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ABSTRACT

In vitro selection of functional RNAs from large random sequence pools has led to the identification of many ligand-binding and
catalytic RNAs. However, the structural diversity in random pools is not well understood. Such an understanding is a
prerequisite for designing sequence pools to increase the probability of finding complex functional RNA by in vitro selection
techniques. Toward this goal, we have generated by computer five random pools of RNA sequences of length up to 100 nt to
mimic experiments and characterized the distribution of associated secondary structural motifs using sets of possible RNA tree
structures derived from graph theory techniques. Our results show that such random pools heavily favor simple topological
structures: For example, linear stem–loop and low-branching motifs are favored rather than complex structures with high-order
junctions, as confirmed by known aptamers. Moreover, we quantify the rise of structural complexity with sequence length and
report the dominant class of tree motifs (characterized by vertex number) for each pool. These analyses show not only that
random pools do not lead to a uniform distribution of possible RNA secondary topologies; they point to avenues for designing
pools with specific simple and complex structures in equal abundance in the goal of broadening the range of functional RNAs
discovered by in vitro selection. Specifically, the optimal RNA sequence pool length to identify a structure with x stems is 20x.
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INTRODUCTION

RNA in vitro selection technology has greatly advanced the
field of RNA structure and function. Indeed, in vitro selection
experiments have revealed novel functional RNAs from ran-
dom sequence pools, including a wide range of RNA apta-
mers that bind to particular compounds, such as ATP,
antibiotics or proteins, and catalytic RNAs (Wilson and
Szostak 1999; Hodgson and Suga 2004); see the collection
of several hundred aptamers in the Aptamer Database (http://
aptamer.icmb.utexas.edu). However, an analysis of existing
aptamers has shown that RNA sequences isolated from selec-
tion experiments tend to have simple topologies (Bae et al.
2002; Fukusho et al. 2002; Khoo et al. 2002; Komatsu et al.

2002; Ulrich et al. 2002; Zinnen et al. 2002; Meli et al.
2003; Laserson et al. 2004). That is, linear or slightly branched
structures occur far more often than highly compact struc-
tures. For example, aptamers that bind to ATP,
chloramphenicol, neomycin B, and streptomycin all have
simple, linear stem–loop structures (Laserson et al. 2004;
see Figure 1). Moreover, while in vitro selection is efficient
when searching for an RNA sequence that binds to a specific
ligand, it is often unsuccessful in discovering novel functional
RNAs, such as ribozymes because of their rarity in random
pools (Sabeti et al. 1997); self-ligating ribozymes are promi-
nent examples of in vitro selected ribozymes (Schultes and
Bartel 2000). Novel and improved ribozymes have also been
found using in vitro experiments by exploiting structural
modules of existing RNAs (Jaeger et al. 1999; Ohuchi et al.
2002, 2004; Yoshioka et al. 2004). The frequency of occur-
rence of a functional (or active) RNA in random pools also
depends on how the functional properties are defined; for
example, many sequence solutions are possible when the
definition of an aptamer involves a range of dissociation
constants, as done in recent selection experiments (Carothers
et al. 2004). A theoretical understanding of such sequence/
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structural/functional yields from random pools is crucially
needed because an understanding of motif distribution can
help in the discovery of new RNA motifs by in vitro technol-
ogy and this, in turn, can lead to new functional RNAs and
applications.

In recent years, efforts have been made toward under-
standing pool complexity via statistical analysis of RNA sec-
ondary structures (Fontana et al. 1993), combinatorial
analysis of the number of interacting segments in a random
RNA sequence (Sabeti et al. 1997; Knight and Yarus 2003),
information theory (Carothers et al. 2004), and design of
partially structured pools to improve selection of high-
affinity aptamers (Davis and Szostak 2002). In particular,
statistical analysis of RNA secondary structures in random
pools via computational folding has determined the charac-
teristic distributions of bases in stacks, loops, junctions, and
free ends (Fontana et al. 1993). Later, Schuster and Stadler
(2002) found that stable conformations in random pools
tend to be linear or slightly compact structures. Combinator-
ial analysis of random sequences revealed that the probability
of finding a structural motif, as specified by the number of
interaction segments, increases with sequence length; struc-
tural complexity in this approach is determined by the

number of elements forming stems. Interestingly, Szostak
and collaborators have recently used an informational mea-
sure of RNAs (a combination of both sequence and base-
pairing contents) to show the plausibility of a general relation
between the complexity of RNA structures and their func-
tional activity (Szostak 2003; Carothers et al. 2004). Further-
more, functional RNA molecules are thermodynamically
different from the vast majority of random sequences
(Higgs 1993, 1995; Schultes et al. 1997; Seffens and Digby
1999; Kitagawa et al. 2003), implying that functional mole-
cules are not common. These studies have provided insights
into the properties of random pools and highlighted the
importance of quantifying structural complexity.

Here we use complete sets of RNA topologies from
graph theory to quantify shape complexity in random
pools. Understanding shape distribution is significant
because functional RNA classes are correlated with their
secondary folds; for example, 5S ribosomal RNA, tRNA,
and hepatitis delta virus ribozyme have distinct topologies
suited for their biological functions. Thus, quantifying the
distribution of distinct RNA topologies in random pools
helps interpret the range of functional RNAs that such
pools can yield by in vitro selection technology.

Recently, we developed and applied graphical representa-
tion and enumeration of 2D RNA topologies to systemati-
cally catalog libraries of existing and hypothetical motifs (Gan
et al. 2003); see our RNA-As-Graphs (RAG) Web resource
(http://monod.biomath.nyu.edu/rna) for a complete catalog
of tree and pseudoknot topologies, arranged by vertex num-
ber and motif complexity (Fera et al. 2004; Gan et al. 2004).
These theoretically enumerated RNA structures covering
RNA secondary-structure repertoire allow a comprehensive
assessment of structural diversity in random pools with dif-
ferent sequence lengths. Briefly, an RNA graph is a formal
construct composed of lines (edges) and linking nodes (ver-
tices) representing an RNA secondary structure; for tree
graphs, stems are represented as edges and loops/bulges/junc-
tions as vertices. Here we use cataloged tree topologies, mea-
sures of graphs, and the Vienna RNA folding algorithm
(Hofacker 2003) to characterize the distribution of RNA
secondary structures in random pools. While our analysis is
similar to that of Fontana et al. (1993) in that tree graphs are
used to compile statistics of RNA structures, it differs from
that work in two major ways: We employ exhaustive sets of
enumerated graphs, and our tree graphs emphasize shape or
topology, whereas those of Fontana et al. focus more on base-
pair information. Our enumerated tree graphs provide a
more pertinent analysis of structural diversity in RNA pools.

This analysis is applied here to five generated random RNA
pools, containing sequences which are of length 25, 40, 60,
80, and 100 nt, respectively. We quantify the distribution of
associated secondary-structural motifs using tree graphs and
graph theory measures of size and complexity (particularly,
tree diameter and second smallest Laplacian eigenvalue,
which are defined in the Materials and Methods section).

FIGURE 1. Four antibiotic-binding aptamer structures and their tree
graphs.
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Our results show that such random RNA pools heavily favor
(>90%) simple topological structures like linear stem–loop
and low-branching motifs, as confirmed by many known
aptamers (Bae et al. 2002; Fukusho et al. 2002; Khoo et al.
2002; Komatsu et al. 2002; Ulrich et al. 2002; Zinnen et al.
2002; Meli et al. 2003; Laserson et al. 2004). For example, the
25-nt and 40-nt pools are almost completely populated by
hairpin and stem–bulge–stem–loop structures. This finding
explains why complex structural motifs with high-order junc-
tions are rare in selected aptamers and ribozymes. More
generally, we show that random sequences do not lead to a
uniform distribution of RNA secondary topologies regardless
of pool size and sequence length. This is likely an outcome of
the thermodynamics of RNA folds. Moreover, we find that
structural complexity rises with sequence length and that
each random pool is dominated by a specific tree structural
class (characterized by vertex number, V) determined by
sequence length. Interestingly, the most abundant tree struc-
tures in pools follow a simple rule: an L-nt pool has the most
abundant structures with �L/20 stems (L/20 stems corre-
spond roughly to the number of tree graph vertices minus
one). Thus, 40-, 60-, 80-, and 100-nt pools have abundant
two-, three-, four-, and five-stem structures, respectively. The
importance of increasing pool length to access complex
structures (with rare activities) is also supported by combi-
natorial considerations, although only the number of paired
elements is predicted and not the abundance of specific
topologies (Sabeti et al. 1997; Knight and Yarus 2003).

Our analyses have implications for designing sequence
pools possessing greater structural diversity than those
found in random pools. Ideally, to access various func-
tional RNAs, including structurally complex motifs, the
pool should be engineered to contain a uniform distribu-
tion of simple and complex topologies specified by enum-
erated tree graphs. Already, designing structured RNA
pools has been suggested, although not guided by graphical
analysis of structural diversity (Davis and Szostak 2002).
Another implication of our analysis is that the optimal
sequence length for a target structure with known number
of stems (S) should be �20S. Since the number of possible
topologies rises with the number of stems (according to
graph theory), our simple rule can be used as a guide to
access complex structures by optimally choosing sequence
length. This could help increase efficiency of in vitro selec-
tion experiments by reducing requirements for sequence
synthesis.

RESULTS

The technical concepts and methods used to derive the
results are detailed under Materials and Methods, including
graphical representation of RNA, the RNA tree library,
Laplacian eigenvalue and tree diameter measures of RNA
structures, conversion of RNA structures into tree graphs,
and sources of error in computational methodology.

Pool generation and filtering

Here we describe how, equipped with sets of possible RNA
tree structures (Fig. 2), we explore the distribution of
different trees in the random RNA pools used for in vitro
experiments. Using the Mersenne twister pseudorandom
number generator (Matsumoto and Nishimura 1998), we
generated five random RNA pools of different sequence
lengths (25, 40, 60, 80, and 100 nt), each pool consisting
of 104 components. (Below, we discuss the significance of
using pools of this relatively small size compared to the
pool size used in wet experiments.)

In each pool, all sequences were generated as input
into RNAfilter, a program that converts the secondary
structures predicted by Vienna RNAfold (Hofacker
2003) into their respective tree diagrams; the Vienna
RNAfold program can fold sequences into tree structures
but not pseudoknot topologies. Within each pool, we
calculated separately the distribution of structures by
vertex number, and the distribution of motifs (tree
structures) for a given vertex subpool. For the 100-nt
pool, we also computed the distribution of structures by
compactness as measured using graph diameter and sec-
ond smallest Laplacian eigenvalue.

The above statistics were calculated using all
sequences in the pool. In addition, we analyzed the
100-nt pool by imposing a free-energy restriction, based
on free-energy values determined by Vienna RNAfold
(Hofacker 2003) to remove sequences with unstable
folds from the pool that had a free-energy value less
than the peak of the distribution (�23 kcal/mol). This
filtering process allowed us to analyze 65%–78% of the
sequences in the original pool. We also imposed two
other free-energy constraints: One cutoff was set to be

FIGURE 2. Complete sets of tree graphs having two to seven vertices.
Each graph is assigned an identification number (ID) for easy
reference.
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the average free energy (�27 kcal/mol) in the pool
(leaving us somewhere between 42% and 49% of the
sequences to analyze), and another cutoff (�31 kcal/
mol) was randomly selected to be more stringent than
the first two (leaving us somewhere between 13% and
30% of the sequences to analyze). We found that vertex
number and motif distributions are not sensitive to the
free-energy cutoffs. Below, all results are reported with-
out cutoffs unless indicated otherwise for the 100-nt
pool.

Distribution of structures by vertex number

The vertex number V, an indication of the structural com-
plexity, corresponds to the number of structural elements,
including bulges, loops, and junctions (chain ends also count
as a vertex), in an RNA secondary structure. The mathema-
tically possible V-vertex tree structures are shown in Figure 2;
the simplest structure is a hairpin containing a loop and
chain ends (V=2). Figure 3 shows the vertex number
distributions for structures in all five random RNA pools.
In the 25-nt pool, only V=2, 3 structures contribute signifi-
cantly. The hairpins (V=2) and stem–bulge–stem–loops
(V=3), respectively, account for 70% and 15% of structures
in the pool; 15% of sequences in the pool are unstructured.
As the pool sequence length increases, structures with higher
vertex numbers also contribute, diminishing the contribution
of the dominant vertex number structures. For example, in
the 100-nt pool, V=4–8 tree structures are abundant with
the dominant six-vertex structures accounting for�40%. An
interesting feature of the plots in Figure 3 is that the peaks for
40-, 60-, 80-, and 100-nt pools are at three, four, five, and six
vertex, respectively. We thus infer the relation

Vpeak ¼ L=20þ 1; ð1Þ

where Vpeak is the peak’s vertex number and L is the
pool sequence length. This relation allows the predic-
tion of the stem number (V� 1) of the most abundant
structures in L-nt random pools. Significantly, for
GTP-binding aptamers, stem number is correlated
with binding affinity (Carothers et al. 2004), indicating
that our relation may be used to improve the yield of
functional molecules.

The distributions of secondary structures by vertex
number, except for the 25-nt and 40-nt pools, have
normal probability plots. We thus fitted the plots
for the five pools using the Gaussian function
P(V) =a exp[�(V�Vpeak)

2/(2b2)], where Vpeak and a

are the location and height of the peak, and b is the
distribution’s width, as shown in Figure 3. The width of
the Gaussian function varies from pool to pool: b= 0.55,
0.75, 0.80, 0.85, and 1.00 for the 25-, 40-, 60-, 80-, and
100-nt pools, respectively. For the 25-nt and 40-nt cases,
the Gaussian distribution in the range 0 <V< 2 is not
physically meaningful since the simplest and smallest sec-
ondary fold is a hairpin (V= 2). Using relation 1, we
obtain the distribution as a function of vertex number
and pool sequence length:

P V ;Lð Þ � exp � V�L=20� 1ð Þ2= 2b2
� �h i

: ð2Þ

This fitting function works well for all pools with length
60 and greater. (The 40-nt pool has an asymmetric
distribution with twice as many two-vertex structures
compared with four-vertex motifs.)

We also determined the effects of energetic filters
and pool size on vertex-number distributions. Surpris-
ingly, the vertex-number distribution is not sensitive to
our three free-energy cutoffs. For example, the tree
abundance for any V using no cutoff versus cutoffs of
�23, �27, �31 kcal/mol has a variation of �1% for the
100-nt pool analyzed. To ascertain that our observed
distributions were not a result of our sample size (104

RNA sequences), we also determined the vertex-number
distribution of the 40-nt pool for pool sizes of 103,
0.53 105, and 106 sequences. As shown in Table 1,
the distribution of structural motifs by vertex number
is not sensitive to the pool size. This result reflects
the simplicity of tree graphs specifying only shape
rather than more detailed information about the struc-
tural elements (e.g., sizes of stems, bulges, and loops).
The distribution of the detailed aspects of structural
elements (e.g., base numbers in stems, loops, and
bulges) becomes relevant when similar motifs must be
distinguished.

FIGURE 3. Distribution of structures by vertex number (unfiltered
data) and Gaussian fit: 25-nt pool (centered at two vertices), 40-nt
pool (centered at three vertices), 60-nt pool (centered at four ver-
tices), 80-nt pool (centered at five vertices), and 100-nt pool (centered
at six vertices). See Figure 2 for elaboration of the structures for each
vertex number.

856 RNA, Vol. 11, No. 6

Gevertz et al.



Distribution of structures by tree topology and diameter

The distribution of structures by vertex number quantifies
the abundance of various tree structure classes, as displayed
in Figure 2. Information about the abundance of individual
tree structures will yield more specific properties of
random pools. For this purpose, we assign a motif identifica-
tion (ID) number to each tree structure in Figure 2. This ID is
indexed as nm, where n is the motif’s vertex number (V), and
m indicates the order in which the motif occurs within the
V-vertex tree structures. For example, motif ID numbers 51
and 711 refer to specific five- and seven-vertex trees, respec-
tively. We order motifs by increasing topological complexity
or compactness, as measured by the second smallest
Laplacian eigenvalue l2 (Gan et al. 2004); in addition, we
use graph diameter d to analyze compactness of structures in
random pools (see Materials and Methods).

Figure 4 shows the abundance of 47 tree motifs with
V< 10 in our five random pools. Two features emerge from
this plot: (1) the diversity of motifs increases with sequence
length, as expected; and (2) the distribution within each
pool strongly favors elongated over compact structures
(small m values for each n in the motif ID nm). The first
feature is clearly evident by comparing the 25-nt pool with
the 80-nt or 100-nt pool. The 25-nt pool is dominated by
two- and three-vertex structures, whereas the 100-nt pool
contains significant percentages of five-, six-, and seven-
vertex structures, including a few percentages of eight- and
nine-vertex structures. The second feature is manifested by
the multiple peaks in the motif distribution curves (Fig. 4).
In the 80-nt pool, the motif distribution curve has peaks at
motifs 41, 51, 52, 61, 71, and 81. These motifs correspond to
unbranched or low-branching tree structures (Fig. 2). Also
evident are the minima occurring at motifs 42, 53, and 64,
which are branched structures. Motifs with high-order
junctions (65, 66, 75, 76, etc.) are rare or absent in the
80-nt pool. The 100-nt pool has a similar trend as the
80-nt pool, with significant proportions of 51, 52, 61, 62,
63, 71, 72, and 73 motifs and negligible representation of
complex motifs such as 53, 65, 66, 76, 77, 78, 79, 710, 711, 86,
and 813. The distribution of structures by graph diameter
in the 100-nt pool conveys a similar pattern (data not
shown). The distributions for five-, six-, and seven-vertex
structures are skewed toward elongated structures with
larger diameters.

Distribution of structures by pool sequence length

Figure 5 compares the percentages of three categories of tree
structures as a function of pool length. We define the fol-
lowing tree structure categories in increasing complexity:
unbranched, singly branched, and multibranched trees. This
definition of motif complexity is more intuitive than the
graph diameter and Laplacian eigenvalue measures. As
shown in Figure 5, the 25-nt and 40-nt pools are completely
populated by unbranched structures, represented by hairpins
(two-vertex) and two-stem (three-vertex) structures. The
frequency of such structures declines rapidly with pool
sequence length, approaching �30% for the 100-nt pool. In
contrast, the singly branched and multibranched structures
increase monotonically with sequence length. The proportion
of singly branched trees equals or exceeds unbranched motifs
when the sequence length is 80 nt or greater. However, the
multibranched structures remain rare even in the 100-nt
pool, where it accounts for only �10% of such folds.

TABLE 1. Effect of pool size on distribution of percent of
sequences in 40-nt pools

V/pool size 103 104 0.5 3 105 106

2 29.67 28.94 28.88 29.58
3 57.32 56.46 56.63 56.87
4 12.71 14.30 14.21 13.32
5 0.30 0.30 0.27 0.22

FIGURE 4. Distribution of structural motifs for various pools. (A)
Motif distribution of 2–7 vertex structures. (B) Motif distribution of
eight and nine vertex structures. The tree motifs are indexed (ID) by
vertex number and order within the group (e.g., 51, 52, 53 for the three
five-vertex members—see Fig. 2). Note that any motif IDs not repre-
sented on the horizontal axis are omitted because none of the
sequences in the pool folded to such a structure.

Fig 4. live 4/c
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Abundance of structured RNAs

We consider a ‘‘structured RNA’’ as a secondary fold that
can be converted into one of the tree graphs in Figure 2. This
is a reasonable minimal requirement since most folds
possess at least a stem–loop (V=2). Folds by Vienna RNA-
fold that do not possess any base pairs or form isolated, single
base pairs cannot be converted into a tree graph (our rules
state that a stem must have two or more complementary
base pairs) (Gan et al. 2003). Figure 5 (inset) shows the
percentage of unstructured RNAs as a function of pool
length. The 25-nt and 40-nt pools have 14% and 1% unstruc-
tured RNAs, respectively, whereas larger pool lengths are
completely dominated by structured RNAs. This result
reflects the propensity of nucleic acid bases to form comple-
mentary base pairs. That is, the probability of forming stems
from sequences with only four base types is high, as shown
in other folding experiments and theoretical studies
(Fontana et al. 1993; Schuster et al. 1994). Short sequences
are less likely to be structured because of fewer possibilities
of forming base pairs to stabilize their folds.

Generally, structured RNAs can be defined using the
vertex number (V), or the number of stems formed (V� 1);
above, we used a minimal value V=2 (i.e., one stem).
The proportions of structured RNAs for other V cutoff
values can be calculated from the data in Figure 3. If we use
the V=3 cutoff, we find that the 40-nt pool has only 70%
structured RNAs compared to 99% for the V=2 cutoff.
By this criterion, the 60-, 80-, and 100-nt pools are still almost
completely populated by structured RNAs. The 100-nt pool,
in particular, consists of mostly five or more vertex structures.

Estimates of functional structures in the 100-nt
random pool

Data from many in vitro selection experiments suggest that
the probability of finding a functional sequence in a ran-
dom pool is typically 10�10 (Wilson and Szostak 1999).
This implies that there are �103 functional molecules in a
pool of 1013 sequences. Results also imply that the prob-
ability of finding a functional molecule of length n is higher
than 4�n because many variants of a molecule can perform
the same function, as found for hammerhead ribozymes
(Salehi-Ashtiani and Szostak 2001) and GTP-binding apta-
mers (Carothers et al. 2004). Such experimental estimates
of the frequency of functional molecules can be combined
with our data on motif distribution (Fig. 4) to calculate the
expected number of sequences with functional properties
for each tree structure. This yields the estimate that the
number of functional sequences is 103 times the abundance
of a tree topology in the random pool.

Our simple estimate, based on the 100-nt pool with free-
energy cutoff of �23 kcal/mol, shows that most functional
sequences belong to five-, six-, seven-, and eight-vertex
structures; the expected numbers of functional sequences
for these vertex numbers are 212, 397, 274, and 7, respec-
tively. We find that functional sequences folding to two-,
three-, four-, and nine-vertex structures are rare. Within
each vertex subpool, dramatic differences in abundance are
observed. For example, the three five-vertex tree motifs 51
(l2 = 0.3820), 52 (l2 = 0.5188), and 53 (l2 = 1.0000) are
represented by 82, 124, and seven possible functional
sequences, respectively. The 51 motif is unbranched, 52
has a three-stem junction, and 53 is a star-shaped tree
with a four-stem junction. If structural complexity is mea-
sured by the degree of branching, then the occurrence of
functional molecules drops sharply with complexity. The
frequency distribution of functional sequences is similarly
broad for the seven-vertex subpool. The most abundant
motifs are 71 (l2 = 0.1981), 72 (l2 = 0.2254), and 73
(l2 = 0.2603) with 75, 49, and 92 possible functional
sequences, respectively. In contrast, the motifs 75, 79, 710,
and 711 are estimated to have less than one functional
sequence. Consequently, functional molecules for these
motifs will not likely be found in the 100-nt random
pool. Similar estimates of the abundance of functional
structures can be made for other pool lengths.

DISCUSSION

Our analysis of tree-motif distribution in random sequence
pools using direct folding of RNA sequences in various
pools quantifies the abundance of possible tree structures
with or without known functional properties. Results show
that simple secondary motifs (e.g., linear and low branch-
ing structures) commonly occur in 25–100-nt pools,
whereas highly branched structures are rare. The rarity of

FIGURE 5. Percent of sequences in each pool that fold to linear
structures (represented by solid line), structures with one branch
(dashed line), and structures with two or more branches (dash-dotted
line). (Inset) Percent of structures in each sequence pool that could
not be properly folded into a tree structure by the Vienna RNAfold;
these unstructured sequences could not be converted into tree dia-
grams.
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complex structures in random pools is also suggested by
several in vitro selection experiments and estimates based
on statistical and combinatorial considerations
(Sabeti et al. 1997; Wilson and Szostak 1999; Knight and
Yarus 2003; Carothers et al. 2004). For example, GTP-
binding aptamers having simple stem–loop (Class II) and
stem–bulge–stem–loop (Class I) motifs are common,
whereas those with extra bulges and/or stems are rare
(Carothers et al. 2004). Significantly, the binding affinity
of GTP aptamers rises with stem number, highlighting the
importance of increasing the presence of complex struc-
tures in selection pools. Our results on structural distribu-
tion, either by vertex number (Fig. 3) or specific motif
(Figs. 4, 5), might help experimentalists assess the chance
of finding particular motifs or of finding a particular class
of structures.

The results in Figures 3–5 clearly show that sequence
length is a strong determinant of structural diversity in
random pools. As sequence length increases, the motif
distribution shifts toward higher vertex numbers or stems
(Fig. 3), and the population of branched motifs increases
while that of unbranched structures decreases. Sabeti et al.
(1997) also reached the conclusion that complex structures
and functions can be accessed by increasing sequence
length; however, they used a combinatorial analysis of
motifs without folding specific sequences, estimating free
energies, or reference to specific topologies. Accessing com-
plex structures by increasing sequence length indefinitely is
not a desirable solution; according to our estimate of
equation 1, a target structure with S stems (V= S+ 1) can
be obtained optimally from a pool length L= 20S.

We illustrate this application of relation 1 for GTP-
binding aptamers. GTP aptamers with varying binding
affinities, characterized by dissociation constant Kd, range
from 31 to 69 nt; see Table 2. Specifically, the three-stem
Class V GTP aptamer with a high binding affinity
(Kd = 17 nM) corresponds to the 41 motif in Figure 2.
Our motif distribution patterns in Figure 4A and Table 2
suggest that the 60-nt pool has the highest abundance of 41
tree motifs (38%) and therefore is the optimal pool length
for finding the Class V GTP aptamer. Indeed, the actual
length (68 nt) of this aptamer is comparable with this

optimal pool length (60 nt). As shown in Table 2, there is a
rough agreement between predicted pool length and actual
aptamer length for other GTP aptamers. Further, as we
have shown elsewhere, the empirical formula 1 is a good
approximation for natural functional RNAs (Gan et al.
2003).

Clearly, our RNA pool analysis emphasizes the need to
generate biased, nonrandom sequence pools possessing
greater structural complexity to access rare RNA folds
(e.g., highly branched motifs). This effort is especially
important for improving the in vitro selection technology
since high-affinity aptamers and complex functional RNAs
are rarely found in random pools, as shown by several
recent experimental and theoretical studies (Sabeti et al.
1997; Davis and Szostak 2002; Knight and Yarus 2003;
Carothers et al. 2004). One intriguing avenue is to design
sequences yielding a uniform distribution of tree structures
(Fig. 2) used to characterize the pools. This will ensure that
simple and complex structures are sufficiently present in
the pool. Indeed, it was shown that engineering even par-
tially structured pools with a constant stem–loop segment
in the GTP-binding element already yielded higher affinity
aptamers than those found in totally random pools (Davis
and Szostak 2002). However, a more general approach is
required to generate structured pools (see Conclusion).

An alternative approach for enhancing the selection of
complex functional RNAs is to use modules of existing
RNAs to generate pools possessing variants of specific
structures. The structural variants are obtained by introdu-
cing short random (variable) sequence regions in constant
regions specifying the module of an existing RNA. Specifi-
cally, the P3–P7 domain of the group I ribozyme has been
successfully exploited to enhance the ribozyme’s activity
(Ohuchi et al. 2002, 2004), and the P4–P6 domain used
to evolve a complex ligase ribozyme (Jaeger et al. 1999;
Yoshioka et al. 2004). Intriguingly, RNA modules have also
been used to construct complex assemblies with interesting
functional and technological possibilities (Westhof et al.
1998; Jaeger et al. 2001; Ikawa et al. 2002; Chworos et al.
2004).

Nucleotide base composition is yet another factor influ-
encing the structural distribution in random pools. As
done in experimental studies, we have performed our ana-
lysis based on a uniform base distribution (25% A, C, G,
and U). Several theoretical studies have shown that varia-
tion of base composition can alter the distribution of
structures in random pools (Fontana et al. 1993; Schultes
et al. 1997). To test the influence of nonuniform base
composition, we also performed calculations for 40-nt
and 100-nt pools with two different base compositions:
(1) 20% A, U and 30% G, C, and (2) 30% A, U and 20%
G, C. For the 40-nt pool, a higher percentage of C, G bases
(case 1) increases the proportion of higher vertex struc-
tures, whereas a lower percentage of C, G bases (case 2)
increases the proportion of lower vertex structures. For

TABLE 2. Percent of tree motifs in computed random pools
(columns 2–6) and properties of GTP-binding aptamers reported
in Carothers et al. (2004) corresponding to different tree motifs

Motif ID 25 nt 40 nt 60 nt 80 nt 100 nt Kd
a Lb (nt)

21 83 29 2 — — 250–900 30–56
31 17 56 24 3 — 30–8000 41–60
41 — 13 38 15 2 17 68
52 — — 7 22 14 9 69

aDissociation constant.
bAptamer length.
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the 100-nt pool, the vertex-number distribution remains
largely unchanged. It is likely that small RNA structures
(�40 nt) are more significantly influenced by base compo-
sition variation than large RNA structures, a finding con-
sistent with that by Schultes et al. (1997). Thus, our
preliminary calculations suggest that the effects of base
composition on structural distribution should be further
investigated in future studies.

A limitation of the present analysis is that the Vienna
RNA folding program cannot predict pseudoknot folds, yet
these topologies have been identified in random pools
(Wilson and Szostak 1999; Stuhlmann and Jaschke 2002).
The abundance of pseudoknots is expected to increase with
sequence length, as shown in our recent theoretical analysis
of RNA structure space (Kim et al. 2004). Existing pseu-
doknot folding algorithms, for example, PKNOTS by Rivas
and Eddy (1999), is not efficient for folding large sets of
sequences as attempted here. Other numerical limitations
are discussed at the end of the Materials and Methods
section.

CONCLUSION

An analysis of five RNA pools reveals that the probability
distribution of secondary structures in random sequence
pools is not uniform respect to complete sets of tree
topologies derived from graph theory (Harary 1969; Gan
et al. 2003). While vertex number (stem number) has a
normal distribution in some pools, each random sequence
pool heavily favors structures of a particular vertex number
according to the relation Vpeak = L/20 + 1. This simple rela-
tion allows the design of optimal pool lengths for specific
target structures with a known or desired number of stems.
Furthermore, random pools are strongly biased to form
RNAs with simple, linear and low-branching topologies.
This trend is more pronounced in pools consisting of
short sequences of RNA (25, 40, and 60 nt in length)
than in pools consisting of longer RNA sequences (80 and
100 nt), in agreement with other analyses (Sabeti et al.
1997; Knight and Yarus 2003). Thus, while some motifs
are commonly found in random RNA pools, other fold
patterns occur rarely. This explains why functional RNAs
possessing complex folds are largely absent in in vitro
selection experiments using fully random pools (Carothers
et al. 2004). Our quantitative characterization of structural
diversity in random pools and its dependence on pool
length predict nonuniform abundance of specific tree
structures, suggesting design of sequence pools to improve
the yield of target and underrepresented structures.

Such a characterization of random RNA pools immedi-
ately suggests methods that can enhance variation in an
RNA pool and can increase the probability of finding a
functional RNA. For example, the random sequence pool
can be designed in a way that will maximize the likelihood
of finding a specific set of motifs by pre-selecting starting

topologies combined with biased pool synthesis; we are
currently exploring this approach (H.H. Gan and
T. Schlick, in prep.). These and other specific proposals
for such a combination of experiment and theory into a
targeted design approach may be the most productive way
to identify rare functional RNAs and contribute to the
discovery and synthesis of novel RNAs.

MATERIALS AND METHODS

Graphical representation of RNA secondary structures

Several tree graphical representations of RNA structures have been
used for analyzing structural similarity (Le et al. 1989; Shapiro
and Zhang 1990) and for estimating RNA’s structural repertoire
(Gan et al. 2003). Our tree representation emphasizes RNA shape
rather than information at the base-pair level (Gan et al. 2003).
Figure 6A shows an unlabeled star-shaped tree for the tRNA
secondary structure.
To represent a secondary structure as an unlabeled tree graph,

four rules apply: (1) A bulge, hairpin loop, or internal loop is
considered a vertex (d) when there is more than one unmatched
nucleotide or noncomplementary base pair. (2) A junction (the
location where three or more stems meet) is considered a vertex.
(3) The 30- and 50-ends of a helical stem are considered a vertex.
(4) An RNA stem, defined as having more than one consecutive
complementary base pair, is represented as an edge (—); the
complementary base pairs are AU, GC, and GU. Detailed descrip-
tions of these rules can be found in our previous work (Gan et al.
2003) and at the RNA-As-Graphs Web resource (Fera et al. 2004;
Gan et al. 2004).

Repertoire of RNA tree topologies

A fundamental advantage of RNA graphical representation is the
enumeration of all possible RNA shapes, including existing and
hypothetical topologies (Gan et al. 2003). Knowing the entire
repertoire of RNA trees allows assessment of motif abundance in
random pools. The complete repertoire of unlabeled trees for any
V has been enumerated analytically by Harary and Prins using a
counting polynomial (Harary and Prins 1959). For V from 1 to
12, the numbers of topologically distinct trees are 1, 1, 1, 2, 3, 6,
11, 23, 47, 106, 235, and 551, respectively. These sets of distinct
graphs represent libraries of theoretically possible RNA topologies
with different sequence lengths. As a rule, RNA length (L) is
related to vertex number, L=20(V� 1). The explicit tree struc-
tures for V< 11 are displayed in Harary (1969); they are also
cataloged and ranked by motif ID and Laplacian eigenvalues in
our RAG Web resource (http://monod.biomath.nyu.edu/rna).
Figure 2 shows complete sets of trees for V up to 7.

Spectral analysis of RNA graphs: Laplacian eigenvalues

The RNA topological properties can be quantitatively analyzed
using spectral techniques in graph theory (Fiedler 1989; Gan
et al. 2004). Such tools establish the relation between a graph
(topology) and the eigenvalues corresponding to the matrix repre-
sentation of the graph (the matrix specifies the degree of
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connectivity among the nodes). Specifically, we use the Laplacian
(V by V) matrix defined as D�A, where A and D are the adjacency
and degree matrices of the graph, respectively. The elements (aij) of
the V3V symmetric matrix A specify the number of links or edges
connecting i and j vertices; the elements (dii) of the square diagonal
matrix D specify the valency or the degree of connectivity of vertex
i. Although a graph’s connectivity pattern is specified by the full
Laplacian spectrum (l1, l2, . . ., lV), the second smallest nonzero
eigenvalue (l2) is a measure of the compactness of an RNA tree
graph. For example, for a specific V, a branched tree has a larger l2
value compared with that for an unbranched structure.

We also assign a motif identification number (ID), derived
from its ordering by l2, to each tree, as shown in Figure 2. The
motif ID is indexed as nm, where n is the motif’s vertex number
(V) and m indicates the order in which the motif occurs within
the V-vertex tree structures.

Diameter of RNA graphs

While l2 is a useful measure of the compactness of a tree graph, the
number of different l2 values increases with the number of vertices.
An alternative and intuitive choice for measuring graph compact-
ness is to use graph diameter. The diameter (d) of a tree graph is the
largest number of vertices that must be traversed in order to travel
from one vertex to another (Chung 1989). Formally, the graph
diameter is related to l2 by the following lower and upper bounds,

d � 4

n�2

d � 2

ffiffiffiffiffi
�n

�2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

4�

r
þ 1

" #
log�

n

2

h i

where a is any real number >1, and the choice of n depends on a

(Mohar 1991). These bounds show that d and l2 likely have an
inverse relationship, although no equality relation has been found.

Figure 6B displays three five-vertex tree graphs and their dia-
meters; the unbranched tree has the largest diameter (d=4,

l2 = 0.3820), while the highly branched tree
has the smallest diameter (d=2, l2 = 1.000).
When the number of vertices is small (seven
or less), the diameter and the second eigen-
value provide similar measures of compact-
ness. That is, as the size of the diameter
decreases, the size of l2 increases. Observe
that while larger values of l2 represent the
more compact structures, smaller values of
the diameter represent the more compact
structures. It is also important to note that
in the case that a structure has eight or more
vertices, the diameter of a graph and the
second eigenvalue are no longer equivalent
measures of compactness (data not shown).

Converting RNA structures
to tree graphs

We use the Vienna RNAfold algorithm to
determine the 2D RNA fold and its corre-

sponding free energy (Hofacker 2003). The topology of the fold is
determined using its tree graph and its (Laplacian) spectral prop-
erties as implemented in our RNAfilter program. RNAfilter uses
the base-pairing information in the .ct file generated by the
RNAfold program and tree graph rules to convert a secondary
fold into a tree graph and then computes its spectral properties
(e.g., Laplacian eigenvalues). Our automated computational pro-
cedure is efficiently executed by determining consecutively each
fold and its corresponding tree graph, approximately represented
as a complete spectrum of Laplacian eigenvalues.

Sources of error in computational methodologies

There are several possible sources of error that can potentially
affect our distributions of structural motifs, including the algo-
rithm for converting secondary structures into tree graphs (RNA
filter program), pool size, pseudorandom number generator, and
RNA folding programs:

1. In each pool, the RNAfilter program could not properly con-
vert <0.5% of the sequences into tree diagrams (Fig. 2) because
of unusual base-pairing configurations. Discarding such a
small fraction of sequences does not affect our conclusions.

2. Our pool sizes are of order 104 sequences compared to the
�1013 synthesized in typical in vitro selection experiments.
However, our analyses in Table 1 of 10,000-member versus
1,000,000-member 40-nt pools do not suggest a marked dif-
ference for the ranges we consider. This is a consequence of our
use of simplified (coarse-grained) tree graphs.

3. The pseudorandom number generator may cause some error,
since no generator is truly random. However, the generator
used here is a proven one that has passed a battery of tests for
randomness and has a periodicity of 219937� 1, or �106002

(Matsumoto and Nishimura 1998).
4. Finally, all programs that determine RNA secondary structure

from sequence are imperfect. Folding algorithms cannot con-
sider the effects of divalent ions and solvents on RNA folding.

FIGURE 6. (A) The star-shaped six-vertex tree diagram represents a tRNA structure with five
stems. (B) Diameter (d) and second smallest Laplacian eigenvalue for five-vertex tree graphs.
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Furthermore, the RNAfold algorithm cannot fold a sequence
into a pseudoknot, even if this is the ideal structural conforma-
tion. This is a concern because functional RNA pseudoknots
have been found in random pools (Stuhlmann and Jaschke
2002). Although pseudoknot-folding algorithms exist (Rivas
and Eddy 1999), the folding of large sets of sequences as
done here is not yet feasible. Thus, our results are subject to
the limitations of current 2D structure prediction algorithms.
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