limb and lateral agranular cortex; AgM,
medial agranular cortex. Bar, 100 micrometers.
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the ipsilateral to the contralateral lumbar spinal cord or, more
likely, to retrograde transport via the modest ipsilateral rubro-
spinal and corticospinal tracts and contralateral lateral vestib-
ulospinal tract (2, 30, 32, 46, 56). The selective deposition of
PrP5¢ in the ventral and ventrolateral half of the red nucleus
and in layer V of the hind limb motor cortex following sciatic
nerve inoculation is consistent with the previously described
somatotopic organization of these descending motor tracts (30,
46, 47, 56).

Since there are no known direct spinal projections from the
interposed nucleus of the cerebellum to the spinal cord, we
propose that HY TME transport to the interposed nuclei was
along collaterals of the descending rubrospinal tract. In the rat,
approximately one-third of the rubrospinal neurons have col-
laterals that project to the interposed nucleus of the cerebel-
lum (21). It is possible that HY TME retrograde transport
along the rubrospinal tract resulted in HY TME spread to the
contralateral red nucleus as well as anterograde spread to the
ipsilateral interposed nucleus via axon collaterals. This type of
combined retrograde-anterograde collateral axonal transport
has been demonstrated in the cerebellum by using tract tracers
(12). The hypothesis of this proposed route of HY TME trans-
port to the interposed nucleus is supported by PrPS¢ deposition
in these nuclei at the same time as or before accumulation in
other brain structures and by the simultaneous appearance of
PrP5° in the interposed nucleus and red nucleus at 6 weeks
postinfection. Taken together, these findings suggest that the
early presence of PrPS¢ in the interposed nucleus was not due
to HY TME transport from a synaptically linked brain struc-
ture but was most likely due to transport along spinal tracts
that terminate in the lumbar spinal cord.

The distribution of PrPS¢ in the CNS following sciatic nerve
inoculation of HY TME was similar to that reported following
the injection of herpes simplex virus type 1 into the tibial nerve,
a branch of the sciatic nerve (52). Herpes simplex virus type 1
was detected in layer V of the contralateral hind limb cortex,
the ventral part of the contralateral red nucleus, and in hypo-
thalamic nuclei. This distribution is similar to what we report
for the present study for HY PrP5¢ with the exception of that
for the hypothalamus, which showed no evidence of PrPs°
deposition as late as 10 weeks postinfection. In related studies,
injection of pseudorabies into either the medial gastrocnemius
muscle or the sciatic nerve resulted in prominent retrograde
labeling in brain areas involved in autonomic function while
sparse labeling was found in areas involved in motor control
(23). Therefore, different alphaherpesviruses can be preferen-
tially transported to neuronal structures that appear to be
functionally related. A similar phenomenon could be involved
in the transport of different strains of prions to distinct regions
of the CNS. In a recent study, sciatic nerve inoculation of
murine RML scrapie was reported to result in selective target-
ing of PrP5¢ to brain regions involved in sensory function,
although the spinal tracts possibly involved in the transport of
scrapie were not identified (17). In the present study, HY TME
was preferentially targeted to motor structures via descending
spinal tracts. Strain-specific targeting of prions could be related
to the ability of prion strains to discriminate between function-
ally distinct nerve terminals and to undergo axonal transport
within different spinal tracts.

PrPS° initially entered the spinal cord in the lumbar region
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and spread along the spinal cord towards the brain stem at a
rate of 3.3 mm per day following sciatic nerve inoculation of
HY TME. Previous studies reported the rate of spread for
scrapie infectivity and PrP5¢ along the spinal cord to be ap-
proximately 1.0 mm per day (range, 0.5 to 2.0 mm per day),
which is consistent with slow anterograde axonal transport (4,
17, 27). The directional spread of scrapie within spinal tracts
was not determined in these reports. In our study, neuroana-
tomical mapping of PrPS¢ deposition strongly suggested that
HY TME spreads by retrograde axonal transport in the rubro-
spinal, vestibulospinal, and corticospinal tracts. However, the
rate of spread of HY TME is slower than that of retrograde
axonal transport (i.e., approximately 85 mm to 430 mm per
day) (18). Several herpesviruses can spread at the rate of fast
axonal transport in the anterograde and/or retrograde direc-
tions (13, 33, 58), but other viruses that spread by fast axonal
transport have measured rates of spread that are below 50 mm
per day in some studies. For example, rabies virus has been
reported to spread in neuronal processes towards the
perikaryon at rates as low as 12 mm per day both in vitro and
in vivo (31, 34) and as high as 120 to 400 mm per day along
peripheral nerves of rodents (50). Similarly, reoviruses, which
are reported to spread in the murine peripheral nervous sys-
tem by retrograde axonal transport, travel at =14 mm per day
in the sciatic nerve (51). Therefore, the calculated rates of
spread for viruses as well as HY TME do not necessarily
correspond to the known rates of fast and slow axonal trans-
port. When calculating the distance a virus travels in a given
time, it is difficult to separate the actual time involved in axonal
transport from that of other viral or prion activities in the cell.
In the present study, we measured the times of the initial
appearances of HY TME at opposite ends of the spinal cord in
order to calculate the rate of spread, but events unrelated to
transport (e.g., PrPS¢ binding to the cell surface, uptake into
the neuron, and/or new PrP¢ formation) may also be required.
Additional studies are needed to determine how prions enter
neurons and are transported within axons.

The PrPS° accumulation pattern that formed following in-
tranerve HY TME infection indicated that the sciatic nerve
was primarily involved in transport of HY TME along axons,
while in the spinal cord there was evidence for both transport
along spinal tracts and HY TME replication in spinal gray
matter (data not shown). In the peripheral nervous system, we
were unable to detect PrP5¢ in the sciatic nerve until 9 weeks
postinfection despite PrPS¢ detection at 3 weeks postinfection
in the caudal spinal cord. Our findings suggest that HY TME
is transported along the sciatic nerve to the spinal cord with
minimal replication, but upon deposition in nerve cell bodies in
the spinal cord gray matter, HY TME is able to replicate to
high levels. Previous studies have also found higher levels of
scrapie infectivity in the spinal cord than in the sciatic nerve at
various time points following sciatic nerve inoculation (17, 25).
Once HY TME replication begins in the spinal cord, antero-
grade HY TME transport back to the sciatic nerve could result
in accumulation of HY TME infectivity and PrPS° in periph-
eral nerves during the later stages of infection. The hypothesis
regarding this route of HY TME spread is supported by the
presence of twice as much PrP5¢ in the HY TME-inoculated
sciatic nerve as in the contralateral sciatic nerve. Previous
studies have also demonstrated that scrapie infection can
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spread from the thoracic spinal cord to thoracic spinal nerves
(24).

The short incubation period following sciatic nerve inocula-
tion was likely due to direct nerve infection and was not de-
pendent on HY TME amplification in the LRS prior to neu-
roinvasion. This hypothesis is supported by the absence of
PrP5¢ in the spleen at 6 weeks postinfection, at a time when
PrP5° was present in the brain. This conclusion is supported by
previous studies in which scrapie inoculation into the sciatic
nerve and anterior chamber of the eye did not result in the
presence of PrP¢ in the spleen (17) or scrapie infection in the
spleen until the late stages of disease (28). These findings raise
the possibility that direct infection of the nervous system could
be an alternative route of neuroinvasion in natural prion dis-
eases. Support for this hypothesis is provided in findings for
experimental murine scrapie in which transgenic mice, whose
PrP€ expression is restricted to the nervous system, are sus-
ceptible to peripheral routes of scrapie infection, including oral
exposure. In prion diseases of livestock, the striking paucity of
prions in the LRS of bovine spongiform encephalopathy-in-
fected cattle (9, 55) compared to the amounts present in the
LRS of scrapie-infected sheep (1, 20, 53, 54) could indicate
that bovine spongiform encephalopathy infection of the CNS is
independent of LRS infection. Direct infection of the nervous
system would be the most likely alternative route in these
cases.
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