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ABSTRACT

BayesFold is a Web application that folds an alignment of closely related sequences and evaluates hypotheses about their shared
structure. It uses Bayes’s Theorem to combine information from several sources, including chemical mapping (if available),
thermodynamic folding, and observed sequence variations. Its method provides a rational basis for integrating results, even
when these methods conflict. On a gapped alignment of 86 tRNAPhe sequences each 77 bases long, BayesFold takes 31 sec to
perform the calculations; the best structure contained 95% of the base pairs in the true structure, and the true structure was
ranked second. Notably, similar results come from random samples of only 10 sequences from the alignment (running time 3
sec), suggesting that remarkably few sequences are required for good results. In contrast, folding single sequences with
BayesFold produced structures 9.6 bp different, or with the Vienna package, 13.4 bp different, from the true structure . Similar
results were obtained for other families of tRNAs. We especially recommend BayesFold for alignments of 3–50 closely related
sequences, such as the sequence families frequently found in SELEX. In addition to providing a convenient way to explore the
effects of each of the criteria on the plausibility of different structures, BayesFold also makes it easy to produce publication-
quality secondary-structure graphics. The Web interface, available at http://bayes.colorado.edu/fold/, includes the flexibility to
thread any of the sequences (or the consensus sequence) through any of the structures, including the one judged most probable.
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INTRODUCTION

Finding the common structure for an RNA sequence align-
ment has been difficult, especially when combining statis-
tical predictions from several methods. Methods that fold
individual sequences often disagree for similar sequences
even when the true structure (although unknown) must be
the same. Methods that use the alignment itself often re-
quire inconveniently large numbers of sequences. Here we
present a way to integrate information from chemical map-
ping, thermodynamic folding, and sequence variations to
find the best overall structure for aligned sequences. Our
program, BayesFold, provides a user-friendly environment
for exploring candidate structures, and uses Bayes’s Theo-
rem to calculate the relative plausibility of each structure
when different types of information are taken into account.
BayesFold thus addresses a common complaint about ex-
isting RNA packages (whether they deal with a single se-

quence or with an alignment), which is that the results are
often difficult to compare or interpret. BayesFold also pro-
vides publication-quality figures without extensive redraw-
ing in a graphics program.

Several existing programs combine multiple types of data
to estimate the best secondary structure for a sequence
alignment. For example, AliFold (Hofacker et al. 2002) al-
lows users to select weightings for contributions from ther-
modynamics and from mutual information (based on se-
quence variations in an alignment). The Maximum
Weighted Matching technique (Tabaska et al. 1998) also
implemented in Circles (unpublished, but available at
http://taxonomy.zoology.gla.ac.uk/rod/circles/) in principle
allows any type of data to be incorporated. However, these
techniques require users to make arbitrary choices about
the weight given to different sources of information. An-
other approach is to use thermodynamic folding directly on
two sequences at once, as in DynAlign (Mathews and
Turner 2002), but this approach is very slow and does not
take all the information from the alignment into account.
FoldAlign (Gorodkin et al. 2001) uses a combination of
thermodynamic and covariation data to find short regions
of similarity in unaligned sequences, but its generality
makes it very slow for longer alignments of sequences that
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are globally identical. Additionally, FoldAlign only finds
one stem–loop structure, thus finding multiple stem–loops
in the tRNA cloverleaf structure, for example, is not pos-
sible. FoldAlign also requires users to enter parameters such
as the maximum motif length, which are often not known
in advance. Thus, FoldAlign is not suitable for finding the
global structure of closely related sequence families. Pack-
ages such as ConStruct (Luck et al. 1999) and pfold (Knud-
sen and Hein 2003) allow the user to fold an alignment of
sequences, but consider only one kind of information (ther-
modynamics and covariation, respectively) and cannot in-
corporate constraints from chemical mapping.

BayesFold allows users to assess a list of suboptimal folds
rapidly, using Bayes’s Theorem to combine results from
multiple sources of data. This method provides an objective
way of combining the different folding methods, and does
not force the user to make choices, sometimes arbitrarily,
about the relative importance of different parameters.
Bayes’s Theorem provides a unique, optimal method of
updating beliefs in the light of new data:

Pr �H�D� = Pr �H�
Pr �D�H�

Pr �D�
(1)

In other words, the posterior probability of a hypothesis H
given some new data D, Pr(H|D), is equal to the prior
probability of the hypothesis before the new data were ob-
served, multiplied by the conditional probability of observ-
ing the data if the hypothesis were true, divided by the
unconditional probability (summarizing over all scenarios
and their respective probabilities) of observing the data
when the hypothesis is unknown or chosen at random. In
keeping with common sense, a hypothesis becomes more
likely when an outcome that it predicts to be frequent is
actually observed, especially when the alternative hypoth-
eses predict that the outcome is rare. When the evidence is
overwhelming, even hypotheses that were originally consid-
ered extremely unlikely can become plausible.

For example, after decades of research in which every
enzyme activity turned out to be catalyzed by a specific
protein, it was once natural to assume that all biological
catalysts were proteins. However, in the cases of the Tetra-
hymena Group I intron and RNase P, Cech and Altman
obtained results (such as activity from in vitro transcripts)
that were highly implausible if proteins were the catalysts,
but made perfect sense if RNA was the catalyst (Guerrier-
Takada and Altman 1984; Zaug and Cech 1986). Catalytic
activity associated with a transcript newly synthesized from
purified components, with no contact with Tetrahymena or
its proteins, is an example of data D that has a very low
probability given one hypothesis (that proteins catalyze the
reaction), but a very high probability given an alternative
hypothesis (that RNA catalyzes the reaction). In other
words, Pr(D|Hprotein) is much less than Pr(D|HRNA), so that
Pr(HRNA) is greater than Pr(Hprotein) after observing the
data. The observation also raises the probability that other

reactions are also catalyzed by RNA, thus changing the prior
assumptions for new experiments. Bayes’s Theorem formal-
izes this type of reasoning and makes it quantitative.

When considering several hypotheses, Bayes’s Theorem
provides the probability that, given the evidence, each of the
hypotheses is the true hypothesis. In practice, Pr(D), the
probability of the data, is usually unknown. However, if an
exhaustive list of possible hypotheses H is known in ad-
vance, then Pr(D) can be calculated by a technique called
marginalization. This technique takes into account the
probability of observing D under each particular hypothesis
Hi, weighted by the probability of Hi, as follows:

Pr �D� = �Pr �Hi� Pr �D�Hi� (2)

Bayes’s Theorem can be used with multiple types of data Dj

by calculating posterior probabilities Pr(H|Dj) for the first
type of data, using these posteriors as priors for the next
type of data, and so on until the last kind of data is reached.
This method assumes that the different types of data are not
correlated with each other.

Applying Bayes’s Theorem to secondary-structure pre-
diction, we would ideally want to find the probability of all
possible structures (where each structure is defined as a list
of base pairs). Unfortunately, the number of structures in-
creases exponentially with the length of the sequence. We
reduce the complexity of the task by considering only a list
of structures that is known beforehand to be near the op-
timum.

Thus, we find the plausibility of each of a list of possible
structures that a sequence (or set of sequences) might fold
into. The researcher typically seeks to choose among a finite
number N of hypotheses about the structure Hi, given an
alignment containing a number n of aligned sequences Sk

(we use this notation throughout the paper and use “struc-
ture” interchangeably with “structural hypothesis”). Each
structure consists of a list of positions of bases that must be
paired: all other bases are unpaired. The structures must be
ranked according to their posterior probabilities (the prob-
ability that each is the true structure) once all the data are
taken into account. Treating the structures as hypotheses in
this manner captures the common situation in which the
researcher has folded each of a set of closely related se-
quences individually, perhaps returning a few structures of
similar energy for each. When the structures conflict, it is
hard to predict objectively which structure is most plausible
for all the sequences. Worse yet, the true structure (as re-
vealed by chemical or physical techniques) is often not the
least-energy structure for any sequence. Because there is
little basis for choosing among structures at this early point,
we assign equal prior probabilities Pr(Hi) to each of the N
structures Hi, giving 1/N for each structure.

For a predefined list of structures obtained by any
method (automatic or manual), BayesFold then assigns
each structure a posterior probability by successively taking
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into account each of the types of data. For this version, we
generate the structures Hi by suboptimally folding each se-
quence using RNAsubopt (Wuchty et al. 1999) as imple-
mented in version 1.4 of the Vienna RNA folding package
(Hofacker et al. 1994) using the Mathews-Turner energy
parameters (Mathews et al. 1999). The Vienna package gives
results almost identical to the better-known mfold (Zuker
and Stiegler 1981), and is more freely distributed. We use an
energy window of 2 kcal/mole and take a maximum of 10
suboptimal structures for each sequence to reduce comput-
ing time, although these parameters are adjustable. Bayes-
Fold’s assumption is that all the sequences fold to give an
identical active structure; it therefore works best on rela-
tively short sequences that are at least 90% identical (such as
the 75–200-nt “sequence families” routinely isolated by
SELEX). However, it may also be useful for folding se-
quences from closely related organisms. The current version
of BayesFold does not allow pseudoknots, but we believe it
will be possible to address this issue in future versions.

In the following discussion, we assume that all of the
sequences fold into precisely the same structure (i.e., the
positions of the paired and unpaired bases are identical in
every sequence). If the sequences do not fold into a com-
mon structure, the posterior probabilities are unreliable.
However, the results often indicate which sequences cannot
share the best overall fold, making it easy to refold without
these outliers. Although only hypotheses about the whole
structure can be tested now, we plan to add the ability to
assess local structures (e.g., “active sites”) later. In the pres-
ent version of BayesFold, better results can be obtained by
entering a few sequences that definitely fold into the same
overall structure rather than entering many sequences that
might actually have different structures.

If we assume conditional independence, so that the dif-
ferent types of data are statistically uncorrelated, we need
only determine Pr(Dj|Hi) for each individual type of data
(rather than the joint probability distribution for all data
simultaneously). Conditional independence is a useful ap-
proximation even when some of the variables are in fact
correlated, because it tends to exaggerate the relative sup-
port for the best solutions rather than changing the rank
order. Given Pr(Dj|Hi) for each type of data, we can use
marginalization to find Pr(Dj) and apply Bayes’s Theorem
to each type of data in turn (the results do not depend on
the order in which the types of data are considered):

Pr �Hi�Dj+1� = Pr �Hi�Dj�
Pr �Dj+1�Hi�

�iPr �Hi�Dj� Pr �Dj+1�Hi�
(3)

Here, Pr(Hi|D0) = 1/N, because we are starting with a uni-
form prior probability distribution that weights each of the
N structures equally. More details on the above mathemat-
ics can be found in standard references on Bayesian statis-
tics (Jaynes 2003).

METHODS

We consider three major types of data in BayesFold 1.0, and
sometimes several kinds of experiment within each type:

• Thermodynamics: What is the energy of each of the se-
quences folded into each of the structures?

• Covariation: How likely would we be to see the pattern
of changes across the alignment if each of the structures
were true?

• Chemical mapping: How likely would we be to see the
observed pattern of reactive and unreactive nucleotides
when a sequence is mapped with each chemical if each of
the structures were true?

We now explain how to estimate Pr(Dj|Hi), the probability
of the data given each of the hypotheses, for measurements
derived from each of these criteria. First, we give an over-
view of the calculations BayesFold performs. Then, we show
in detail how to apply the method to calculate Pr(Dj|Hi) for
data that applies to single positions in a sequence align-
ment, using chemical mapping as an example. Finally, we
extend the method to data that can be calculated for pairs
of positions in an alignment, such as thermodynamic pair-
ing probabilities and mutual information (Fig. 1).

Overview of calculations

We need to calculate the probability that we would see the
observed data if each of the structures were the true struc-
ture. Here the “data” are typically not the sequences them-
selves, but a set of scores for each position or for each pair
of positions calculated from the sequence alignment. For
example, the data might be the relative intensity of nuclease
S1 cleavage at each position in one of the sequences. We
expect that the true structure’s unpaired positions have a
high mean S1 cleavage and that its paired positions have a
low mean S1 cleavage: the reverse result would be most
unexpected. The structures thus differ in how frequently
they predict that we would see the observed pattern of
cleavage, or, in other words, the probability of the data
given the structure differs for different structures. This
probability depends on the distribution of scores at the
positions that each structure selects as paired or unpaired.

The general method of finding Pr(Dj|Hi) is as follows.
First, we find Hmax, the structure that has the best statistical
support. We then get a corresponding Pr(Dj|Hi) for each
structure Hi by assuming that some test statistic calculated
for Hmax is the true value, and asking how surprising it
would be to find the observed value of the test statistic for
each of the Hi based on the observed distribution of values
in Hmax. Using the best-supported difference in means
rather than the largest difference limits the effects of sam-
pling error, because Pr(Dj|Hmax) is always 0.5 by definition
(because if the true value were that calculated for Hmax,
chance predicts that we would find a higher value half of the
time and a lower value the other half of the time if we chose
another sample from precisely the same population). Con-

BayesFold: Rational RNA 2° folds

www.rnajournal.org 1325



sequently, even a measurement (such as a difference in
means) based on a very small sample, and therefore subject
to error, can confer apparent support of at most twice that
for Hmax, and such artifacts are unlikely to be consistent
across independent types of data.

We calculate conditional probabilities for each structure
for each of the following types of data:

Scores for each position

• Chemical mapping (if available: possibly several chemi-
cals applied to several sequences at different concentra-
tions).

Scores for each pair of positions

• Pair Probabilities (from folding individual sequences).
• Fraction Pairable (from the sequence alignment).

• Mutual Information (from the se-
quence alignment).

We provide an interface for combining
any or all of these forms of information
using Bayes’s Theorem for multiple up-
dates, easily revealing which criteria in-
fluence the decision for particular struc-
tures the most and allowing users to
disregard any particular type of data
they suspect to be unreliable. Bayes-
Fold’s appeal is that it produces an op-
timal secondary structure using all the
information automatically at hand for a
group of aligned sequences. It also ranks
the other structures rationally, provid-
ing a basis for further experimentation.
BayesFold also calculates and displays
several additional statistics that are use-
ful for evaluating particular combina-
tions of sequences and structures as
shown in Table 1.

We have implemented a system to
perform these calculations using a cli-
ent/server model: the server, written in
Python 2.3 and tested on Linux and
MacOS X, performs all the calculations;
the client, written in Javascript, runs in a
Web browser and displays the results.
The client can be accessed at http://
bayes.colorado.edu/fold/. It is also pos-
sible to run BayesFold from the com-
mand-line on the server. Currently, the
Web client only supports Internet Ex-
plorer 6 on Windows with version 3 of
the Adobe SVG plugin, but we plan to
add support for the Mozilla and Safari/
Konqueror browsers in a later release.

The client takes user input as an alignment of sequences
(plain text or FASTA format), and optionally any chemical
mapping data for one or more of the sequences. The client
then transfers the input to the server using CGI, the com-
mon gateway interface. The server performs the calcula-
tions, and returns the results as a single XML document.
This XML document is parsed in the Web browser, which
by default shows the user the IUPAC consensus sequence
threaded through the overall best structure. However, the
interface makes it easy for the user to display any of the
sequences threaded through any of the candidate structures.
Additionally, the user can examine the table of sequences
and the table of structures, examining the fit of each struc-
ture to each sequence using any combination of the evalu-
ation criteria.

We particularly emphasize that the interface also pro-
duces publication-quality graphics, either printed directly

FIGURE 1. BayesFold’s method for assigning conditional probabilities, using Mutual Infor-
mation (MI) as an example. First, calculate scores for each position in the alignment (for
per-position data such as chemical mappings) or for each possible pair of positions (for
per-pair data, such as mutual information). Second, find the population mean and variance of
these scores. Third, identify the scores that correspond to the unpaired bases (for per-position
data) or the paired bases (for per-pair data) that each of the structures chooses. Fourth, use a
z-test to find the sample of scores that is most significantly better than the population mean.
Finally, compare this “best” sample of scores with the sample chosen by each of the other
structures using a two-sample t-test to find the probability that, if the “best” sample of scores
came from the true structure, the other samples of scores would be at least as high as actually
observed. This gives the conditional probability Pr(Hi|Dj) for each of the structures Hi using the
current type of data Dj. The conditional probabilities for each type of data can then be
combined using Bayes’s Theorem.
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from the browser or exported into an SVG-compliant
graphics package. SVG is the W3C Consortium’s approved
format for vector graphics on the Web, and support for this
file format is likely to increase rapidly in the near future. As
an XML language itself, SVG is easy to manipulate progra-
matically.

Per-position data

Per-position data, such as a pattern of light and dark bands
on a gel derived from chemical or nuclease mapping, indi-
cates whether the base at a particular position is paired but
says nothing about the identity of the partner. Any struc-
ture, by providing a list of base pairs, implicitly divides the
bases into two groups: paired and unpaired. A structure
whose unpaired (or, depending on the chemical or enzyme,
paired) positions correspond to particularly dark bands is
better supported by the mapping data. We focus on un-
paired positions because they are rarer than paired posi-
tions.

Each position in the alignment can be assigned a score
(corresponding to the intensity of the band at that posi-
tion), and each structure selects groups of “paired” and
“unpaired” scores from this single overall population of
per-position scores.

In principle, we could calculate the probability of a par-
ticular matrix of intensities from the structure if we knew
enough about the details of the response of chemical map-
ping to specific secondary-structure features. Unfortu-
nately, such data are not readily available. Instead, we re-
duce the dimensionality of the problem by considering the
difference in means between the “paired” and “unpaired”
scores. Even if the underlying distribution of scores is not
normally distributed, the t-test is relatively robust against
violations of this assumption.

Consequently, we calculate the mean and variance of the
overall population of scores. The best structure, then, is the
structure whose unpaired positions have the most different
mean score from the population mean for all possible pairs
of positions (including those not actually asserted to be

paired by any hypothesis). For example, an enzyme like S1
that cleaves unpaired bases has an average rate of cleavage
over all the positions in the molecule: the best structure is
the one whose unpaired positions have the highest cleavage,
which can be compared with the average cleavage over all
positions. The difference between the sample and popula-
tion mean can be assessed using a standard z-test. Here, µ
and � are the population mean and standard deviation, x
and s are the sample mean and standard deviation, and
SEM, the standard error of the mean of a randomly chosen
sample of size n, is �/√n. The most significant distance Dmax

is that for which (x − µ)/SEM is maximized, thereby choos-
ing the best structure Hmax.

Having found the structure Hmax with the best support,
we need to find the conditional probability of each structure
given the data. We expect that the population of scores at
unpaired positions should differ from the overall popula-
tion, in that the structure should choose scores that are
particularly high (or particularly low, depending on the
specificity of the chemical or enzyme) to be unpaired. To
find the probability of the observed scores for each struc-
ture, we can use a standard two-sample t-test to compare
the scores of the unpaired positions in the best structure
and in the structure currently under consideration:

ts =
�x1 − x2�

���n1 − 1�s1
2 + �n2 − 1�s2

2

n1 + n2 − 2
�� 1

n1
+

1

n2
�

(4)

Here, the two samples are the scores for unpaired bases in
the best structure and the currently considered structure: x1

and x2 are the two sample means, n1 and n2 are the two
sample sizes, and s1 and s2 are the two sample standard
deviations (Sokal and Rohlf 1995).

The t-test gives the probability that we would see a mean
as bad as that actually observed for each structure if the
scores for its unpaired bases were drawn from the same
population as the scores for the best structure’s unpaired
bases (whether the bad scores are high or low depends on
whether the chemical or enzyme affects paired or unpaired

TABLE 1. Statistics displayed for evaluating structures and sequences

Displayed on structure diagram

Name Description

% occupied Fraction of sequences that have a base at each position in the sequence alignment
Information Shannon uncertainty (equation 5) at each position in the sequence alignment, subtracted from 2
No. mismatches Number of mismatched pairs in current sequence and structure
Folding energy Energy of current structure folded into current sequence
Best index Identification of the best sequence for each structure, and of the best structure for each sequence, using each of

the criteria for which likelihoods were calculated
Average Average score across sequences and structures for each statistic calculated on combinations of sequences and

structures
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bases). This is equivalent to finding Pr(Dj|Hi) for each
structure.

In the particular case of chemical mapping, the chemical
typically cleaves the sequence at particular bases that are
paired or unpaired, or modifies certain bases in a way that
prevents primer extension. When the RNA is treated, re-
verse-transcribed, end-labeled (often by reverse transcrip-
tion with an end-labeled primer), and run on a sequencing
gel, the intensity of the bands at each position in the se-
quence indicates the extent to which that position was
modified. Table 2 contains a list of specificities for some
widely used modifying agents. Because the efficiency of
modification or cleavage is often base-specific, we normal-
ize the scores for each of the four bases individually (ex-
cluding bases that a particular chemical cannot modify).

For chemical mapping, this method allows far more flex-
ibility than does fixing particular bases as paired or un-
paired after examining the sequencing gel, because it allows
uncertainty in the assignment of paired/unpaired states (in
that we are looking at whether a sample of light or dark
bands is chosen overall, rather than requiring each specific
position to be paired or unpaired). This is important be-
cause the results of chemical mapping can be influenced by
several factors other than the secondary structure (includ-
ing “docking” between loops and helices, and inflexibility in
unpaired regions at close-packed helix junctions).

Per-pair data

Several methods, notably mutual information, provide data
about pairs of positions in an alignment rather than about
individual positions. Our strategy here is similar to that
with per-position data, except that instead of scores for the
l positions in the alignment, there are scores for each of the
l(l − 1)/2 possible combinations of two positions. To evalu-
ate each hypothesis Hi, we need to determine whether the
pairs that make up a particular structure have surprisingly
high or low scores. Specifically, the question is whether the
mean of the sample of all possible pairs that corresponds to
the actual pairs in a structure differs from the expected
mean of a set of the same number of pairs chosen at ran-
dom.

As is the case for per-position data, we are reducing the
dimensionality of the problem by comparing the means of
groups of scores rather than trying to find the probability of
a particular matrix given a structure directly. Again, the
main issue is that the interpretation of the distribution of
individual elements in the matrix is unclear, whereas the
distribution of differences in the means of groups of ele-
ments corresponding to paired and unpaired positions is
both convenient to calculate and straightforward to inter-
pret.

Even if every position in a sequence were paired, there
could only be l/2 pairs, therefore the number of actual pairs
can only be a small fraction of the number of possible pairs.
Again, we calculate the population mean and standard de-
viation for the set of all possible pairs, and choose the struc-
ture whose set of pair scores would be most surprising as a
random sample from the set of possible scores as Hmax,
using the z-test. Each structure is then compared to Hmax

via a two-sample t-test, treating the scores from that struc-
ture and the scores from the best structure as the two
samples. The result is the probability of getting a mean
score as bad as that found in each structure if the true
distribution were the population from which the scores in
the best structure were sampled, which is Pr(Dj|Hi).

We calculate three kinds of per-pair data:

Pair probability

The RNAfold program in the Vienna package (Hofacker et
al. 1994) can provide, for a single sequence, the probability
that each base pairs with each other base in the ensemble of
all possible structures (McCaskill 1990). By averaging these
probabilities across the set of sequences, we get an idea of
how frequently the positions pair across the alignment. The
best-supported structure has pairs with a particularly high
average probability.

Fraction pairable

For any two positions in the alignment, we can ask how
often the bases in the two positions could participate in a
base pair (giving a static estimate of pairing, contrasted with
the dynamic estimate based on the sequence variations pre-
sented in the next section). Here we calculate, for each pair
of positions, the fraction of sequences in which the two
bases are the potential pairs (GC), (CG), (AU), (UA), (GU),
or (UG) rather than some other combination. The best-
supported structure chooses pairs of positions that have
relatively few mismatches across the alignment, that is, a
high probability of being paired.

Mutual information

If two positions are paired, it should be possible to predict
the base in one position from the base in the other. The
mutual information between two positions in an alignment

TABLE 2. Preferences of modifying agents for particular bases and
structure

Probe Specificity

S1 nuclease Any unpaired base
RNase VI Any paired or stacked base
DMS N3-C, N1-A, N7-G (typically unpaired for A and C)
CMCT N3-U, N1-G (typically unpaired)
kethoxal N1-G, N2-G (typically unpaired/unstacked)
Pb2+ Backbone phosphate, any unpaired or flexible base

See Ehresmann et al. (1987) for review. N1, N3, and N7 indicate
particular nitrogen atoms within the base.
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(Gutell et al. 1992) is defined as the difference between the
uncertainty about the two positions taken individually and
the uncertainty about the two positions taken together.

In this case, uncertainty has a specific technical meaning
from information theory: one bit of uncertainty is the same
as the uncertainty about a fair coin toss (or any experiment
that has two equiprobable outcomes). The information
conveyed by a particular position p in a sequence alignment
is the uncertainty H about which character c is present at
that position p in any one of the sequences chosen at random:

Hp = − �
c

Pr �c� log2 Pr �c� (5)

As an example of mutual information, suppose position p in
an alignment is observed to be only A or C, and position q
is only G or U. If p and q are not paired with each other,
then the state of p should be independent of the state of q:
In other words, if q is G, p should have equal chances of
being A or C, leading to a low mutual information score. In
contrast, if p and q are paired, we might expect p to be A
whenever q is U, and to be C whenever q is G, leading to a
high mutual information score. Thus, the formula for the
mutual information Mp,q between two positions p and q is:

Mp,q = Hp + Hq − Hp,q (6)

Here, Hp,q is calculated as for Hp only with 16 possible
characters instead of four, excluding gaps (Eddy and
Durbin 1994). A high mutual information score thus indi-
cates that there is greater uncertainty when examining two
positions individually than when examining them together,
as would be the case when two positions must pair (allow-
ing only six possibilities instead of 16). The best-supported
structure thus chooses pairs of positions with surprisingly
high mutual information scores.

RESULTS

Here we present information about the speed and accuracy
of BayesFold, along with an example of its use to analyze a
real data set. For the tests, we use the well-known structure
of tRNAPhe for speed measurements, because there is a large
alignment of related sequence and the true structure has
been determined by crystallography to 1.93 Å (Shi and
Moore 2000). tRNAs are also about the same size as the
sequences typically recovered by SELEX. The negative effect
of modified bases on thermodynamic folding for tRNAs is
well known in the computational RNA community, and we
expect that comparative methods such as those used by
BayesFold will greatly improve accuracy when multiple se-
quences are considered.

For the example demonstrating how to use the BayesFold
client, we examine a set of recently selected isoleucine
aptamers (Lozupone et al. 2003).

Performance tests

We tested BayesFold’s performance on an alignment of the
86 known bacterial phenylalanine tRNAs, downloaded from
the tRNA Database (Sprinzl et al. 1998) on August 11, 2003.
We were primarily interested in the speed and accuracy of
folding as the number of sequences increases.

Table 3 shows the effects on the speed and accuracy of
using random samples of different sizes chosen from the full
set of 86 tRNAs. The number of sequences chosen (first
column) varies from 1 to 80, with “V” representing the
results from the RNAsubopt program in the Vienna pack-
age using an energy window of 2 kcal/mole and with the -s
option to sort structures by minimum free energy.

The time taken (second column), in CPU seconds on a
1.7-GHz Pentium 4 processor, scales linearly with the num-
ber of sequences, ranging from 0.81 sec for a single se-
quence up to 31 sec for the full alignment of 86 sequences
(not shown in the table). The accuracy (third column) is
displayed in terms of the number of base pairs that differ
between the “best” structure identified by BayesFold (or the
Vienna package for the first row) and the true structure,
measured by counting the number of pairs that must be
broken and formed to change one structure into another.
The accuracy is rather poor for single sequences (rows V
and 1 for RNAsubopt and BayesFold, respectively: the
“best” structure differs by 13.4 and 9.6 bp, respectively).

TABLE 3. Speed and accuracy of BayesFold when used for
tRNAPhe sequences

Number of
sequences

Time
(CPU sec)

Accuracy/
differences

True
structure
found?

Rank of true
structure

V 0.03 13.38 0.56 5.29
1 0.81 9.64 0.48 2.29
2 1.06 3.84 0.8 2.13
3 1.3 1.1 0.94 2.21
4 1.55 0.82 0.98 2.2
5 1.8 0.94 0.98 2.08
6 2.05 0.96 0.98 2.06
7 2.29 0.84 1 1.92
8 2.51 0.84 1 2.06
9 2.86 1.32 1 2.24

10 3.07 0.86 1 2.06
20 6.43 0.96 1 1.96
30 9.8 0.88 1 1.84
40 13.35 1.06 1 1.84
50 17.01 0.84 1 1.94
60 20.75 0.72 1 1.7
70 24.42 0.82 1 1.82
80 28.4 0.96 1 1.84

Each row gives means for 50 independent samples of sequences,
sampling with replacement. In the first column, V indicates the
Vienna package’s RNAsubopt program run on a single sequence,
showing the accuracy of thermodynamic folding alone. Numbers
in the first column indicate the number of randomly chosen
samples in each sample run through BayesFold. See text for full
description.

BayesFold: Rational RNA 2° folds

www.rnajournal.org 1329



However, BayesFold quickly converges on a structure that
differs from the true structure by just one base pair on
average with as few as three sequences in the alignment.
Similarly, the fraction of the time the true structure was
returned in the results at all (column 4) increases rapidly
from about half the time in a single sequence to 98% of the
time with four sequences. For RNAsubopt, the true struc-
ture is quite a long way down the list (fifth to sixth position
on average), whereas with BayesFold the true structure
starts off near the top of the list (at the second or third
position) and slowly improves to between the first and sec-
ond positions by the time about seven to 10 sequences are
aligned.

In the full alignment of tRNAs, we found significant pair-
wise correlations between the conditional probabilities for
different kinds of evidence: r = 0.68 between Mutual Infor-
mation and Pair Probability; r = 0.38 between Mutual In-
formation and Fraction Pairable; and r = 0.46 between
Fraction Pairable and Pair Probability. Although highly sig-
nificant (P < 10−4 in all cases; n = 100 structures), these
correlations are too low to predict one kind of evidence for
a structure from another. Thus the assumption of condi-
tional independence does not hold rigorously. However,
because none of the correlations are negative, the rank or-
der of overall probabilities will not be affected (although the
differences between the probabilities assigned to particu-
larly good or bad structures will be somewhat exaggerated).

Table 4 shows the effects of including or excluding each
of the particular kinds of evidence individually on the num-
ber of base pairs that are different between the best struc-
ture and the true structure (second column) and the rank of
the true structure (third column). In particular, Mutual
Information performed poorly, selecting a structure that
was 7 bp different from the true structure. However, either
including Pair Probability along with Mutual Information
or combining Pair Probability with Fraction Pairable raised
the true structure to second or third (in general, Mutual
Information provided the least improvement in accuracy
throughout our tests). This example shows that two of the

three kinds of information are often sufficient, but that
including more kinds of information allows the true struc-
ture to be found more reliably.

We also characterized the time taken on different pro-
cessors and operating systems as shown in Figure 2. We
tested the speed on the tRNA alignment and on an align-
ment of 5S bacterial sequences on two Dell machines with
Pentium 4 processors running at 1.7 and 2.6 GHz under
Mandrake Linux 9.2, and on an Apple PowerBook G4
with a 1.5-GHz processor under MacOS X 10.3. The
time taken was roughly linear in the number of sequences.
Longer sequences take disproportionately longer times to
process.

To test the robustness of BayesFold’s results, we tested
two additional data sets. The first of these data sets was the
manually aligned Sprinzl genomic tRNA database (Sprinzl
et al. 1998), from which we extracted 5923 tRNA sequences
(excluding sequences containing non-IUPAC symbols)
falling into 61 families with at least 10 well-aligned se-
quences each (the 20 canonical amino acids in each of Eu-
karyota, Bacteria, and Archaea, plus bacteral tRNAfMet).
Each sequence is annotated with its secondary structure.
These sequences were downloaded from http://www.uni-
bayreuth.de/departments/biochemie/trna/. The second data
set was the 5S Ribosomal RNA database (Szymanski et al.
2002), from which we extracted 463 bacterial sequences and
58 archaeal sequences (again, excluding sequences contain-
ing non-IUPAC symbols). These sequences were down-
loaded from http://biobases.ibch.poznan.pl/5SData/. All se-
quences were downloaded on May 5, 2004.

TABLE 4. Contribution of each kind of information to the overall
Best Result

PP MI FP Difference Rank

+ + + 1 2
+ + 7 3

+ + 1 2
+ + 1 2
+ 1 2

+ 7 7
+ 1 3

(PP) Pair Probability, (MI) Mutual Information, (FP) Fraction Pair-
able. Results are shown for all three ways of leaving out one of
these kinds of information, and for the three kinds of information
individually.

FIGURE 2. Performance of BayesFold on different processors. We
tested BayesFold on bacterial 5S rRNA sequences, alignment length
120 nt, on 1.7 GHz and 2.6 GHz Pentium 4 machines (Dell) running
Mandrake Linux 9.2 (triangles and circles, respectively), and on a
1.5-GHz PowerPC G4 machine (Apple) running MacOS X 10.3
(squares); we also tested tRNAPhe sequences, alignment length 79 nt,
on the 1.7 GHz P4 (crosses). The time taken (Y-axis) was approxi-
mately linear in the number of sequences (X-axis), and at least cubic
in the length of the sequences (as expected from the dependence on
the dynamic programming algorithm used by the Vienna package for
the thermodynamic calculations). The point at zero sequences gives
the figure for single-sequence folds with the Vienna package alone.
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BayesFold performed well on most tRNA families when
given as few as five sequences. On average, the minimum
free energy structure of individual sequences as estimated
by RNAfold differed from the annotated structure by 13.2
bp. The structure BayesFold picked as the most probable
differed by 7.6 bp when given two sequences from a family,
5.2 when given five, and levels out with 4.0 at 40 sequences.
With as few as five sequences from each family, BayesFold’s
preferred structure was within 1 bp of the true structure 3%
of the time, within 2 bp 23% of the time, and within 5 bp
55% of the time, and always within 20 bp. In contrast,
RNAsubopt’s minimum free energy structure was within 5
bp of the true structure only 4.9% of the time, and was >20
bp different almost 20% of the time. These results are the
mean of 50 trials for each number of sequences (1 to 10 in
steps of one, and 15 to 50 in steps of five) for each sequence
family.

For the tRNA families, there was no significant correla-
tion between the average base pair difference from the true
structure and any of the following: mean similarity between
pairs of sequences (ranging from 62% to 83% of positions
identical, mean 74%), number of sequences in the family
(14 to 476 sequences, mean 97), average energy of the mini-
mum free energy structure for each sequence (−42.6 to
−29.2 kcal/mole, mean 29.2), or fraction of the alignment
consisting of gaps (3.1% to 22%, mean
8.8%). The two variables that had a
large effect on the base pair difference
were the mean energy of the annotated
structure on each sequence (−32.9 to
−1.2 kcal/mole, mean −22.5: correlated
with the mean number of differences at
25 sequences, r2 = 0.25, P = 3.5 × 10−5)
and the mean difference between the en-
ergy of the minimum free energy struc-
ture and the annotated structure (0.45
to 24.4 kcal/mole, mean 6.8: correlated
with the mean number of differences at
25 sequences, r2 = 0.52, P = 4.3 × 10−11).
The effect of this latter relationship is
shown for the Vienna package and for
BayesFold (using samples of five se-
quences) in Figure 3.

To test whether the manual align-
ments we used from the Sprinzl data-
base had an undue effect on the results,
we tested the CLUSTALW alignment of
the tRNAPhe sequences after removing
all gaps. This alignment was performed
using the default parameters, and results
were within sampling error of those pre-
sented above for the manually aligned
sequences (data not shown).

The second test we performed exam-
ined BayesFold’s performance on 5S

rRNA, which is substantially longer than tRNA (120 vs. 74
bases on average). Although annotated structures were pro-
vided by the 5S rRNA database, these structures fit many of
the individual sequences poorly. In particular, stems of in-
dividual sequences often extended into regions annotated as
unpaired in the database, and individual sequences contained
various bulges, gaps, and broken base pairs. Consequently,
BayesFold’s assumption that all the sequences fold into the
same structure was unlikely to be correct, and the results
illustrate the effects of imperfections in this assumption.

To reduce these effects, we started with the known crystal
structures of 5S rRNA from Haloarcula marismortui (Ban et
al. 2000), Thermus thermophilus (Yusupov et al. 2001), and
Deinococcus radiodurans (Harms et al. 2001). Although our
initial intention was to examine sequences at increasing
distances from known crystal structures, none of these char-
acterized sequences had many close relatives in the data-
base. For example, only three other sequences in the data-
base were at least 80% identical to the Thermus sequence,
providing insufficient data for the tests. However, 96 se-
quences were between 75% and 80% identical, 237 were
between 70% and 75%, 93 were between 65% and 70%, and
28 were between 60% and 65%.

To our surprise, BayesFold still performed relatively well
even on these highly divergent sequences. For the group of

FIGURE 3. Correlation between accuracy and free energy difference. Differences between the
predicted structure and the true structure (Y-axis) were significantly larger for both BayesFold
(closed circles, five sequences) and for the Vienna package’s RNAfold program (open circles)
when the difference in energy between the annotated structure and the minimum free energy
structure (X-axis) was large. However, at all levels of energy difference, BayesFold’s predictions
with five sequences were much closer to the true structure than were the Vienna package’s
single-sequence predictions. Note that these predictions use only the sequence data; further
improvements would be possible if chemical mapping data were included. Interestingly,
RNAfold performs poorly even in cases in which the true structure is very close in energy to
the minimum free energy structure. The results shown are for the mean of 50 samples of
sequences from each of the 61 tRNA families.
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sequences that were at least 75% identical, BayesFold re-
duced the average error from 31.5 bp to 11.6 bp with
samples of 35 sequences. With only 10 sequences, the error
was still reduced substantially (to 26.6 bp) when compared
with single-sequence folds. For more divergent sequences,
more sequences were required to approach the true struc-
ture, although we observed substantial improvements in
accuracy as more sequences were added for all but the most
divergent set (Fig. 4). Results are the mean of 50 random
samples. We show only the results for Thermus, but the
results for the other two species are similar.

Usage example

Finally, we demonstrate how to use the BayesFold interface
and illustrate real output. For this task, we use an alignment
of isoleucine aptamers (Fig. 5; Lozupone et al. 2003). This
alignment was obtained with CLUSTALW (Thompson et al.
1994) after removing primers from each sequence. In this
example, as is typical, the sequences fall into several families
derived from distinct ancestral sequences in the starting
pool. Because BayesFold assumes that all the sequences in
the input have identical overall structures, and because the
underlying Vienna package that generates the structural hy-
potheses deals poorly with gaps, we manually remove any
columns of gaps from each individual family and choose a
single family to fold (Fig. 5B).

The BayesFold input page (Fig. 5C) provides areas to
paste in the primers and sequences, and allows the user to
enter a folding temperature and a name for the alignment.
Sequences can be entered in FASTA format (with separate

label and sequence lines), or one per line with labels sepa-
rated from the sequence by spaces and/or tabs. Clicking
“Validate” checks that the sequences are in the right format.
If the sequences are valid, the user can click “Continue.”

On the next two screens (not shown), the user can cor-
rect any mistakes in the labels and/or sequences and enter
any chemical mapping data. Chemical mapping can be en-
tered as a list of numbers on any arbitrary scale, with larger
numbers indicating darker bands. BayesFold knows about
the specificities of common chemicals and enzymes, and
treats each base separately to account for differences in
efficiency in modification or cleavage; it will ignore data for
bases that the chemical is not supposed to modify. Chemical
mapping data can be provided for multiple chemicals and
sequences, even if the results for some chemicals and se-
quences conflict with each other. A wait page is displayed
after the data are submitted to the server, which checks for
results every 30 sec and indicates how long the process has
taken.

When the calculations are finished, BayesFold shows the
consensus sequence (using the IUPAC degenerate symbols)
folded into the overall best structure (Fig. 5D). Any se-
quence can be displayed in any structure by selecting a
different sequence or structure from the pull-down menus;
the structures are ranked by overall probability, with the
most probable structure at the top. Because the structure is
drawn in SVG, the user can zoom in or out by right-clicking
on the picture and selecting the appropriate option from
the context menu. The picture can be moved around by
holding down the Alt key and dragging. The structure can
also be rotated by clicking and dragging anywhere in the
drawing area. Bases and position labels will automatically
snap upright when the rotation is complete.

The drawing can be formatted in many ways (Fig. 5E) by
expanding the formatting palette at the left-hand side of the
drawing area. BayesFold can color bases using criteria in-
volved in calculating the best structure, such as mismatches
and mutual information, as well as user-selected motifs.
Here we see the two parts of the minimal Ile-binding motif
highlighted on the structure. Additional options include the
ability to add nucleotide numbering, change the font size or
style, or show or hide the backbone, base labels, or pair
connectors. The formatting is maintained when a new se-
quence is chosen, but must be reapplied for a new structure
by clicking the refresh button next to the text representation
of the current structure.

Finally, tables displaying detailed information for par-
ticular sequences and structures can be evaluated (Fig. 5F)
by clicking “Show” for the sequence data or the structure
data. By default, the structure table displays the name, rank,
overall probability for each structure, and the Vienna-for-
mat structure (in dot-bracket notation, where each open
parenthesis corresponds to the upstream base of a pair, and
each closed parenthesis corresponds to the downstream
partner in the last pair opened). The sequence table is simi-

FIGURE 4. BayesFold’s accuracy on 5S rRNA sequences. Effect of the
number of sequences (X-axis) on accuracy (Y-axis, measured as the
number of base pairs different between the inferred structure and the
crystal structure of Thermus thermophilus 5S rRNA, counting only
Watson-Crick and wobble pairs). Each point is the mean of 50
samples. The four series refer to random samples of 5S rRNAs that are
at least x% identical in sequence to the T. thermophilus 5S sequence,
where x is 25%, 30%, 35%, or 40%. The point at 0 sequences refers to
individual sequence folding using the RNAfold program from the
Vienna package.
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lar, except that individual sequences do not have probabili-
ties, thus this column is omitted. However, by expanding
the info palettes at the left-hand side of the sequence and
structure alignments, detailed information about any of the
types of evidence is available. This includes the raw score,
average, best index, and Pr(D|H) for each type of evidence;
the best index is the sequence (structure) for which the

current structure (sequence) has the
best score. The table can be sorted by
any column by clicking on the title
(click again to sort in the other direc-
tion), making it very easy to see which
structures a particular type of evidence
best supports. Of particular interest are
the folding energy, which shows the en-
ergy of each of the sequences folded into
each of the structures, and the number
of mismatches, which shows how many
base pairs in each structure could not
form correctly in each sequence.

The current probability is particularly
important, because it shows the prob-
ability, given whatever data are currently
visible, that each structure is the true
structure. Large differences in probabil-
ity (twofold or greater) suggest that one
structure is much more probable than
another, or, in other words, that the
data provided distinguished the struc-
tures. Small differences (e.g., in the sec-
ond or third decimal place) mean that
the structures are about equally likely,
or, in other words, that additional data
are needed for a rational choice among
the Hi. In general, very similar struc-
tures that differ by only 1 or 2 bp have
similar probabilities, because there is
little evidence to discriminate between
them. In the table shown in Figure 5F,
for instance, the displayed structures are
almost identical, and their probabilities
are correspondingly similar. In this case,
the second structure (Fig. 5F) seems
somewhat more reasonable than the
best structure (Fig. 5E), even though its
probability score is a little lower. How-
ever, if the second structure had instead
been assigned a very low probability
(e.g., 0.001), we should be far more
skeptical about the possibility that it
might be the true structure. Notably, in
the performance section above, we show
that BayesFold actually yields better ac-
curacy on average than thermodynamic
folding (Table 3), even though it often

fails to form obvious pairs at the ends of stems (see Dis-
cussion).

DISCUSSION

We have demonstated that BayesFold performs well on
short, functional RNA sequences such as tRNAs, and that

FIGURE 5. Using BayesFold to fold aligned sequences. (A) Identify sequence families with an
alignment program such as CLUSTAL or Pileup, aligning without primers. (B) Remove col-
umns of gaps from each family. (C) Paste the sequences into BayesFold, entering the primers
in the appropriate fields. Chemical mapping data can be added as an additional step. (D)
Default view after folding the sequences. The IUPAC consensus sequence is shown, folded into
the overall best structure. (E) Format the sequence. Here, we show motifs highlighted on the
sequence, but other coloring options for bases and pairs can be selected from the formatting
palette menus. The sequence can be scaled, moved, and rotated within the browser. Alternative
sequences and structures can be selected from the sequence and structure pull-down menus.
(F) Display the alignments and data tables. Clicking the Sequences and Structures buttons
displays the sequence and structure information, respectively. It is possible to view the se-
quences and/or structures, the current probability (taking into account just the types of data
currently selected for display in the table), the conditional probabilities for each type of
evidence, and the ranks, averages, and raw scores for additional kinds of information such as
energy and mismatches (the number of mismatches and the energy when each sequence is
folded into each structure).
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the program itself makes it easy to analyze and output RNA
secondary structures. Here we elaborate on some specific
points about BayesFold’s performance, accuracy, and usability.

BayesFold assigns each structure a probability score. Be-
cause the different types of data are not entirely indepen-
dent, the probabilities assigned to the best structures will be
higher, and those assigned to the worst structures lower,
than they should ideally be. However, these numbers can
still be treated as probabilities: a structure with twice the
score of another structure really should be twice as likely,
and probabilities can be summed over a family of similar
structures if desired. Conversely, when two structures have
almost the same probability (common for structures that
differ by a single base pair), there is little evidence to choose
one over the other and they should be treated in further
work as equally likely. These combining properties of the
probabilities make BayesFold’s results much easier to inter-
pret than arbitrary scores or weightings.

Although the different types of data provide conditional
probabilities that are correlated with one another, they of-
ten select completely different structures when applied in-
dividually or in pairwise combination. The strategy of com-
bining multiple forms of data with a sound probabilistic
approach seems to produce especially reliable folds, with the
true structure often appearing in the top three under a wide
range of conditions.

BayesFold tends to choose structures with fewer, better-
supported pairs rather than more, less-well-supported pairs.
This tendency can lead to decisions that seem surprising,
such as failure to close the last pair in a loop when the bases
are compatible. The reason for this outcome is that Bayes-
Fold finds structures with the best average support for each
base pair, rather than (for example) the best sum of folding
energies across base pairs. We expect that adding other
types of data (such as the compositions of paired and un-
paired regions of RNAs with known structure) will resolve
this issue. However, as Table 3 shows, BayesFold already
does better on average than using a thermodynamic folding
package to fold individual sequences.

The principal assumption that BayesFold makes is that all
of the sequences in the alignment fold into the same overall
structure. Owing to this assumption, folding a small align-
ment of definitively similar sequences is better than folding
a larger alignment of less closely related sequences, espe-
cially if it is not certain that all sequences share the same
global fold. Fortunately, BayesFold’s accuracy is good even
on small alignments, making it suitable both for SELEX and
for orthologous sequences from related species. For biologi-
cal sequences, however, it should be noted that BayesFold
ignores phylogenetic considerations, and thus uses some-
what less data than is potentially available. We plan to add
support for phylogeny in a future version.

BayesFold runs almost instantly on alignments of few,
short sequences (e.g., 3 sec on 10 tRNA sequences). Appar-
ently, good information is obtained from even three or four

sequences, and almost all of the power is obtained from the
first 10 sequences. Thus, folding a large sequence alignment
all at once is typically unnecessary. A better approach would
be to choose small samples randomly from the large align-
ment and to check that the results agree. Analysis of se-
quences isolated from SELEX is improved greatly by folding
those sequences that are obviously derived from a common
ancestor and excluding unrelated sequences, because Bayes-
Fold will always return a list of structures even with random
sequences. Because of the way the underlying Vienna pack-
age handles gaps and degenerate bases (essentially, as bases
that never pair and do not contribute to stacking interac-
tions), any columns composed only of gaps should be re-
moved from the alignment before folding. Sequences with
many degenerate bases or gaps should also be excluded.
However, good results can typically be obtained with one to
five gaps or degenerate bases per sequence if they are in
different places in different sequences.

The tRNA results demonstrate that BayesFold robustly
finds structures that are much closer to the true structure
than single-sequence folding. In particular, the relationship
between the minimum free energy difference and the accu-
racy of the fold presented in Figure 3 shows that BayesFold
can use other forms of information to overcome and correct
energy differences of several kilocalories per mole, which
corresponds to several thousandfold in the predicted abun-
dance at equilibrium. Manual examination of some of the
sequences that had very high energies when folded into the
annotated structure suggested that these structures are often
incorrect (e.g., potential Watson-Crick pairs within stems
were marked as unpaired bases), suggesting that BayesFold’s
ability to find the true structure may be even better than
these results suggest. Excluding families of sequences for
which the energy of the annotated structure was anomalous
(>−20 kcal/mole) reduced the difference between Bayes-
Fold’s best structure and the true structure by ∼1 bp for a
given number of sequences.

Because BayesFold uses RNAsubopt to generate candi-
date structures, BayesFold’s performance is bounded by the
performance of RNAsubopt (linear in the number of se-
quences, and cubic in the length of each sequence). In other
words, longer sequences take disproportionate amounts of
time to fold. For instance, it might take several days of CPU
time to analyze an alignment of LSU rRNA sequences. This
limits BayesFold’s utility for longer sequence alignments;
however, these initial folding calculations could potentially
be performed in parallel over a cluster, because the results
are independent for each sequence. We are investigating
clustering approaches that would allow us to fold even long
mRNA sequences. On our own server, we limit BayesFold
to alignments up to 150 nt to minimize CPU load for each
alignment, but it is capable of folding much longer align-
ments if installed locally.

BayesFold’s ability to fold multiple sequences at once
makes exploratory analysis much easier than in programs
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that return results for each structure individually. In par-
ticular, BayesFold allows visualization of sequence folded
into any of the possible structures. In practice, we find that
the mismatch and motif base colorings are surprisingly use-
ful for exploring the various structures: the mismatches
show at a glance if the sequence and structure are compat-
ible (this is important for finding out whether a particular
sequence does not really belong in the alignment), and the
motifs make it easy to check whether the conserved se-
quences are typically treated in the same way in most of the
plausible structures.

Compared with other programs that fold multiple se-
quences, BayesFold’s main advantages are that it can handle
complex secondary structures (albeit excluding pseudo-
knots), does not require the user to choose parameters
such as arbitrary weightings or motif lengths at the begin-
ning of the process, allows fine-grained control of the types
of data that are included in the final result, and provides
a convenient interface for exploring the results both gra-
phically and numerically. Also, BayesFold runs quickly:
whereas FoldAlign took >30 min to analyze a sample of 10
tRNAPhe sequences using the default parameters and found
only a single stem–loop, BayesFold processed the same
alignment in <3 sec and chose a structure that differed from
the true structure by only 1 bp.

Although BayesFold’s current performance is good, fur-
ther improvements may be possible by avoiding the reduc-
tion of the problem space and of the dimensionality of the
data that it currently performs. In particular, if the true
structure is not in the list of candidate structures, BayesFold
cannot find it. To address this issue, we are exploring tech-
niques that would allow us to work in the full problem
space of all possible secondary structures. Reducing the di-
mensionality of the data (by considering means of scores for
groups of base pairs rather than considering the full matrix
of scores) allows BayesFold to run rapidly, but at the same
time may discard additional information contained in the
data matrix. It is possible that using alternative dimension-
ality reduction methods, or using techniques such as
MCMC (Markov Chain Monte Carlo) on the full data ma-
trices, could improve accuracy at the expense of speed.
Consideration of the full folding space and the full data
matrices remains a challenging problem.

We are exploring several specific directions for improv-
ing BayesFold. Perhaps most importantly, we hope to use
the same method to test hypotheses about local, rather than
global, structures. This could potentially find combinations
of sequence and structure motifs in unaligned sequences,
possibly even including pseudoknots. We plan to extend the
GUI to allow interactive manipulation of selected bases,
loops, and helices, including coloring and rotation. Addi-
tionally, the GUI should provide a way of selecting local
structures and/or a subset of the initial alignment for re-
folding and further analysis. Finally, there is an increasingly
large data set of known RNA secondary and 3D structures.

We plan to use this existing knowledge base to further re-
fine the secondary-structure predictions.

Conclusions

BayesFold seems a significant advance over other tools for
exploring RNA secondary structure, because it makes it
convenient to view any sequence folded into any structure
and provides a simple, probabilistic basis for assessing the
plausibility of different structures. Additionally, BayesFold
is free to install and use, convenient to try out over the Web,
and produces publication-quality graphics. We hope that
this combination of features will assist researchers in the
field and accelerate the pace of discovery by reducing the
effort currently associated with finding RNA secondary
structures.
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