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ABSTRACT

An important aspect of the assembly of RNPs, and in particular of spliceosomes, is the succession of proteins bound to any given
site on the RNA. Protein–RNA cross-linking is a well-established technique for investigating this, but the identification of a
cross-linked protein has so far relied upon the availability of antibodies for immunoprecipitation or Western blot studies. To
facilitate identification of proteins independent of these techniques, site-specific protein–RNA cross-links were purified in a
large scale, which were then used for mass spectrometry (MS). This approach was carried out by the use of a minimal pre-mRNA
construct containing a single photoactivatable azidophenacyl group and an adjacent biotin-dT tag for affinity purification of the
cross-linked product. To test the feasibility of the method, we purified cross-links to nucleotide 9 downstream of the 5� splice
site of pre-mRNA in the spliceosomal complexes A (“pre-spliceosome”) and H. By this method, we were able to identify several
proteins by MS; the hnRNP proteins A2/B1 were cross-linked to the pre-mRNA in complex A, and FUSE 2/FBP (a homolog of
the intronic splicing enhancer KSRP) was cross-linked in complex H.
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INTRODUCTION

Assembly of ribonucleoprotein particles (RNPs) involves

the binding of proteins or protein complexes to the RNA

molecule. As such, protein–RNA, protein–protein, and

RNA–RNA interactions are of fundamental importance for

structural and functional integrity of an RNP. Many RNPs,

such as ribosomes, snoRNPs, the SRP, and the telomerase

RNP, perform central cellular functions such as the trans-

lation or modification of RNA, the translocation of pro-

teins, or the synthesis of telomeric DNA. The highly com-

plex spliceosome, involved in the processing of pre-mRNA,

consists of several separate small nuclear (sn)RNPs and up

to 300 proteins (for review, see Burge et al. 1999; Jurica and

Moore 2003). For this reason, the spliceosome is an inter-

esting system to study complex protein–RNA interactions.

To find out which nucleotides of the RNA molecule a

particular protein is bound to, the standard method is that

of cross-linking, in which a position-specific cross-linker

fixes a point on the RNA to the protein(s) in the immediate

vicinity. After treatment of the RNA with nucleases, a ra-

dioactive cross-linked protein can be characterized by elec-

trophoretic molecular-weight determination. However, its

identification in a multicomponent complex requires the

availability of specific antibodies for immunoprecipitation

or Western blotting. In this study, we show that this re-

quirement can be circumvented by the use of a suitable

isolation method for the cross-linked protein(s), which en-

riches and purifies the cross-linked proteins from the vast

majority of non-cross-linked proteins, and their subsequent

identification by mass spectrometry. We illustrate the prac-

ticability of this technique by describing its application in

defining the proteins surrounding a specific site of the in-

tron in two protein–RNA complexes, namely spliceosomal

complex A and the unspecific complex H, complexes which

can be rapidly and efficiently assembled in vitro (see below).

Protein–RNA cross-linking is frequently used to study

protein–RNA interactions. For example, direct (zero-

length) protein–RNA contacts can be analyzed by UV cross-

linking using site-specifically incorporated 32P or 4-thio-

uridine (for review, see Reed and Chiara 1999). A broader

view of proteins lying in the direct vicinity of a particular

position can be obtained using the cross-linking reagents

p-azidophenacyl bromide (APB, ∼9 Å) or benzophenone-
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iodacetamide, (∼15 Å). Both are introduced at single posi-

tions in the RNA through site-specifically incorporated

phosphorothioates (for review, see Konarska 1999). We

chose APB to obtain knowledge about proteins surrounding

a distinct site of the RNA, because of its high-specific cross-

linking and modification efficiency (Konarska 1999), prop-

erties essential for our studies.

The isolation and purification of the cross-linked pro-

tein–RNA species was performed by using a biotin–strep-

tavidin selection. This has the advantage of being very se-

lective and efficient (KD = 10−15), whereas biotin, being a

very small molecule, does not introduce major structural

perturbations. Biotin-containing cross-linkers such as sul-

pho-SBED could, in principle, also be used (Geselowitz and

Neumann 1995), but because of its length (∼22 Å), they

render it difficult to make meaningful statements about the

protein composition around a given point on the RNA. Our

approach was therefore to introduce the modified biotin-

containing nucleotide biotin-dT at a defined site into a

synthetic oligoribonucleotide, so that protein–RNA cross-

links could be isolated via the RNA-bound biotin and pu-

rified in high yield for analysis by mass spectrometry.

The spliceosome is formed de novo upon each pre-

mRNA molecule that is to be spliced. If pre-mRNA is in-

cubated with nuclear extract at 0°C in the absence of ATP,

then the splicing-unspecific complex H is formed, in which

the pre-mRNA is largely covered by proteins; these particles

are termed heterogeneous nuclear (hn)RNPs. Some of the

hnRNP proteins are also known to act as alternative splicing

factors (for review, see Dreyfuss et al. 1993; Krecic and

Swanson 1999). If ATP is added and the temperature is

raised to 30°C, then the consensus sequences of the pre-

mRNA are recognized by snRNPs and by certain proteins

(so-called splicing factors). This initiates the splicing pro-

cess, in which the spliceosome is assembled in discrete steps,

passing successively through gel-detectable complexes

termed A, B, C, mRNP, and the post-spliceosomal complex

(for review, see Burge et al. 1999). During this process,

numerous proteins are exchanged at the consensus se-

quences of the pre-mRNA. This protein exchange has been

confirmed by cross-linking studies, for example at the

branch point (MacMillan et al. 1994), or in an artificial

trans-splicing system, at the 5� splice site (Sha et al. 1998).

Position C9 of the intron, chosen for our first experi-

ments with pre-mRNA, lies several nucleotides downstream

of the positions at which base-pairing occurs with the U1

snRNA, which is replaced by U6 snRNA after entry of the

U4/U6.U5 tri-snRNP (Mount et al. 1983; Wassarman and

Steitz 1992). Our choice of this site was guided by its prox-

imity to the base-pairing, and also by the fact that the modi-

fication gave a workable yield in cross-linking, while ap-

pearing not to interfere substantially with the splicing re-

action. We were able to demonstrate cross-links between

this position and proteins in the pre-splicing “complex H”

and in the early spliceosomal “complex A”, also termed the

pre-spliceosome. Mass-spectrometric analysis of the cross-

linked proteins in complex H revealed the presence of the

FUSE 2/FBP protein (a homolog of the intronic splicing

enhancer KSRP; Min et al. 1997). In complex A, we dem-

onstrate the involvement of the hnRNP proteins A2 and B1,

proteins shown to play a role in alternative splicing (May-

eda et al. 1994).

RESULTS AND DISCUSSION

Our method for the identification of purified protein–RNA

cross-links by mass spectrometry combines (1) preparation

of site-specifically modified pre-mRNA containing cross-

linker and biotin; (2) photo-affinity cross-linking; (3) pu-

rification of protein–RNA cross-links by biotin–streptavi-

din affinity selection; and (4) their analysis by mass spec-

trometry. The strategy, as applied here to the spliceosomal

complexes H and A, is outlined in Figures 1 and 2.

Preparation of site-specifically modified pre-mRNA

Site-specifically modified pre-mRNA was constructed by

two- or three-piece ligation (Moore and Sharp 1992), cre-

ating either full-length pre-mRNA ([pS+9B]-pre-mRNA),

or a shortened form truncated by 48 nt at its 5� end and

bearing a 5�-phosphate ([pS+9B]-pre-mRNA-S; see Fig. 1).

The 5� and 3� fragments were prepared by cleavage of in

vitro transcribed pre-mRNA with RNA-cleaving DNA en-

zymes (Santoro and Joyce 1997, 1998). The enzymes were

designed to cleave after nts 48 and 69 of the pre-mRNA.

The synthetic 21-nt oligonucleotide [pS+9B]-nt21 con-

tains (1) a single phosphorothioate at the intron position

C9 for modification with the photoaffinity cross-linker; (2)

a stabilizing 2�-deoxyribose (Gish and Eckstein 1988); and

(3) the nucleotide biotin-dT for subsequent selection with

streptavidin (Fig. 1B). The design was such that after RNase

T1 cleavage, the resulting 5-nt fragment contained the

cross-linker, the biotin, and the radioactive phosphate. The

5� fragment, [pS+9B]-nt21 and the 3� fragment were then

assembled into the pre-mRNA-derived construct to be used

for cross-linking, either by three-piece ligation (Fig. 1C),

or with omission of the 5� fragment, by two-piece ligation

(Fig. 1D).

These constructs were then modified with APB as de-

scribed in Materials and Methods.

Photo-affinity cross-linking in complexes H and A

Splicing of [APB+9B]-pre-mRNA was analyzed by following

the time-course of splicing in comparison with unmodified

pre-mRNA. The splicing efficiency (in terms of both yield

and rate) was only slightly reduced by the modification

(data not shown). This pre-mRNA was then used to analyze

protein–RNA cross-links in the distinct spliceosomal com-

plexes A and H. In parallel reactions, complex H was as-

MS analysis of purified protein–RNA cross-links
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sembled on ice, and complex A at 30°C (see Fig. 3A for

gradient profiles), both for 10 min, and separated by glyc-

erol gradient centrifugation. The content of each reaction

mixture was determined by native gel electrophoresis. Fig-

ure 3B shows the fractions from the 30°C incubation; the

products seen are complex A, unreacted complex H, and a

trace of complex B (the next splicing intermediate after

complex A). Complexes H and A could not be separated

cleanly, so the complex A fractions contain a minor amount

of contaminating complex H. The latter is found predomi-

nantly in gradient fractions 3 and 4, whereas complex A

predominates in fractions 5 and 6 (Fig. 3B). Fractions 7 and

higher contain a mixture of complexes A and B. If the

incubation with ATP at 30°C was prolonged to 30 min, fully

assembled spliceosomes appeared (data not shown).

Aliquots of each gradient fraction from the 30°C incuba-

tion were taken for cross-linking by UV-irradiation (see

Materials and Methods). The RNA was then digested with

RNase T1 under mildly denaturing conditions at 50°C, and

the radioactive cross-linked species were analyzed on an

SDS–polyacrylamide gel (Fig. 3C).

Lanes 2–5 of Figure 3C show the cross-links obtained

from fractions 1, 3, 5, and 7 in Figure 3A. In lane 3, cross-

links from complex H only are seen (Fig. 3B, cf. lane 3). In

FIGURE 1. Preparation of site-specifically modified pre-mRNA. (A) Generation of RNA fragments. Full-length Minx pre-mRNA was prepared
by transcription in vitro and 5� and 3� fragments were generated from it by site-directed cleavage with RNA-cleaving DNA enzymes, as shown.
The 5� fragment was dephosphorylated and the 3� fragment was 5� labeled with 32P. (B) 5� phosphorylation (nonradioactive) of [pS+9B]-nt21. The
21-nt oligonucleotide contains a phosphorothioate at the intron position C9 (pS+9) and an adjacent biotin (B). (C) Three pieces of RNA, as shown,
were hybridized to a splint oligonucleotide and ligated with T4 DNA Ligase, yielding [pS+9B]-pre-mRNA. The product was modified with APB
at the phosphorothioate (pS), leading to [APB+9B]-pre-mRNA. After RNase T1 digest, a radioactive RNA fragment remains containing APB and
biotin as indicated by the bracket. (D) As in C, but two pieces of RNA were used, resulting in the 5� truncated product [pS+9B]-pre-mRNA or
[APB+9B]-pre-mRNA-S after modification with APB.
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lane 4, (fraction 5 of the gradient) cross-links from complex

A are present together with those from complex H (Fig. 3B,

cf. lane 5); thus, only cross-links that appear in lane 4 and

are absent in lane 3 can be assigned to complex A. In all, we

observed several strong cross-links in the A complex frac-

tion 5 (corresponding to proteins of molecular weight ca. 30

and 50 kD) and some weaker ones (ca. 60 and 120 kD).

Only the 50-kD cross-link seems to be specific for complex

A; all of the others were found in complex H as well. Some

more cross-linked proteins were found in complex H (three

of ∼75 kD and one of ∼45 kD; lane 3) and to a lesser extent

in complex A.

The controls (-UV-irradiation, lanes 6–8) confirmed that

the radioactive bands were genuine products of irradiation.

In further comparisons, the incubation at 0°C gave a cross-

linking pattern identical to that seen in Figure 3C, lane 3,

confirming the assignment to complex H (lanes 9 and 10).

The patterns of cross-links obtained with pre-mRNA, that

did not contain biotin, were also identical to those shown

here; also, no cross-links were observed when the digestion

was performed with both RNase T1 and proteinase K,

therefore, the radioactive bands were not due to undigested

RNA (data not shown).

For purification of cross-links for mass spectrometry,

the reaction has to be scaled up. For this reason, we first in-

vestigated whether the two-piece ligated [APB+9B]-pre-

mRNA-S (Fig. 1D) could replace the full-length pre-mRNA.

The single, rather than double ligation was expected to re-

sult in a higher ligation yield and also to reduce cost and

time, because the 5� fragment was not required. Although

the splicing efficiency was slightly reduced compared with

[APB+9B]-pre-mRNA, splicing complex formation was not

affected (data not shown; see also Krainer et al. 1984). We

therefore used [APB+9B]-pre-mRNA-S to check whether we

could observe the same cross-links using this construct. In

preliminary experiments, a 15-min incubation time was

found to lead to the greatest yield of complex A. Under the

different gradient conditions, we were now able to separate

complexes H and A as distinct peaks (Fig. 4A). However,

the fractionated complex A seemed to dissociate during

native gel electrophoresis (data not shown). The protein

cross-linking pattern of the large-scale cross-linking reac-

tion was similar to that with the full-length pre-mRNA. As

complexes H and A are better separated, no coinciding

cross-links of the H complex are found in the A complex

regions from the preparative gradient (cf. Fig. 4B and Fig.

3C). In complex H, all cross-links found in the small-scale

analysis are also seen with the shorter pre-mRNA in the

large-scale preparation, namely, the proteins around 75, 60,

45, and 30 kD (Fig. 4B, cf. fractions 6 and 7 with Fig. 3C,

fraction 3). Proteins assigned to cross-link in complex A

(fraction 5, Fig. 3C) were also found in fractions 11–14, the

peak corresponding to complex A. These were the 60-, 50-,

and 30-kD proteins. The proteins around 75 and 120 kD

were absent, indicating that they belong only to complex H.

FIGURE 2. Purification of protein–RNA cross-links by biotin–strep-
tavidin selection. Pre-mRNA was prepared as shown in Figure 1 and
incubated with nuclear extract for 15 min at 30°C. Subsequently,
complex A was purified by glycerol gradient centrifugation. U1 snRNP
was not included in the figure, as it is not investigated whether U1 was
base-paired with the 5� splice site in this complex (Das et al. 2000).
The fractions containing complex A were pooled, irradiated, and di-
gested with RNase T1. Cross-linked proteins that were covalently
bound to the nucleotide next to the biotin-containing residue were
affinity purified with streptavidin beads. After stringent washing, the
proteins were eluted from the beads for analysis by mass spectrometry.

MS analysis of purified protein–RNA cross-links
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However, the intensities of the observed

cross-links vary slightly. For example, the

120-kD cross-link is found as a weak

shadow only (see input and fractions 6

and 7). The lower amount of this cross-

link is probably due to experimental

variations and not to the use of the

shorter pre-mRNA, as it was also found

in other experiments when [APB+9B]-

pre-mRNA-S was used. The amount of

the 30-kD protein appears to be lower in

complex H than in complex A; this may

be because of higher efficiency of cross-

linking to this protein in complex A, or

to its displacement in complex H by

other proteins.

Biotin–streptavidin selection and
mass spectrometric analysis

The conditions and controls as described

above for the [APB+9B]-pre-mRNA-S

were now applied for the biotin–strepta-

vidin selection. A total of five gradients

were used for purification of cross-links

in complex H, and because of the lower

yield of assembled complex A, eight gra-

dients for cross-links in complex A (see

Table 1 for further data of the purifica-

tion process and Fig. 4A for the gradient

profile). Four fractions from each gradi-

ent were pooled, fractions 11–14 (com-

plex A), and fraction 7–10 (complex H);

these were cross-linked at 312 nm, di-

gested with RNase T1, and used for the

biotin–streptavidin selection. An aliquot

of the cross-linked proteins was taken

before selection for comparison of the

selection specificity (Fig. 5A). The affin-

ity purification was performed under

semidenaturing conditions with NP-40S

and SDS. Low concentrations of SDS led

to an increased binding efficiency of the

biotin to streptavidin. The selected cross-

links were washed under stringent con-

ditions to remove unbound proteins;

milder conditions led to high back-

ground of unspecific purified proteins

(data not shown). Although a minor

amount of biotin was found in the su-

pernatant of the binding reaction, the

washes were found to be essentially free

of radioactivity. After washing, biotin-

containing proteins were eluted from the

beads, separated on a SDS–polyacryl-

FIGURE 3. Analysis of cross-links in complexes H and A with [APB+9B]-pre-mRNA. (A)
Gradient profiles of complex H (incubation with [APB+9B]-pre-mRNA for 10 min on ice) and
complex A (10 min at 30°C) after centrifugation in a 1.5 mL S55-S rotor. Complex H
sediments at around 12 S, complex A at around 20 S, and complex B, which appears as a minor
product, at around 40 S. (B) Nondenaturing gel analysis of gradient fractions 1–7 from the
30°C incubation. A total of 10 µL from each fraction was applied to a 2% nondenaturing
agarose gel. The complexes are identified at right. (C) Photoaffinity cross-linking at 312 nm
after gradient centrifugation. Aliquots from fractions 1, 3, 5, and 7 of B were cross-linked, and
parallel aliquots from fractions 3, 5, and 7 were subjected to identical procedures, but without
UV irradiation. Radioactive proteins were then separated on a 10% SDS–polyacrylamide gel.
(Lane 1) Products of the 30°C incubation cross-linked without prior centrifugation (input,
“i”); (lanes 2–5) fractions 1, 3, 5, and 7 from B after cross-linking; (lanes 6–8) as in lanes 3–5,
but in a mock cross-linking reaction without UV light applied. (M) Prestained molecular-
weight markers (Bio-Rad) are indicated at left. The asterisk indicates the RNase T1-digested
non-cross-linked RNA.

Rhode et al.
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amide gel, and stained with silver nitrate. The silver-stained

bands (Fig. 5C) match very well with the radioactive cross-

linking pattern (Fig. 5B), showing that the purification was

specific. Two spurious bands at around 25 kD appeared in

the silver stain after purification of H and A complex cross-

links; these bands were also observed in a mock purification

with nuclear extract alone. In addition, to show that all

proteins are selected with the same efficiency, the input

cross-links for the affinity selection were compared with the

purified cross-links and no differences were seen (Fig. 5, cf. A

and B).

Proteins identified by mass spectrometry

By using mass spectrometry, it was now possible to deter-

mine the identity of the three strongest bands. The ∼70-kD
cross-link in complex H was identified as the 68-kD far

upstream element (FUSE)-binding protein 2/KH-type splic-

ing regulatory protein/FBP. The protein consists of four

so-called KH domains homologous with hnRNP protein K

(Siomi et al. 1993). A homolog of FUSE, KSRP, has been

described as an intronic enhancer (Min et al. 1997). The

proteins have 70% amino acid similarity overall and 74%

amino acid identity in the KH domains. Another homolog

of KSRP is PSI, a splicing repressor of the Drosophila P-

element IVS3 (Siebel et al. 1994, 1995). The two proteins

cross-linked around 30 kD in complex A were identified as

hnRNP A2 and B1 (Burd et al. 1989). They are transcribed

from the same gene, but differ by a 12 amino acid insertion

in hnRNP B1, due to an alternative splicing event. Apart

from being hnRNP proteins, these proteins also have a

function in alternative splicing (Mayeda et al. 1994).

Conclusions

In this work, we have shown that proteins bound at a spe-

cific position to RNA can be isolated and purified on a small

scale (1–10 pmole for the individual protein) by using bi-

otin–streptavidin selection, and that the cross-linked pro-

teins can be identified by mass spectroscopy. Success with

this approach has the following prerequisites:

1. An RNA must be produced with three modifications,

FIGURE 4. Analysis of cross-links in complexes A and H using
[APB+9B]-pre-mRNA-S. (A) Gradient profile of complexes H and A.
Incubation at 0°C or 30°C was stopped after 15 min, and the reaction
mixture was centrifuged in a TST41.14 rotor. Complex H was found
in fractions 7–10 from the 0°C incubation, and narrowed to fractions
6–7 when incubation conditions (30°C) produced complex A as well;
the latter was found in fractions 11–14. (B) Cross-linking profile of the
gradient fractions. Twenty microliters of a cross-linked and T1-di-
gested 500 µL gradient fraction or 10 µL of the starting material of one
preparative reaction, cross-linked without centrifugation (input, “i”),
were separated on 10% SDS–polyacrylamide gel. (M) The molecular
weights of the prestained marker are indicated at right. For the input,
a shorter exposure is shown.

TABLE 1. Summary of affinity selection yields

H complex A complex

Total input 125 pmole 185 pmole

No. of gradients/pooled fractions 5/20 8/32

Pooled gradient peaks 73 pmole 73 pmole

Percent gradient peak/total input 60% 40%

Input for affinity selection1 60 pmole 57 pmole

Beads after washing 34 pmole 25 pmole

Eluted proteins2 27 pmole 22 pmole

% eluted/gradient peak 37% 30%

Left on beads 7 pmole 3 pmole

Elution efficiency 80% 88%

Quantities were determined by scintillation counting and are cor-
respondingly approximate. 1Losses are due to adhesion of the
sample to the walls of the 24-well plate and tubes. 2This includes
a correction for quenching by the elution buffer.

MS analysis of purified protein–RNA cross-links
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that is, a position-specific cross-linker, a neighboring

biotin, and a radioactive label. These three modifications

must remain together during treatment with nucleolytic

enzymes, and they must not change the composition or

the function of the particle. With the help of DNA en-

zymes, RNA fragments can be generated for a large

number of positions needed for the incorporation of a

synthetic oligonucleotide containing all necessary modi-

fications and a 32P-label for a specific position. In com-

bination with ribonucleases, a minimal RNA fragment

containing cross-linker, biotin, and radioactive label can

be obtained and purified by biotin–streptavidin selec-

tion.

2. The cross-linked product must be obtainable in a quan-

tity sufficiently large to be analyzed by MS. In our ex-

periments, such high yields could be obtained by using a

5�-shortened pre-mRNA molecule, the two-piece ligated

product.

In a first attempt, it proved possible to identify several

cross-linked proteins in this way. Among the cross-linked

proteins, we found hnRNP A2/B1, a component of complex

H, which also has a function in alternative splicing. Fur-

thermore, it has been found in tobramycin-purified com-

plex A (Hartmuth et al. 2002). We found the FUSE 2 pro-

tein in complex H; this protein has not been identified

previously as a constituent of this or a spliceosomal com-

plex. FUSE 2 has four KH domains, and is thus probably an

RNA-binding protein. Two proteins that show homology

with FUSE 2, KSRP (Min et al. 1997) and PSI (Siebel et al.

1994, 1995), are believed to take part in alternative splicing.

Irrespective of the actual proteins found and their pos-

sible function, the described approach works in two very

complex multicomponent RNPs, namely the spliceosomal

complexes H and A. The approach thus has general appli-

cation in the purification and identification of protein–

RNA cross-links in other RNPs. In further studies, we will

apply this technique to the investigation of protein–RNA

interactions in higher assembly stages of the spliceosome. In

combination with the recently developed methods for the

purification of spliceosomal complexes (Hartmuth et al.

2002; for review, see Jurica and Moore 2002; Makarov et al.

2002) we would be able to first characterize a protein–RNA

cross-link, and then assign it to a distinct spliceosomal com-

plex. This will help to gain further insight into the assembly

and function of the spliceosome.

FIGURE 5. Large-scale preparation of protein–RNA cross-links. A total of 600 µL of complex H or complex A reaction mixtures containing 37
nM [APB+9B]-pre-mRNA-S were loaded on a 14-mL TST41.14 rotor. A total of 5 (H) or 8 (A) such gradients were taken, and the peaks were
pooled for cross-linking and isolation of the product. (A,B) Comparison of input cross-links with eluate. For cross-linking, gradient fractions 7–10
(H) and 11–14 (A) were pooled, cross-linked, and digested with RNase T1. A 10-µL aliquot was withdrawn before the biotin–streptavidin
selection, and to compare it with the eluted protein–RNA cross-links from the beads, a PhosphorImager picture was taken from the silver-stained
gel in C. (Note: The gel in A ran for a longer time, so no degraded RNA is visible at the bottom.) (C) Silver-stained gel of material eluted from
the beads. The 150-µL protein–RNA cross-links were fractionated on a 10% SDS–polyacrylamide gel. (M) A total of 2 µL (0.36 µg) of unstained
molecular weight marker (Bio-Rad); the molecular weight is indicated at right. (1) FUSE 2; (2) hnRNP A2/B1.
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MATERIALS AND METHODS

Preparation of site-specifically modified pre-mRNA

Pre-mRNA was prepared by PCR amplification of pMinx (Zill-

mann et al. 1988). The sense primer comprised a T7 promoter

(GGGGTACCTAATACGACTCACTATAGGGAGACGGAATTCG

AGCTCGCCC; all DNA oligonucleotides were supplied by MWG

Biotech) and the antisense primer contained a BamHI cleavage site

(CGCGGATCCCCACTGGAAAGACC). BamHI-restricted PCR

products were transcribed in vitro by using recombinant T7 poly-

merase. Transcription reactions (500 µL) contained 100 nM Minx

DNA, 40 mM Tris-HCl (pH 8.1), 34.5 mM MgCl2, 5 mM DTT,

0.01% Triton X-100, 0.1 mg/mL BSA, 1 mM GTP, 5 mM

m7GpppG (Kedar s.c.), 7.5 mM each of CTP, UTP, and ATP, and

6-µL recombinant His-tagged T7 polymerase (4.4 mg/mL). The

reaction mixture was incubated for 16 h at 37°C. The DNA tem-

plate was then digested with 20 U RQ1 DNase (1 U/µL; Promega)

for 1 h at 37°C.

Gel-purified pre-mRNA transcripts were cleaved with RNA-

cleaving DNA enzymes (Santoro and Joyce 1997). For generation

of the 5� fragment (nt 1–48), enzyme type 10–23 was used to

cleave between nt 48 and 49 (CGTTCGGAGGGGCTAGCTACA

ACGACGACGGGTTTC), and enzyme type 8–17 for generation of

the 3� fragment (nt 70–223), which cleaves between nt 69 and 70

(AGTTCTACATGTCCGAGCCGGACGAAGGCTCTTACC). The

hybridization temperature with the RNA was ∼30–34°C for the

base-paired regions on both sides of the loop of the DNA enzyme

(cf. Fig. 1A, top). Reactions were performed essentially as de-

scribed (Santoro and Joyce 1998). Briefly, up to 2 nmole of pre-

mRNA was mixed with twice the amount of both DNA enzymes,

denatured for 1 min at 96°C, and cooled to room temperature.

Then, 2 mM MnCl2, 25 mM N-(2-hydroxyethyl)piperazine-N�-3-
propanesulfonic acid (EPPS; pH 7.5), 75 mM NaCl, and 0.05%

SDS were added to give a final volume of 500 µL, and the mixture

was incubated for 12–24 h at 37°C, allowing 90%–100% cleavage

efficiency. The 5� and 3� fragments were purified by gel electro-

phoresis. For preparation of site-specifically modified pre-mRNAs,

a synthetic oligonucleotide ([pS+9B]-nt21, derived from the Minx

sequence [(nt 49–69: CCUCCGAACGGUAAGAG(dC)-pS-C(B-

dT)A, the exon sequence is shown in bold and (d) deoxy, (pS)

phosphorothioate, (B-dT) biotin; RNA Tec] was used.

Preparation of [pS+9B]-pre-mRNA

The analytical-scale three-piece ligation requires dephosphoryla-

tion of the 5� fragment, labeling of the 3� fragment, and phos-

phorylation of the oligonucleotide (see Results and Fig. 1). (1) A

total of 180 pmole of the 5� fragment was dephosphorylated by the

method of Cameron and Uhlenbeck (1977) in a 20 µL reaction

with 0.4 mM ATP, 40 U RNasin (Promega), and 40 U T4-poly-

nucleotide kinase (PNK; Promega) in the buffer provided by the

manufacturer for 75 min at 37°C. (2) A total of 60 pmole of the 3�
fragment was 5� phosphorylated with 15 pmole [�-32P]ATP (5000

Ci/mmole; Amersham) using 40 U of PNK in a total volume of 20

µL. (3) Phosphorylation of the 180 pmole synthetic oligomer

[pS+9B]-nt21 was performed as in 2, above, except that 2 mM ATP

was used. Reaction mixtures in 2 and 3 were incubated for 45 min

at 37°C, 2 µL of 20 mM-unlabeled ATP was then added, and

incubation was continued for another 30 min. In all preparations,

the final step was inactivation of PNK by incubation for 15 min at

65°C, followed by precipitation with 2.7 M NH4OAc and 3 vol of

ethanol, pooling, and repeated precipitation. A total of 120 pmole

of DNA splint oligomer (GCTTGGGCTCGAGGTAACCAGTTC

TACATGCTAGGCTCTTACCGTTCGGAGGCCGACGGGTTTC

CGATCCAAG) was added before the second precipitation. The

pellet containing all fragments was dissolved in 8.4 µL H2O, and 2

µL 10× T4 DNA ligase buffer [500 mM Tris-HCl (pH 7.5), 100

mM MgCl2, 100 mM DTT, 10 mM ATP, 250 µg/mL BSA], heated

to 96°C, and then cooled to 16°C in a heating block, over 20 min.

After hybridization, 0.7 µL of RNasin (40 U/µL), 0.7 µL BSA (5

mg/mL) 0.5 µL ATP (20 mM), and 6 µL T4 DNA Ligase (2 × 106

U/mL, NEB) was added and incubated for 16 h at 16°C. After gel

purification, the amount of ligated product was quantified by

measuring the absorption at 260 nm (18 pmole yield).

Preparation of [pS+9B]-pre-mRNA-S

Large-scale two-piece ligation (see Fig. 1) of [pS+9B]-nt21 and 3�
fragment was carried out as described above, except that a three-

fold volume of all reagents was used. (1) A total of 540 pmole of

[pS+9B]-nt21 was phosphorylated with 120 U PNK. (2) A total of

540 pmole of 3� fragment was labeled with 5 pmole [�-32P]ATP
and 12 U PNK. For the hybridization/ligation-reaction, 510 pmole

DNA splint oligonucleotide was used. After gel purification, the

amount of ligated product was quantified by measuring the ab-

sorption at 260 nm (380 pmole yield).

For modification with the photoaffinity cross-linker 6 mM p-

azidophenacyl bromide (APB; Fluka), 80% DMSO in 14 mM

HEPES-NH4OAc (pH 8.5) was used to modify 10–200 pmole RNA

in a reaction volume of 50–750 µL. The reaction mixture was

incubated for 45 min at 42°C. Excess APB was removed by two

phenol/chloroform extractions, followed by chloroform extraction

and precipitation of the RNA (Konarska 1999).

Assembly of spliceosomal complexes and glycerol
gradient centrifugation

For analytical purposes, spliceosomal complexes were assembled

on [APB+9B]-pre-mRNA in a 100 µL reaction containing 35%

nuclear extract (prepared according to Dignam et al. 1983), 1.3

mM ATP, 27 mM creatine phosphate, and 2.4 mM MgCl2. Incu-

bation for assembly of complexes H and A was performed for 10

min on ice (H) or at 30°C (A). Reactions were then supplemented

with 0.125 mg/mL heparin sulphate and applied to a 1.5 mL linear

10%–30% glycerol gradient containing 100 mM NaCl, 1.5 mM

MgCl2, 0.1 mM EDTA, and 20 mM HEPES (pH 7.9). Centrifu-

gation was performed in a Sorvall S55-S rotor at 55,000 rpm for

1:45 h at 4°C. Gradients were fractionated manually into 13 frac-

tions of 110 µL each.

For preparative purposes, complexes H and A were assembled as

above, except that 37 nM [APB+9B]-pre-mRNA was incubated for

15 min in a total reaction volume of 660 µL containing 30%

nuclear extract on ice (complex H) or 30°C (complex A). For

preparative cenrifugation, 600 µL of the reaction product was ap-

plied to a linear 10%–30% glycerol gradient (14 mL, buffer as

above), and centrifugation was performed in a Centricon

TST41.14 rotor at 30,000 rpm for 15.5 h at 4°C. Gradients were

fractionated manually into 23 fractions of 500 µL each, and pmoles

were quantified by the specific activity of the RNA.

MS analysis of purified protein–RNA cross-links
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To identify the complexes in the gradient fractions, 10 µL of one

fraction was mixed with 2.5 µL 5× loading buffer (2× TBE, 30%

glycerol, 0.25% xylene cyanol) and electrophoresed on a 2% native

agarose gel (low-melting-point agarose; Invitrogen) in 0.5× TBE

with 8 V/cm for 3.5–4 h at room temperature (Das and Reed

1999).

Cross-linking

For analytical cross-linking, 45 µL of one fraction was cross-linked

in a single well of a 96-well polystyrene plate, covered with the

polystyrene lid provided, for 5 min with a 312 nm germicidal lamp

(Herolab) placed about 3 cm from the sample. Preparative cross-

linking was performed at 4°C by irradiating 0.25–2 mL in a cov-

ered 24-well polystyrene plate for 15 min (other conditions as

above). The maximum depth of the sample was 1 cm. Volumes

greater than 1 mL in one well were gently mixed every 5 min to

improve cross-linking efficiency. Reaction mixtures were then di-

gested by addition of 8.25 U RNase T1 (1000 U/µL; Ambion) in a

total volume of 1 mL, and incubated for 2 h at 50°C.

To analyze protein–RNA cross-links, 10 µL (preparative) or 30

µL (analytical) aliquots were electrophoresed on 10% SDS–poly-

acrylamide gels, and the radioactive bands were detected by auto-

radiography or with a PhosphorImager (Amersham). Prestained

markers (BioRad) were run as molecular-weight standards.

Biotin–streptavidin affinity separation

A total of 30-µL streptavidin-agarose beads (Sigma) were pre-

blocked essentially as described (Lamond and Sproat 1994), except

that 0.1% Nonidet P-40 substitute (NP-40S; Sigma), and 100 mM

PBS (pH 7.5) was used. A total of 1.5 mL cross-linked and T1-

digested samples, 0.1% NP-40S, 0.07% SDS, and 133 µL IPP500

[10 mM Tris-HCl (pH 8); 500 mM NaCl, 0.1% NP-40S] were

loaded successively onto the beads, with a final volume of 2 mL,

and allowed to bind by end-over-end rotation for 1.5 h at 4°C. For

sample volumes above 1.5 mL, the beads were exposed to succes-

sive aliquots of the sample with a single wash with IPP500 between

consecutive aliquots. After the biotinylated cross-linked proteins

had been coupled to the beads, these were washed four times with

a 1:1 mixture of 1% SDS and IPP750 (see above, except that 750

mM NaCl was used), and then four times with IPP750, each for 1

min. Elution from the beads was performed with urea and SDS

(Swack et al. 1978) with 3× 50 µL aliquots of loading-elution

buffer [400 mM urea, 2% SDS, and 30 mM Tris-HCl (pH 6.8), 0.1

mM EDTA (pH 8), and 0.25% bromophenol blue] in three steps

as follows: 5 min at 96°C, followed by 30 min at 50°C, and an

additional denaturing step at 96°C for 5 min. The eluate (150 µL)

was then loaded onto a 10% SDS–polyacrylamide gel, and stained

with silver nitrate (Blum et al. 1987).

Mass spectrometry

Proteins separated by SDS–polyacrylamide gel were analyzed by

matrix-assisted laser desorption/ionization MS (MALDI-MS) and

identified as described in Hartmuth et al. (2002).

ACKNOWLEDGMENTS

We thank Monika Raabe for excellent technical assistance, Heiko

Manninga for preparation of T7 RNA-Polymerase, and Paul

Woolley for critically reading the manuscript. This work was sup-

ported by grants from the Deutsche Forschungsgemeinschaft

(Grant Lu 294/12-1), the Bundesministerium für Bildung und

Forschung Grant 031U215B (to R.L.) and the Fonds der Che-

mischen Industrie.

The publication costs of this article were defrayed in part by

payment of page charges. This article must therefore be hereby

marked “advertisement” in accordance with 18 USC section 1734

solely to indicate this fact.

Received August 20, 2003; accepted September 3, 2003.

REFERENCES

Blum, H., Beier, H., and Gross, H.J. 1987. Improved silver staining of
plant proteins, RNA and DNA polyacrylamide gels. Electrophoresis
8: 93–99.

Burd, C.G., Swanson, M.S., Görlach, M., and Dreyfuss, G. 1989. Pri-
mary structures of the heterogeneous nuclear ribonucleoprotein
A2, B1, and C2 proteins: A diversity of RNA binding proteins is
generated by small peptide inserts. Proc. Natl. Acad. Sci. 86: 9788–
9792.

Burge, C.B., Tuschl, T., and Sharp, P.A. 1999. Splicing of precursors to
mRNAs by the spliceosomes. In: The RNA world (eds. R.F. Geste-
land et al.), pp. 303–357. Cold Spring Harbor Laboratory Press,
Cold Spring Harbor, NY.

Cameron, V. and Uhlenbeck, O.C. 1977. 3�-Phosphatase activity in T4
polynucleotide kinase. Biochemistry 16: 5120–5126.

Das, R. and Reed, R. 1999. Resolution of the mammalian E complex
and the ATP-dependent spliceosomal complexes on native agarose
mini-gels. RNA 5: 1504–1508.

Das, R., Zhou, Z., and Reed, R. 2000. Functional association of U2
snRNP with the ATP-independent spliceosomal complex E. Mol.
Cell 5: 779–787.

Dignam, J.D., Lebovitz, R.M., and Roeder, R.G. 1983. Accurate tran-
scription initiation by RNA polymerase II in a soluble extract from
isolated mammalian nuclei. Nucleic Acids Res. 11: 1475–1489.

Dreyfuss, G., Matunis, M.J., Piñol-Roma, S., and Burd, C.G. 1993.
hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem.
62: 289–321.

Geselowitz, D.A. and Neumann, R.D. 1995. Quantitation of triple-
helix formation using a photo-cross-linkable aryl azide/biotin/oli-
gonucleotide conjugate. Bioconjugate Chem. 6: 502–506.

Gish, G. and Eckstein, F. 1988. DNA and RNA sequence determina-
tion based on phosphorothioate chemistry. Science 240: 1520–
1522.

Hartmuth, K., Urlaub, H., Vornlocher, H.P., Will, C.L., Gentzel, M.,
Wilm, M., and Lührmann, R. 2002. Protein composition of human
prespliceosomes isolated by a tobramycin affinity-selection
method. Proc. Natl. Acad. Sci. 99: 16719–16724.

Jurica, M.S. and Moore, M.J. 2002. Capturing splicing complexes to
study structure and mechanism. Methods 28: 336–345.

———. 2003. Pre-mRNA splicing: Awash in a sea of proteins. Mol.
Cell 12: 5–14.

Konarska, M.M. 1999. Site-specific derivatization of RNA with pho-
tocrosslinkable groups. Methods 18: 22–28.

Krainer, A.R., Maniatis, T., Ruskin, B., and Green, M.R. 1984. Normal
and mutant human �-globin pre-mRNAs are faithfully and effi-
ciently spliced in vitro. Cell 36: 993–1005.

Krecic, A.M. and Swanson, M.S. 1999. hnRNP complexes: Composi-
tion, structure, and function. Curr. Opin. Cell Biol. 11: 363–371.

Lamond, A.I. and Sproat, B.S. 1994. Isolation and characterization of
ribonucleoprotein complexes. In: RNA processing: A practical ap-
proach. (eds. D. Rickwood and B.D. Hames), pp. 103–140. Oxford
University Press, Oxford, UK.

MacMillan, A.M., Query, C.C., Allerson, C.R., Chen, S., Verdine, G.L.,
and Sharp, P.A. 1994. Dynamic association of proteins with the

Rhode et al.

1550 RNA, Vol. 9, No. 12



pre-mRNA branch region. Genes & Dev. 8: 3008–3020.
Makarov, E.M., Makarova, O.V., Urlaub, H., Gentzel, M., Will, C.L.,

Wilm, M., and Lührmann, R. 2002. Small nuclear ribonucleopro-
tein remodeling during catalytic activation of the spliceosome. Sci-
ence 298: 2205–2208.

Mayeda, A., Munroe, S.H., Cáceres, J.F., and Krainer, A.R. 1994. Func-
tion of conserved domains of hnRNP A1 and other hnRNP A/B
proteins. EMBO J. 13: 5483–5495.

Min, H., Turck, C.W., Nikolic, J.M., and Black, D.L. 1997. A new
regulatory protein, KSRP, mediates exon inclusion through an in-
tronic splicing enhancer. Genes & Dev. 11: 1023–1036.

Moore, M.J. and Sharp, P.A. 1992. Site-specific modification of pre-mRNA:
the 2�-hydroxyl groups at the splice sites. Science 256: 992–997.

Mount, S.M., Pettersson, I., Hinterberger, M., Karmas, A., and Steitz,
J.A. 1983. The U1 small nuclear RNA-protein complex selectively
binds a 5� splice site in vitro. Cell 33: 509–518.

Reed, R. and Chiara, M.D. 1999. Identification of RNA-protein con-
tacts within functional ribonucleoprotein complexes by RNA site-
specific labeling and UV crosslinking. Methods 18: 3–12.

Santoro, S.W. and Joyce, G.F. 1997. A general purpose RNA-cleaving
DNA enzyme. Proc. Natl. Acad. Sci. 94: 4262–4266.

———. 1998. Mechanism and utility of an RNA-cleaving DNA en-

zyme. Biochemistry 37: 13330–13342.
Sha, M., Levy, T., Kois, P., and Konarska, M.M. 1998. Probing of the

spliceosome with site-specifically derivatized 5� splice site RNA
oligonucleotides. RNA 4: 1069–1082.

Siebel, C.W., Admon, A., and Rio, D.C. 1995. Soma-specific expres-
sion and cloning of PSI, a negative regulator of P element pre-
mRNA splicing. Genes & Dev. 9: 269–283.

Siebel, C.W., Kanaar, R., and Rio, D.C. 1994. Regulation of tissue-
specific P-element pre-mRNA splicing requires the RNA-binding
protein PSI. Genes & Dev. 8: 1713–1725.

Siomi, H., Matunis, M.J., Michael, W.M., and Dreyfuss, G. 1993. The
pre-mRNA binding K protein contains a novel evolutionarily con-
served motif. Nucleic Acids Res. 21: 1193–1198.

Swack, J.A., Zander, G.L., and Utter, M.F. 1978. Use of avidin-sepha-
rose to isolate and idenify biotin polypeptides from crude extracts.
Anal. Biochem. 87: 114–126.

Wassarman, D.A. and Steitz, J.A. 1992. Interactions of small nuclear
RNA’s with precursor messenger RNA during in vitro splicing.
Science 257: 1918–1925.

Zillmann, M., Zapp, M.L., and Berget, S.M. 1988. Gel electrophoretic
isolation of splicing complexes containing U1 small nuclear ribo-
nucleoprotein particles. Mol. Cell. Biol. 8: 814–821.

MS analysis of purified protein–RNA cross-links

www.rnajournal.org 1551


