REPORT

RNA polymerase Il synthesizes antisense RNA
in Plasmodium falciparum
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ABSTRACT

The recent identification of antisense RNA in the transcriptomes of many eukaryotes has generated enormous interest. The
presence of antisense RNA in Plasmodium falciparum, the causative agent of severe malaria, remains controversial. Elucidation
of the mechanism of antisense RNA in P. falciparum synthesis is critical in order to demonstrate the origin and function of these
transcripts. Therefore, a systematic analysis of antisense and sense RNA synthesis was performed using direct labeling experi-
ments. Nuclear run on experiments with single-stranded DNA probes demonstrated that antisense RNA is synthesized in the
nucleus at several genomic loci. Antisense RNA synthesis is sensitive to the potent RNA polymerase Il inhibitor a-amanitin.
Antisense and sense transcription was also detected in nuclei isolated from synchronized parasites, suggesting concurrent
synthesis. In summary, our experiments directly demonstrate that antisense RNA synthesis is a common transcriptional phe-

nomenon in P. falciparum, and is catalyzed by RNA polymerase II.
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INTRODUCTION

Antisense RNA was originally described in bacteria, where it
modulates numerous processes through base-pairing in-
cluding gene expression and plasmid replication (Carpousis
2003). The presence of antisense RNA in eukaryotic tran-
scriptomes is a relatively recent discovery. Antisense RNA
has been found in humans (Lehner et al. 2002; Shendure
and Church 2002; Yelin et al. 2003; Rosok and Sioud 2004),
mice (Okazaki et al. 2002), plants (Osato et al. 2003), and
protozoan parasites (Elmendorf et al. 2001; Patankar et al.
2001; Martinez-Calvillo et al. 2003; Gunasekera et al. 2004;
Monnerat et al. 2004). However, the precise role of anti-
sense RNA in eukaryotes is not well defined.

Previously, serial analysis of gene expression (SAGE) was
utilized to characterize the transcriptome of Plasmodium
falciparum (Patankar et al. 2001; Gunasekera et al. 2004).
This protozoan parasite is the causative agent of severe hu-
man malaria, and is responsible for 1-3 million deaths an-
nually (Breman 2001). The SAGE and other experiments
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strongly suggested that antisense RNAs are quite common
in the P. falciparum transcriptome, and constitute ~12% of
the erythrocytic-stage steady-state RNA (Kyes et al. 2002;
Gunasekera et al. 2004). However, the model of widespread
antisense RNA in this organism has been controversial, as
direct detection of most of these RNAs has not been re-
ported (Patankar et al. 2001; Kyes et al. 2002; Gunasekera et
al. 2004). Furthermore, the mechanism of antisense RNA
synthesis is unknown. One model explaining the generation
of antisense RNA in P. falciparum is that both strands of
the P. falciparum genomic DNA are transcribed by DNA-
dependent RNA polymerases to generate complementary
sense and antisense transcripts. Alternatively, RNA-depen-
dent RNA polymerases may synthesize antisense RNA as a
part of an endogenous RNA interference pathway or an-
other undefined process (Ahlquist 2002). Thus, in this
study, direct RNA labeling experiments were utilized to test
the model of widespread antisense RNA synthesis in P. fal-
ciparum and reveal the location and mechanism of their
synthesis. This is the first study to directly analyze antisense
RNA synthesis at numerous loci in the malaria parasite.

RESULTS AND DISCUSSION

Initially, the location of RNA polymerase activity in parasite
extracts was determined. Whole cell extracts from asyn-
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chronous, erythrocytic-stage parasites were prepared and
tested in an RNA polymerase assay. Robust RNA polymer-
ase activity was detected in whole cell extracts (Fig. 1A), but
not in uninfected red blood cell extracts (data not shown).
This RNA synthesis activity is the product of transcription,
since [@->*P]UTP will not label RNA generated by nontran-
scriptional RNA processes such as polyadenylation and
tRNA CCA addition. In order to determine the subcellular
localization of this activity, extracts were further separated
into both nuclear (insoluble) and cytoplasmic (soluble)
fractions by low-speed centrifugation, and were tested for
RNA polymerase activity. Cytoplasmic fractions contained
no detectable RNA polymerase activity, whereas nuclear
fractions contained robust (>99%) polymerase activity.
These experiments demonstrate that most, if not all, tran-
scription occurs in an insoluble compartment, which is
most likely to be the nucleus.

In order to determine whether RNA synthesis is depen-
dent on a DNA template, reactions containing nuclear frac-
tions were incubated with actinomycin D, a known DNA-
intercalating agent that inhibits transcription of DNA-de-
pendent, but not RNA-dependent RNA polymerases (Reich
et al. 1961; Baltimore et al. 1970; White and Wang 1990;
Schiebel et al. 1993; Goodin et al. 1997). RNA synthesis in
nuclear fractions was strongly inhibited by actinomycin D
in a dose-dependent manner, and little RNA synthesis was
observed in reactions containing high levels (50 pg/mL) of
actinomycin D (Fig. 1B). Actinomycin D treatment also
inhibited RNA synthesis in whole cell extracts (data not
shown). These experiments implicate DNA-dependent
RNA polymerases, and not RNA-dependent RNA polymer-
ases, in transcriptional activity in P. falciparum.

Since the majority of the RNA polymerase activity was
found in the nuclear fraction, we hypothesized that both
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FIGURE 1. RNA polymerase activity in P. falciparum fractions.
(A) RNA polymerase activity in parasite whole cell, nuclear, and cy-
toplasmic fractions. (B) Parasite nuclear fractions were incubated with
different concentrations of actinomycin D for 15 min before the ad-
dition of labeling mix and the measurement of RNA polymerase ac-
tivity. The amount of incorporation in a reaction without fraction was
subtracted from each sample. The activity in the whole cell extract (A)
or the fraction not subject to actinomycin D treatment (B) was des-
ignated 100% incorporation. Error bars represent one standard devia-
tion. The error bar for activity in the fractions treated with 50 pg/mL
actinomycin D in B is small, and is not visible.

366 RNA, Vol. 11, No. 4

sense and antisense RNA are synthesized in this compart-
ment. Therefore, nuclear run on experiments were used to
detect synthesis of specific sense and antisense RNAs. Pulse-
labeled RNA from mixed, erythrocytic-stage parasite nuclei
was generated, isolated, and hybridized to filters containing
M13-generated single-stranded DNA. After hybridization,
the filters were treated with RNase A to ensure maximal
specificity. The genes encoding merozoite surface protein 3
(msp3), calmodulin (cal), and ribosomal protein L36
(rpL36) were analyzed, as steady-state antisense RNAs were
originally detected from these loci by SAGE (Patankar et al.
2001). The heat shock protein 86 (hsp86) locus was also
analyzed, as steady-state antisense transcripts were not pre-
viously detected (Patankar et al. 2001). Transcription of a
hypothetical gene (Pfhypo), rhoptry-associated protein 1
(rapl), and knob-associated histidine-rich protein (kahrp)
genes were analyzed as examples of developmentally regu-
lated sense transcripts. The A-type 18S ribosomal RNA
(rRNA) locus was analyzed as an example of a non-protein-
coding gene. Steady-state sense transcripts for these genes
are found in asexual, erythrocytic-stage parasites (Bozdech
et al. 2003; Le Roch et al. 2003).

As expected, synthesis of sense RNA from all loci was
observed (Fig. 2A). Interestingly, antisense RNA synthesis
was detected at the msp3, hsp86, cal, Pthypo, rap1, and kahrp
loci, but not typically the rpL36 locus. Antisense transcrip-
tion at the hsp86 locus was unexpected, as stable antisense
hsp86 transcripts were not found by SAGE (Patankar et al.
2001). The level of antisense 18S rRNA transcription was
low, but detectable. There was no hybridization to the
pPCR2.1-topo vector and yeast leucine DNA, indicating spe-
cific hybridization. Since the single-stranded DNA targets
were designed to differentiate between antisense and sense
RNA transcripts, it was imperative to demonstrate that the
single-stranded DNA was not contaminated with M13 rep-
licative form (double-stranded) DNA. As expected, the M13
forward primer, but not the M13 reverse primer, was able to
hybridize to the single-stranded DNA in a Southern blot
(Fig. 2B). The single-stranded DNAs were >99.4% pure
with respect to contamination with the complementary
strand. Both primers were able to hybridize to a double-
stranded msp3 PCR product generated with these primers,
indicating these probes were functional. Thus, these experi-
ments directly demonstrate that antisense RNA is synthe-
sized in nuclear fractions, and is more common than origi-
nally expected.

For most loci, there was more sense transcription than
antisense transcription. This was clearly observed at the
msp3 locus, where there was 60.5-fold more sense transcrip-
tion than antisense transcription after correcting for thymi-
dine bias and hybridization efficiency. However, at some
loci, the amount of sense transcription was only slightly
greater (kahrp; 4.6-fold) or virtually equivalent (Pthypo; 1.7-
fold) than the level of antisense transcription. Several con-
trol experiments indicated that hybridization intensity to
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FIGURE 2. Synthesis of antisense and sense RNA in P. falciparum
nuclei. (A) Nascent RNA in asynchronous, erythrocytic parasite nuclei
was labeled with [a->*P]UTP in the absence and presence of a-am-
anitin and hybridized to filters containing single-stranded DNA. The
DNAs were leu, yeast leucine biosynthetic gene; msp3, P. falciparum
merozoite surface protein gene; hsp86, P. falciparum heat shock pro-
tein 86 gene; rpL36, P. falciparum ribosomal protein L36 gene; cal, P.
falciparum calmodulin gene; rRNA, P. falciparum 18S rRNA gene;
Pfhypo, P. falciparum hypothetical protein gene; rapl, P. falciparum
rhoptry-associated protein gene; and kahrp, P. falciparum knob-asso-
ciated histidine-rich protein gene. Filters were washed, treated with 10
pg/mL RNase A, and analyzed by phosphorimaging. pCR2.1-topo
(vector) and a plasmid containing the yeast leucine leu gene served as
negative controls for hybridization specificity. Slots labeled (AS) detect
antisense transcripts and contain sense strand target DNA. Slots la-
beled (S) detect sense transcripts and contain antisense target DNA.
(B) Single-stranded DNA was analyzed by Southern blotting with
either a 5" [**P] end-labeled M13 reverse or forward primer. S. sperm
denotes salmon sperm DNA, and msp3(ds) denotes a double-stranded
msp3 PCR product containing M13 reverse and forward binding sites.
Filters were washed and analyzed by phosphorimaging. The M13 re-
verse primer is not complementary to the single-stranded DNA gen-
erated, and is not predicted to hybridize.

specific probes was proportional to transcription. Dilution
of the radiolabeled RNA probe proportionally reduced hy-
bridization intensity to all targets except that detecting sense
rRNA, indicating the hybridization signals are in the linear
range (data not shown). The lengths of the probes used to
detect antisense and sense RNA were identical for each
gene. Also, the hybridization efficiency of double-stranded
DNA to cognate antisense and sense targets only varied by
threefold or less, indicating little to no strand hybridization
bias (data not shown).

In order to determine the polymerase responsible for
antisense and sense RNA synthesis, nuclear run on experi-
ments were performed in the presence of a-amanitin. Typi-
cally, eukaryotic RNA polymerase II is extremely sensitive
to a-amanitin, whereas RNA polymerase I and RNA-de-
pendent RNA polymerases are not sensitive to this toxin
(Lindell et al. 1970; Adman et al. 1972; White and Wang

1990; Schiebel et al. 1993; Goodin et al. 1997). a-Amanitin
does inhibit some RNA polymerase III enzymes, but only at
high concentrations (Lindell et al. 1970; Weil and Blatti
1975). Synthesis of sense 18S rRNA in P. falciparum nuclei
is resistant to o-amanitin as previously demonstrated
(Fig. 2A; Lanzer et al. 1992a,b). This observation is con-
sistent with classic RNA polymerase I-mediated transcrip-
tion of large ribosomal RNAs. Synthesis of both antisense
and sense RNA from all protein-coding genes was sensitive
to a-amanitin. This strongly suggests that both antisense
and sense RNA synthesis at protein-coding loci is catalyzed
by RNA polymerase II, consistent with an actinomycin D-
sensitive RNA polymerase (Fig. 1B). These data are not
consistent with RNA polymerase I or RNA-dependent
RNA-polymerase-mediated synthesis of antisense RNA, al-
though other a-amanitin-sensitive enzymes cannot be
eliminated. RNA-dependent RNA polymerase activity in
P. falciparum extracts was not detected using specific bio-
chemical assays (White and Wang 1990), and no obvious
RNA-dependent RNA polymerase homolog was found in
the P. falciparum genome (data not shown). Therefore, our
model is that RNA polymerase II synthesizes antisense and
sense RNA at protein-coding loci in P. falciparum. Genes
encoding the 12 subunits of eukaryotic RNA polymerase II
have been identified in the P. falciparum genome (Coulson
et al. 2004), suggesting the presence of a typical eukaryotic
core enzyme.

Our data suggest that in P. falciparum nuclei, both the
template and nontemplate strands of genomic DNA are
transcribed by RNA polymerase II. These results provide an
explanation for the high levels of steady-state antisense
RNA found in asexual, erythrocytic parasites (Patankar et
al. 2001; Gunasekera et al. 2004). Since many different loci
have been shown to encode antisense RNA in P. falciparum
(Patankar et al. 2001; Kyes et al. 2002; Gunasekera et al.
2004; this work), it is likely that antisense transcription
of the P. falciparum genome is widespread. Indeed, wide-
spread antisense transcription has been observed in humans
(Lehner et al. 2002; Shendure and Church 2002; Yelin et al.
2003; Rosok and Sioud 2004), mice (Okazaki et al. 2002),
plants (Osato et al. 2003), and protozoan parasites (Elmen-
dorf et al. 2001; Patankar et al. 2001; Martinez-Calvillo et al.
2003; Gunasekera et al. 2004; Monnerat et al. 2004).

We favor a mechanism in which the chromatin context of
each locus assumes a critical role in sense and antisense
RNA generation (open chromatin model). Interestingly, ad-
jacent sets of developmentally regulated genes on opposite
strands have been identified in P. falciparum and suggest
large regions of chromosomal DNA are simultaneously ac-
tivated (Florens et al. 2002; Le Roch et al. 2003). Perhaps
during activation of large or even small genomic regions,
both the template and nontemplate strands are competent
for transcription. It is therefore possible that the same RNA
polymerase could be used for sense and antisense RNA syn-
thesis. This prediction is consistent with the inhibition of
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sense and antisense RNA synthesis by a-amanitin (Fig. 2A).
Thus, RNA polymerase II in P. falciparum would not have
the absolute ability to distinguish between strands. This
model suggests that sense and antisense transcription oc-
curs either simultaneously, or at least in the same life-cycle
stage. In support of the open chromatin model, sense and
antisense transcription was detected in synchronized, schiz-
ont-stage parasites (Fig. 3). This suggests that antisense and
sense transcription could occur simultaneously, and is not
mutually exclusive. Consistent with this model, canonical
promoter elements dictating transcriptional polarity have
not been identified in P. falciparum to date. Homologs of
genes encoding histone acetylases, histone deacetylases and
chromatin remodeling enzymes have been found in the P.
falciparum genome (Joshi et al. 1999; Coulson et al. 2004;
Fan et al. 2004). Furthermore, the histone deacetylase in-
hibitor apicidin kills P. falciparum parasites (Darkin-Rattray
et al. 1996), implicating a critical role for chromatin struc-
ture in this parasite. Our future efforts will aim to resolve
questions regarding the initiation of antisense transcription
in P. falciparum.

Interestingly, our experiments suggest that some, but not
all antisense transcriptional events result in stable antisense
RNA. For example, synthesis of both antisense msp3 and
hsp86 RNA was detected in these experiments (Fig. 2A).
However, antisense msp3 transcripts, but not antisense
hsp86 transcripts, were detected in steady-state RNA (Pa-
tankar et al. 2001). Therefore, the abundance of steady-state
antisense transcripts may be regulated at the level of RNA
processing or stability. The mechanisms controlling pro-
cessing and stability of antisense and sense RNAs have not
been described in P. falciparum. Perhaps antisense RNAs
that are not endowed with proper cleavage and polyade-
nylation signals are degraded. Alternatively, transcript-
specific RNA-binding proteins may regulate processing and
stability of antisense transcripts, and genes encoding nu-
merous RNA-binding proteins have been identified in the
P. falciparum genome (Coulson et al. 2004).

The function of the stable antisense transcripts in P. fal-
ciparum is currently unknown. The antisense loci analyzed
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FIGURE 3. Synthesis of antisense and sense RNA in P. falciparum
nuclei from synchronous parasites. Nascent RNA in synchronous,
schizont-stage erythrocytic parasite nuclei was labeled with
[«->*P]UTP and hybridized to filters containing single-stranded DNA.
Filters were washed, treated with 10 pg/mL RNase A, and analyzed by
Phosphorlmaging. The DNA targets were the same as described in the
Figure 2 legend.
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in this report are not predicted to contain open reading
frames as per the annotated genome sequence, and there-
fore it is not likely that the antisense RNAs encode proteins
(Gardner et al. 2002). However, it is not possible to rule out
a much higher gene density in P. falciparum than previously
predicted. Therefore, what is the function of antisense RNA
in P. falciparum? Antisense RNA may be a novel regulator of
stage-specific gene expression in this parasite. The levels of
most sense transcripts are regulated throughout the com-
plex parasitic life cycle of P. falciparum (Bozdech et al. 2003;
Le Roch et al. 2003). Based on precedence from other or-
ganisms, antisense RNA may regulate sense transcription by
competition for transcription factors or modulating chro-
matin structure (Vanhee-Brossollet and Vaquero 1998; Car-
michael 2003). Alternatively, antisense RNA in P. falcipa-
rum may base-pair with the sense RNA to regulate transla-
tion or RNA stability (Vanhee-Brossollet and Vaquero
1998; Carmichael 2003). Base-pairing interactions with the
sense RNA could occur via a long antisense RNA, or a
processed antisense RNA in the form of a microRNA or
small interfering RNA (Eddy 2001; Carmichael 2003). The
precedent for antisense RNA regulation exists in P. falcipa-
rum since episomally expressed antisense clag9 RNA has
been shown to reduce clag9 RNA levels (Gardiner et al.
2000). Experimental RNA interference in P. falciparum has
been reported (Kumar et al. 2002; Malhotra et al. 2002;
McRobert and McConkey 2002; Mohmmed et al. 2003),
although genes encoding the required RNAi machinery
have not been found in the P. falciparum genome (Ullu
et al. 2004). Thus, antisense RNA has the potential to regu-
late numerous processes in the malaria parasite, and its
widespread distribution in nature suggests it plays a critical
role in eukaryotic biology.

MATERIALS AND METHODS

P. falciparum culture

Asynchronous, erythrocytic, P. falciparum 3D7 parasites were cul-
tivated as previously described (Trager and Jensen 1976). Parasites
were synchronized with D-sorbitol using standard procedures
(Lambros and Vanderberg 1979).

RNA polymerase activity in P. falciparum extracts

Parasites were released from red blood cells with saponin and
resuspended in lysis/storage buffer (50 mM HEPES at pH 7.9, 50
mM NaCl, 1 mM EDTA at pH 8.0, 1.2 mM DTT, 10% glycerol,
complete mini EDTA-free protease inhibitor cocktail tablets,
Roche), homogenized six times with a size B Dounce homog-
enizer, and lysed by three freeze—thaw cycles. The extract was then
separated into three sample groups. Whole cell extracts were not
subjected to further centrifugation. Whole cell extracts were sepa-
rated by low-speed centrifugation for 5 min at 1000g at 4°C to
generate nuclear (insoluble) and cytoplasmic (soluble) fractions.
The standard RNA polymerase assay was performed in 30 uL and
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contained 15 pg of fraction (roughly 6.25 X 107 cell equivalents),
50 mM HEPES (pH 7.9), 10 mM MgCl,, 1.2 mM DTT, 50 mM
NaCl, 1 mM EDTA (pH 8.0), 0.5 U/uL RNAsin, ] mM ATP, 1 mM
CTP, 1 mM GTP, and 0.5 pCi/pL [a->*P]JUTP (NEN). Reactions
were incubated at 37°C for 30 min and terminated by the addition
of 5 mL of cold 5% tricholoracetic/100 mM disodium pyrophos-
pate (TCA-NaPP) containing 100 ug of salmon sperm DNA. The
reactions were mixed and incubated on ice for 10 min. Thereafter,
samples were filtered through 25-mm Whatman GF/A filters that
had been washed with 15 mL of cold TCA-NaPP using a Millipore
1225 sampling manifold. Filters were washed two times with 15
mL of cold TCA-NaPP, and then 5 mL of 95% ethanol. Filters
were removed from the manifold and dried for 5 min in a 55°C
oven. After drying, the filters were analyzed by liquid scintillation
counting. For experiments measuring actinomycin D inhibition,
actinomycin D was added to fractions and incubated for 15 min
on ice before the addition of labeling mix.

Single-stranded DNA production

For single-stranded DNA production, 300-1100-bp regions of the
leu, yeast leucine biosynthetic gene; msp3, P. falciparum merozoite
surface protein gene (PF10_0345); hsp86, P. falciparum heat shock
protein 86 gene (PF07_0029); rpL36, P. falciparum ribosomal pro-
tein L36 gene (PF11_0106); cal, P. falciparum calmodulin gene
(PF14_0323); rRNA, P. falciparum 18S rRNA gene (chr5.rRNA1-
18S-A); Pfhypo, P. falciparum hypothetical protein gene (PF1755c¢);
rapl, P. falciparum rhoptry-associated protein gene (PF14_0102);
and kahrp, P. falciparum knob-associated histidine-rich protein
gene (PF0100c) were amplified from genomic DNA or cDNA us-
ing PCR. The numbers in parentheses represent the PlasmoDB
locus (http://PlasmoDB.org). PCR products were inserted into the
pCR2.1-topo vector (Invitrogen), and phagemids containing in-
serts in both orientations were identified by restriction mapping
and DNA sequencing. Subsequently, phagemids were introduced
into XL2-blue Escherichia coli (Stratagene), and single-stranded
DNA was isolated using M13K07 helper phage using standard
procedures (Sambrook and Russell 2001). Single-stranded DNA
was confirmed by DNA sequencing. Single-stranded DNA was
transferred to nylon filters in 6x SSC and fixed by UV cross-
linking.

Synthesis of antisense and sense RNA
in P. falciparum nuclei

Nascent RNA ~1 x 10" infected asynchronous or synchronous
erythrocytic parasite nuclei was labeled with [a->*P]UTP for 30
min at 37°C with intermittent mixing (Lanzer et al. 1992b). For
experiments using a-amanitin, the toxin was incubated at 0.1
mg/mL with nuclear extracts for 15 min at 4°C prior to the addi-
tion of radioactive labeling mix (Lanzer et al. 1992a,b). Untreated
nuclear fractions were also incubated for 15 min at 4°C. Reactions
were processed as previously described (Farrell Jr. 1998). After
purification, RNA was hybridized for 40-48 h to filters containing
1 ug of single-stranded DNA. Filters were washed, treated with 10
pg/mL RNase A, and analyzed by phosphorimaging. Levels of
transcription were quantified using ImageQuant Software version
5.2 (Molecular Dynamics). Calculations of the ratio of sense to

antisense transcription were corrected for small differences in hy-
bridization efficiency and thymidine bias of each strand.

Southern blot analysis of single-stranded DNA

Single-stranded DNA was transferred to a nylon filter and ana-
lyzed by Southern blotting using the RapidHyb system according
to the manufacturer’s protocol (Amersham). The probes were 5’
[**P] end-labeled M13 reverse or forward primers. Filters were
washed and analyzed by phosphorimaging. Signals were quantified
as described above.
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