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ABSTRACT

Based on the virtual bond representation for the nucleotide backbone, we develop a reduced conformational model for RNA.
We use the experimentally measured atomic coordinates to model the helices and use the self-avoiding walks in a diamond
lattice to model the loop conformations. The atomic coordinates of the helices and the lattice representation for the loops are
matched at the loop–helix junction, where steric viability is accounted for. Unlike the previous simplified lattice-based models,
the present virtual bond model can account for the atomic details of realistic three-dimensional RNA structures. Based on the
model, we develop a statistical mechanical theory for RNA folding energy landscapes and folding thermodynamics. Tests against
experiments show that the theory can give much more improved predictions for the native structures, the thermal denaturation
curves, and the equilibrium folding/unfolding pathways than the previous models. The application of the model to the P5abc
region of Tetrahymena group I ribozyme reveals the misfolded intermediates as well as the native-like intermediates in the
equilibrium folding process. Moreover, based on the free energy landscape analysis for each and every loop mutation, the model
predicts five lethal mutations that can completely alter the free energy landscape and the folding stability of the molecule.
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INTRODUCTION

Accurate prediction for RNA folding stabilities and confor-
mational changes requires two key ingredients: the reliable
energy parameters and a rigorous statistical mechanical
model. These two ingredients are inter-related. To extract
the energy parameters from thermal melting experiments
requires a statistical mechanical model, and to use the
statistical mechanical model to predict RNA thermody-
namics requires energy parameters. The folding of simple
oligomers is usually two-state. But the conformational changes
for larger RNAs are often multistate. Therefore, we need
a statistical mechanical model that can account for the statis-
tics of the complete conformational ensemble, including all
the possible intermediates.

Previous models for RNA secondary structure thermo-
dynamics use simplified assumptions for the conforma-
tional entropies. For example, McCaskill’s algorithm
(McCaskill 1990) uses sequence and temperature-indepen-
dent loop entropy and assumes an unphysical linear depen-
dence of loop entropy on the loop size for multibranched

loops. More recently, a polymer principle statistical
mechanical model (Chen and Dill 1995, 1998, 2000;
Zhang and Chen 2001) for RNA was developed with an
aim to have a more physical treatment for the chain
entropy. The model accounts for the complete conforma-
tional ensemble and can treat the excluded volume inter-
ferences between different structural subunits. The model
gives reasonably good predictions for RNA secondary struc-
ture folding thermodynamics. However, the model is based
on simple two-dimensional square lattice or three-dimen-
sional cubic lattice chain conformations. Although the lat-
tice conformations can give useful estimations for the
statistics of realistic conformations, they bear no direct
correspondence to the realistic structures and are thus
unable to represent any realistic structural details. In the
present study, we go beyond the previous lattice models by
developing an atomic RNA conformational model for real-
istic RNA folds.

Our model relies on the following two observations for
RNA structures. First, because the C–O torsions in the
nucleotide backbone tend to be in the trans (t) rotational
isomeric state, both the P–O5–C5–C4 bonds and the C4–C3–
O3–P bonds in a nucleotide backbone are approximately
planar. This makes it possible to describe the nucleotide
backbone conformations through two effective virtual bonds
P–C4 and C4–P (Olson and Flory 1972; Olson 1975, 1980).
Second, RNA backbones and the virtual bonds are rotameric
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(Duarte and Pyle 1998; Duarte et al. 2003; Murray et al.
2003). Therefore, we can use rotational isomeric states
(RIS) of the virtual bonds to describe the RNA backbone
conformation. We use the experimentally measured virtual
bond coordinates to model the helix. For the loop region, of
which the virtual bonds are more flexible, we use self-avoid-
ing random walks in a diamond lattice to model the con-
formations.

The virtual bond/diamond lattice reduced chain repre-
sentation developed here allows us to model RNA fold-
ing thermodynamics based on the realistic structures with
atomic details. Experimental tests show that the present
model gives improved predictions for the equilibrium fold-
ing thermodynamics and the native structures than the
previous models. As an application of the model, we com-
pute the free energy landscapes for the P5abc domain of the
Tetrahymena group I ribozyme. We find a native-like and a
misfolded intermediate in the folding process. Moreover,
by examining the landscapes for all the loop mutants, we
identify five hot spots whose mutation would cause drastic
changes in the free energy landscapes and the folding ther-
modynamics.

RNA FOLDING THERMODYNAMICS AND
THE LOOP FREE ENERGY

At the center of the folding thermodynamics is the partition
function. The partition function Q(x) is defined as the
weighted sum over all the possible conformational states:

Q xð Þ ¼ �confðxÞe
�E=kBT ð1Þ

where Sconf(x) is the sum over all the possible conformations
described by the structural parameter x, E is the energy of
the conformation, kB is the Boltzmann constant, and T is the
temperature. For RNAs, x can be the sugar-phosphate back-
bone torsions and glycosidic torsional angles, or the number
of base pairs, or the like. The partition function gives the free
energy landscape F(x) = �kBT lnQ(x) as a function of the
conformational degrees of freedom described by the struc-
tural parameter x. The free energy landscape directly relates
the free energy and the conformational stabilities to the
molecular conformations.

Because RNA secondary structures are predominantly
stabilized by the nearest-neighbor interactions, we use
base stacks instead of base pairs to define RNA secondary
structures. To compute the partition function for a given
nucleotide sequence, we first generate all the possible sec-
ondary structures defined by the base stacks. The structures
are generated through two types of base stacks: the canoni-
cal base stacks and the mismatched base stacks. These two
types of base stacks are the possible stable base stacks in an
RNA secondary structure. Here a base stack is canonical if
both base pairs of the stack are A-U, G-C, or G-U and
mismatched if only one of the base pairs is A-U, G-C, or

G-U. The partition function is given by the sum over all the
possible structures:

Q ¼X
structures

e�ðDHconf�TDSconf Þ=kBT ð2Þ

Here DHconf and DSconf are the enthalpy and entropy of the
structure.

In the partition function calculation, we generate con-
formations by enumerating all the possible arrangements of
the canonical and mismatched base stacks. We disallow the
formation of other noncanonical base stacks, which are
unstable and are unlikely to form. According to the base
stacks, an RNA secondary structure can be divided into base
stacks and unstacked loops. Here an unstacked loop should
be understood as a closed conformation that contains
neither the canonical nor the mismatched base stack.
Since other types of base stacks are disallowed, an unstacked
structure is equivalent to a loop without any intra-loop base
stacks. Because an unstacked loop contains no intra-loop
canonical or mismatched base stack, it can be assumed to
have zero enthalpy. As a result, DHconf comes from con-
tributions of the stacked regions only:

DHconf ¼
X
stacks

DHstack ð3Þ

Here DHstack is the enthalpy of a stack. On the other hand,
both the unstacked and the stacked regions contribute to
DSconf, so we have

DSconf ¼
X

stacks

DSstackþ
X

unstacked loops

DSunstacked ð4Þ

Here DSstack and DSunstacked are the entropies of a stack and
of an unstacked loop, respectively. From the above two
equations, the unstacked loop contributes to the stability
through the entropy DSunstacked.

The stacking parameters (DHstack, DSstack) can be obtained
from Turner’s experimental data (Serra and Turner 1995).
One might expect that the entropy DSunstacked of an
unstacked loop can also be obtained from the experimentally
measured loop entropy parameters. However, as explained in
the following, DSunstacked cannot be obtained from Turner’s
experimental data. Instead, it can only be calculated from a
computational model. The experimentally measured loops
are often implicitly defined as the closed chain conforma-
tions that do not contain (stable) canonical base stacks in
their interior. In other words, depending on the loop
sequence, an experimentally measured loop can contain mis-
matched intra-loop base stacks. In contrast, an unstacked
loop does not contain any canonical or mismatched base
stack. As a result, DSunstacked cannot be obtained from the
experimentally measured loop entropies, and it can only be
obtained through theoretical modeling. In this paper, we
develop an RNA conformational model from which
DSunstacked can be calculated.
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As a special case of Equation 2, the partition function of a
loop can be calculated as the sum over all the possible
arrangements of the intra-loop mismatched base stacks for
a given loop sequence. The intra-loop base stacking may
cause stabilization/destabilization in the loop and thus can
lead to the temperature and sequence dependence of the
loop enthalpy and entropy. In fact, the temperature-depen-
dent loop enthalpy and entropy can cause a nonzero heat
capacity change of the loop formation, Cp = dHloop/dT. In
contrast, the entropy DSunstacked of an unstacked loop is
sequence and temperature independent.

A previous model (Chen and Dill 2000; Zhang and Chen
2001), which is based on unrealistic square and cubic lattice
chain conformations, can also account for the mismatched
base stacks. However, that model cannot treat realistic RNA
conformations. Moreover, that model requires fitted scaling
parameters to convert the lattice chain entropy into realistic
chain entropy. The model developed in the present study is
based on realistic RNA structures with atomic details and
can thus directly give the chain entropies and free energies
without using any fitting parameters.

MIXED VIRTUAL BOND/DIAMOND LATTICE
CHAIN REPRESENTATION

Virtual bond representation of RNA conformation

For secondary structures, the stability is determined by the
additive local interactions, thus only the local structural
details (for the base stacks and loops) are important. For
tertiary structures, however, because the
local interactions are coupled to the
nonlocal structures, the modeling of
the global three-dimensional structure
is essential for the study of tertiary
folding. In this section, we develop a
(reduced) three-dimensional RNA con-
formational model by using the virtual
bonds. Although in this paper we focus
on the secondary-structure RNA fold-
ing, the model developed here would
play an even more important role in
the study of the tertiary-structure fold-
ing, where a conformational model for
the global fold is indispensable.

RNA nucleotide conformations can
be described by six torsional angles (a,
b, g, d, e, and z in Fig. 1A). Since the
torsions about the two C–O bonds (b

and e) are preferably in the trans (t)
rotational isomeric state, the bonds P–
O5, O5–C5, and C5–C4 and bonds C4–
C3, C3–O3, and O3–P are planar in the
respective planes. Therefore, for each set
of the coplanar bonds, we can define an

effective virtual bond (Olson 1975, 1980): P–C4 and C4–P
(the dashed lines in Fig. 1A), respectively. With the virtual
bonds, the original six-bond nucleotide is reduced to a two-
bond unit.

The virtual bonds have bond length of �3.9 Å (Rich et al.
1961) and have bond angles of (bP and bc) (see Fig. 1B) in
the range of 90�–120� as determined from the known RNA
structures (Malathi and Yathindra 1981). In terms of the
virtual bonds, a three-dimensional RNA conformation can
be represented by the torsional angles (Z and y in Fig. 1B)
of the virtual bonds. Systematic examination of the virtual
bond torsions (Z and y) for the known RNA structures
shows that the torsions are rotameric (Duarte and Pyle
1998; Duarte et al. 2003; Murray et al. 2003).

RNA conformational ensemble can be generated through
the random walk of the virtual bonds in the three-dimen-
sional space. Since the torsional angles are defined in the
coordinate system local to the backbone conformation, the
torsional angles are quite flexible and convenient to use as
the chain is configured in the three-dimensional space.
Moreover, the rotameric nature of the torsional angles
makes it possible to generate the conformations by enumer-
ating all the possible rotameric states of the torsional angles.

How do we obtain the Cartesian coordinates of the P and
C4 atoms of the virtual bonds from the torsional angles?
The method that we use here is similar to the matrix
formalism developed in Olson (1975). The present theory
is based on the torsional angles instead of the dihedral
angles used in Olson (1975). For a given set of virtual
bonds (bi in Fig. 1C), the coordinate xN for the N-th

FIGURE 1. (A) The virtual bond scheme for nucleotide backbone (Olson 1980). (B) The bond
angles (bC, bP) and the torsional angles (Z, y) for the virtual bonds. (C) A vector model used to
determine the atomic coordinates from the torsional angles for the virtual bonds in B.
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atom, which can be either C4 or P, is determined by the sum
of the N bond vectors of the virtual bonds:

xN ¼ xo þ
X
i¼1

N
li b̂i ð5Þ

where li is the bond length of the virtual bond bi and b̂i is
the unit vector of bi. Assuming that the bond bi is related
to the preceding bond bi�1 through a bond angle yi and a
torsional angle ci, we have b̂i = T(yi, ci) � b̂i�1, which
leads to

b̂i ¼ �i
j¼2 T �j ; �j

� �
� b̂1 ð6Þ

where the matrix T is defined as

T �; �ð Þ ¼
1 0 0
0 cos� � sin�
0 sin� cos�

2
4

3
5 � cos � � sin � 0

sin � cos � 0
0 0 1

2
4

3
5

For example, the coordinate of the P2 atom in Figure 1B
(x2 in Fig. 1C) can be computed from the following equa-
tion:

xP2
= xP1

+ l1b̂1 + l2T(p � bP, Z)�b̂1,

where l1 and l2, both equal to 3.9 Å, are the virtual bond
lengths for P1–C4 and C4–P2, respectively, and Z and bP are
the torsional angle and the bond angle between bonds
P1–C4 and C4–P2.

Helix

Based on the systematic analysis for
known RNA helices, Duarte and co-
workers (Duarte and Pyle 1998; Duarte
et al. 2003) found that the virtual bond
torsion angles (Z, y) in the helix are
close to 170�, 210�. Moreover, we obtain
the bond angles (bP and bc) of the vir-
tual bonds in the rigid double-stranded
helix regions from the NDB database in
http://ndbserver.rutgers.edu/. Specifi-
cally, from the A-RNA helix crystal
structure measured by Biswas et al.
(1998), we find that (bP, bc)
= (105� 6 5�, 95� 6 5�). With the tor-
sional angles (Z, y) and the bond angles
(bP, bc), we can generate the coordi-
nates for each strand of the helix. Since
such generated coordinates for a helical
strand are defined in the coordinate sys-
tem local to the strand conformation
itself, we need to perform a transforma-
tion in order to obtain the coordinates
for both strands in a consistent coordi-
nate system.

To generate the atomic coordinates for an RNA helix, we
first determine the atomic coordinates for one of the
strands s by using Equation 5 with the torsional angles
equal to 170� and 210� for the respective virtual bonds.
We note that the two pairing strands s and s0 would have
identical atomic coordinates in their respective coordinate
systems (x, y, z) and (x0, y0, z0); see Figure 2A. Here the x (x0)
axis is parallel to the direction of the virtual bond, and the y
(y0) axis is located in the plane defined by the two nearest-
neighbor virtual bonds. The direction of the y (y0) axis is
chosen to make an acute angle with the preceding bond
vector. To obtain the atomic coordinates of both the s and
the s0 strands in the same (x, y, z) coordinate system, we
compute the atomic coordinates for strand s0 from the
coordinates of strand s through s ! s0 translational and
rotational transformations. The s ! s0 transformations
can be obtained from a model system consisting of three
(sequential) atoms P–C4–P on each strand: for example, the
P and C4 atoms of U21 and the P atom of A22 in strand s
and the P and C4 atoms of A16 and the P atom of A17 in
strand s0 in Figure 2A. We found that the rotational trans-
formation between the two coordinates systems is given by

R ¼
�0:142 0:560 �0:816
�0:990 �0:079 0:119
0:003 0:826 0:566

2
4

3
5

With the transformation matrix, the coordinate of an
atom (e.g., P of C17 in Fig. 2A) in s0 in the (x, y, z)
coordinate system is given by col(xs0, ys0, zs0) = R � col
(x0s0, y0s0, z0s0) + d, where (x0s0, y0s0, z0s0) is the coordinate of

FIGURE 2. (A) The coordinate system for a base pair (U21-A16) in the helix. s and s0 are the
pairing strands. The gray and red colors denote the C4 and the P atom in the helix, respectively.
The magenta color denotes the loop region. (B) Helix–bulge loop junction. The deleted bonds
(3) show the fixed configuration of the virtual bonds in the A-form helix without the bulge
loop. These bonds become flexible in the bulge loop conformation (see the blue bonds). The
blue and magenta colors denote the bonds in the bulge loop. The P and C4 coordinates in the
helix are from the crystal structure of r(CGUAC)dG sequences (Biswas et al. 1998).
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the atom in the (x0, y0, z0) coordinate system and d is the
displacement between the two strands.

Loop

For loops, the virtual bonds P–C4 and C4–P are less
restricted than in helices. We use the diamond lattice to
model the loop conformations by configuring the P and C4

atoms of the virtual bonds on the diamond lattice sites. The
bond length of the diamond lattice is equal to the length of
the virtual bonds, which is 3.9 Å. We use the diamond
lattice because the torsional angles in the diamond lattice
are the same as the usual gauche+ (g+), trans (t), and
gauche� (g�) rotational isomeric states (Flory 1969; Mattice
and Suter 1994; Rapold and Mattice 1995) for polymers.
Therefore the diamond lattice can provide a coarse-grained
description for the realistic loop conformations. In addi-
tion, the bond angle 109.5� in the diamond lattice lies well
in the bond angle range 90�–120� of the virtual bonds in the
experimentally measured RNA structures. With the dia-
mond lattice model, we can generate the ensemble of loop
conformations through exhaustive self-avoiding random
walks of the virtual bonds in the diamond lattice.

Loop–helix connection

How do we connect a loop conformation in the diamond
lattice to an off-lattice helix structure? We map the atoms in
the helix onto the nearest diamond lattice site. Through such
an off-lattice to diamond lattice transformation, we can
model the helix and loop conformations in a consistent
diamond lattice framework. Such transformation would
cause small structural distortion for the helix. We found
that for an A-form RNA helix, the use of the diamond lattice
would cause a root-mean-square (RMS) deviation of�2.2 Å.

We note that the present virtual bond/diamond lattice
model is fundamentally different from the previous simple
square and cubic lattice models. In the previous lattice mod-
els, the lattice sites and lattice bonds do not bear any physical
correspondence to the realistic RNA struc-
tures. In contrast, in the present model,
each lattice site is the coarse-grained
approximation for the coordinate of the
C4 or the P atom, and each lattice bond
corresponds to a realistic nucleotide vir-
tual bond. Thus the model enables model-
ing for the realistic RNA conformations
with atomic details.

Loop entropies

Hairpin, internal, and bulge loop entropy
and experimental comparisons

A viable loop conformation must be com-
patible with the connected helix structure

(including the volume exclusion effect). To account for the
viability of the loop–helix connection, we require the loop and
the helix conformation to be compatible with the configura-
tion of the base pair that closes the loop. For example, for the
hairpin loop in Figure 2A, the closing base pair is C(13)–
G(24). When enumerating the loop conformations, we
assume that the configuration of the C13–G24 base pair,
which is defined through the configuration of the double
bonds P(G24)–C4(G24)–P(25) and P(C13)–C4(C13)–P(14),
is fixed to the conformation in a helix.

Through exhaustive enumeration of viable loop confor-
mations, we compute the conformational count Vloop for
the loop and Vcoil for the coil. From Vloop and Vcoil, we can
obtain the loop entropy as DSloop = kB ln(Vloop/Vcoil). Fig-
ure 3 shows the comparison between the calculated and
experimentally measured loop entropies (Serra and Turner
1995; Serra et al. 1997) for different loop sizes.

The theory–experiment comparisons are not perfect. One
of the reasons for the deviation of the theory from the
experiment is because the experimentally measured loop
entropy can be sequence dependent because of the possible
mismatched intra-loop base stacks, while the stabilizing
energies from the intra-loop base stacks are completely
ignored in the enumeration for the loop conformations.
Therefore we expect that the enumerated DSloop is closer
to the unstacked loop entropy than to the experimentally
measured loop entropy. In fact, the experimental loop
entropy parameters are often derived from the average of
many sequences (Serra et al. 1997). Nevertheless, the calcu-
lated DSloop values are quite close to the experimentally
measured loop entropies, especially for larger loops.

For an internal loop, there exist two helix–loop junctions.
To compute the conformational entropy, we fix the config-
uration for a pair of the P–C4–P atoms in a junction and
consider all the possible configurations for the other junc-
tion. Specifically, we use the 12 symmetry groups in a dia-
mond lattice to generate the configurations of the pairing P–
C4–P atoms in the second junction. From Figure 3B, we find

FIGURE 3. The comparison between the experimentally measured loop entropies (+) and the
calculated ones (D) for (A) hairpin loops, (B) internal loops, and (C) bulge loops. The
experimental results for internal and bulge loops are from Serra and Turner (1995) in 1 M
NaCl solution. For hairpin loops with loop length >3, we use the parameters in Serra et al.
(1997).
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that our calculation underestimates the conformational
count (and thus overestimates |DSloop| for loops <6 nt. This
may be caused by the assumed fixed configuration of the
closing base pairs of the loop, because there may exist other
loop–helix connection modes not considered in the model.

For a bulge loop, which is connected to a strand of a
helix, we assume that the helix is not distorted by the bulge.
Upon the formation of the bulge loop, the two rigid virtual
bonds (see the bonds marked with 3 in Fig. 2B between the
C4 atoms of U21 and A22) in the original helix are now
replaced by the flexible bonds in the bulge loop (see the two
C4–P bonds in blue color in Fig. 2B). As shown in Figure 3,
the predicted bulge loop entropy agrees with the experi-
mental result for loops >4 nt. For smaller bulge loops, the
assumption about the unperturbed rigid helix structure can
lead to an overestimation for the entropy. In fact, recent
experimental NMR measurement shows that the C4–C4

distance can be �9 Å for the closing bases (e.g., U21 and
A22 in Fig. 2B; Deng et al. 2001).

For loops with >9 nt, exact computer enumeration for all
the possible self-avoiding loop conformations is impossible.
We obtain the entropies for larger loops through extrapola-
tion from smaller loops and find DSloop = A ln(l) + B/l + C.
Here l is the loop length, and (A, B, C) = (1.09, �5.08, 7.00)
for the hairpin loop, (1.54, 5.36, 5.70) for the internal loop,
and (1.39, �2.37, 6.41) for the bulge loop, respectively.

Conformational entropy for loops with base triple

The present model enables treatment for the tertiary folds.
As an example, we compute the entropy of a bulge loop that
forms a U-A-U base triple in Tar RNA after binding with
arginine or Tat peptide (Puglisi et al. 1992, 1993; Tao et al.
1997; Long and Crothers 1999). In Figure 4A, we show the
secondary structure of a Tar RNA. NMR measurement
indicates that the U23, A27, and U38 form a base triple
(Long and Crothers 1999). We are interested in the entropy
change upon the formation of the triple base pair. We
obtain the atomic coordinates for the C4 atoms for U23,

A27, and U38 from the NDB database (Deng et al. 2001)
and fix the atoms to the respective nearest sites in the
diamond lattice; see Figure 4B. Enumeration of the self-
avoiding random walk gives the entropy shown in Figure
4C. Our result shows that the formation of the base triple
would cause an entropy decrease of �0.6 kcal/mol K�1,
regardless of the loop size.

STATISTICAL THERMODYNAMICS OF RNA
SECONDARY STRUCTURE

Prediction of the lowest free energy structure

Based on the virtual bond RNA conformational representa-
tion, we develop a statistical mechanical (partition function)
model for RNA folding thermodynamics; see the Appendix
for details. Furthermore, based on the recursive relations for
the partition functions (Eqs. 8–11), we develop a structure
prediction method similar to Zuker’s mfold algorithm. The
algorithm first finds the structure that gives the largest parti-
tion function (= lowest free energy) for the 7-nt segment of
the last seven nucleotides in the 30-end of the chain, then for
the segment of the last eight nucleotides, then the last nine
nucleotides, and so on until the final segment is the entire
sequence. The starting 7-nt segment corresponds to the
(minimum) 3-nt hairpin loop plus the four nucleotides in
the closing base stack. We find the optimal structures, which
have the maximum partition functions, through the recur-
sive relations as in Equations 8–11, where the partition
functions and the structures are now replaced by the optimal
ones. In each recursive step, the optimal partition function
and structure of each type (five types: the closed conforma-
tions and the four types of open conformations) are stored
and used in the next step. In this way, we can efficiently find
the optimal structure for each type.

We find that in general, the present model can give
quite accurate predictions for RNA secondary structures.
As an example, we apply the model to predict the stable
structure for Escherichia coli 5S rRNA at 37�C. In Figure 5,

we show the lowest free energy struc-
ture with the enzymatic cleavage con-
straints (Speek and Lind 1982). The
predicted structure agrees exactly with
the experimentally measured structure.
As a comparison, another structure
prediction model (Mathews et al.
1999) predicts 86.8% of the native
base pairs.

RNA secondary structure folding
thermodynamics

From the partition function Q(T), we can
compute the heat capacity C(T) melting
curves:

FIGURE 4. (A) The secondary structure of Tar RNA. (B) The configuration for a U-A-U triple
base. (C) The entropic difference (S/kB) for bulge loops with and without the U-A-U triple base.
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CðTÞ ¼ @

@T
kBT

2 @

@T
lnQðTÞ

� �

In addition, from the conditional partition function Q(i,
j, T) for the ensemble of conformations with base pair (i, j),
we can compute the probability Pij(T) for the formation of
the (i, j) pair:

PijðTÞ ¼
Q i; j;Tð Þ
QðTÞ

From the distribution of the base-pairing probability, we
can obtain the stable structures for a given temperature T.
We find that the structures (e.g., the E. coli 5S rRNA in Fig.
5) obtained from the base-pairing probability agree with
the lowest free energy structures.

From the free energy landscape, we can predict the ther-
mal stability and the equilibrium folding/unfolding path-
ways for a given nucleotide sequence. To calculate the free
energy landscape defined in Equation 1, we first choose a
proper structural parameter, x. We call the base pairs that
exist in the native structure as native base pairs and denote
all the other base pairs as non-native base pairs. We choose
x = (n, nn) (the number of native base pairs, the number of
non-native base pairs). From the conditional partition
function Q(n, nn) for all the conformations that have n
native base pairs and nn non-native base pairs, we can
compute the free energy landscape F(n, nn) = �kBT lnQ(n,
nn). The minima of the landscape correspond to the stable

well-populated states. From the change of the free energy
landscape, we can identify the structural transitions in the
equilibrium folding.

As an example, we investigate the folding thermody-
namics for four short RNA sequences: 72 RNA and its
two mutants 72-C RNA and 72-14 RNA (Gluick and Dra-
per 1994), and B RNA (Laing and Draper 1994); see Figure
6. The heat capacity melting curves of these molecules have
been experimentally measured (Gluick and Draper 1994;
Laing and Draper 1994) in the 100 mM KCl solution con-
dition (except for B-RNA, which has 0.1 mM added
MgCl2). Since the stacking enthalpy and entropy param-
eters used in our model are for the 1 M NaCl salt condition,
our predicted melting temperature can be higher than in
100 mM KCl. The melting temperature in 1 M KCl is about
DTm = 16�C higher than in 100 mM KCl for 72 RNA
(Gluick and Draper 1994). Assuming the same DTm be-
tween 1 M Na+ and 100 mM K+ for the two mutants 72-C
RNA and 72-14 RNA, which have a similar size and shape
to 72 RNA, we uniformly shift the calculated melting curves
by 16�C to account for the ion effect.

The 72-C RNA is predicted to undergo a sequential
unfolding through unzipping from the tail, while the 72
RNA is predicted to unfold through the formation of a
misfolded state. In Figure 7, we show the equilibrium folding
pathway for 72 RNA structures. The structures are predicted

FIGURE 5. The density plot for the base-pairing probability and the
predicted structure for E. coli 5S rRNA. Circles indicate single-
stranded nucleotides as indicated by enzymatic cleavage (Speek and
Lind 1982). The row and column indexes in the density plot are the
nucleotides along the sequence.

FIGURE 6. The predicted native structure and the theory–experiment
comparisons for the heat capacity melting curves for RNA secondary
structures: (A) 72 RNA, (B) 72-C RNA, (C) 72-14 RNA, and (D) B
RNA. The experimental melting curves (A–C) are from Gluick and
Draper (1994) and (D) from Laing and Draper (1994).
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from the base-pairing probability for different temperatures.
At T = 45�C, we find two equal free energy minima on the
landscape. Our base-pairing probability calculation shows
that the two minima correspond to the low temperature
(0�C) native structure and a newly formed misfolded struc-
ture. The main transition shown in the melting curve corre-
sponds to the disruption of the macrostate consisting of the
(coexisting) native and the misfolded state.

The UV melting profile of 72-14 RNA
is quite different from that of 72 RNA
and of 72-C RNA. The experimental UV
curve clearly shows a second transition
around 70�C after the main melting
transition. In the predicted heat capacity
curve, the second transition, shown as a
small change in the curvature of the
melting curve, is much less pronounced.
The difference between the predicted
curve and the experimental curve may
be caused by the difference between the
heat capacity (theory) and the UV
absorbance (experiment). In addition,
the experiment shows that an increase
in the ionic strength weakens the second
transition (Gluick and Draper 1994).
Therefore, the difference in ion condi-
tions (1 M in theory vs. 100 mM in
experiment) may also contribute to the
theory–experiment difference. The base-
pairing probability at different tempera-
tures indicates two distinctive structural
change at temperatures around 60�C
and 70�C for the unfolding of stem II
and stem I, respectively (see Fig. 8). Our
results are consistent with the experi-
mental findings (Gluick and Draper
1994).

Both our theory and the experiment
give two peaks in the melting curve for

B RNA (Laing and Draper 1994). Our base-pairing prob-
ability analysis shows that the low-temperature transition
corresponds to the melting of helices I and II and the high-
temperature transition corresponds to the unfolding of
helix III after helices I and II are melted.

Our present theory gives improved predictions for the
melting curves compared to the previous simple lattice-
based models and McCaskill’s algorithm-based Vienna soft-

FIGURE 7. The density plots for the base-pairing probabilities and the stable structures for the
wild-type 72 RNA at different temperatures. An intermediate state appears at 45�C. The row
and column indexes in the density plots denote the nucleotides along the sequence.

FIGURE 8. The density plot for the base-pairing probabilities and the stable structures for 72-14 RNA at different temperatures. The row and
column indexes in the density plots are the nucleotides along the sequence.
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ware package. For example, the present theory predicts
higher cooperativity (sharper transitions) for the melting
than the previous two-dimensional lattice models, which
overestimates the breadth of melting curves (Chen and Dill
2000). The improved predictions may be attributed to several
factors that are considered in the present model: (1) All the
possible mismatched base stacks are accounted for in the
partition function calculation. (2) A realistic conformational
model with atomic details is used. (3) Base pairs in a single
nucleotide bulge loop are assumed to be stacked if the pre-
vious and the following stacking base pairs are either wobble
(G-U) or Watson-Crick (G-C or A-U). A similar assumption
has been used in the previous study for RNA structural pre-
diction (Jaeger et al. 1989). (4) Since the GNRA (N = A, C,
G, or U and R = A or G) tetraloop shows a distinctive excess
stability (Heus and Pardi 1991; Antao and Tinoco 1992;
Correll and Swinger 2003), we assign an additional stabilizing
enthalpy of �2.5 kcal/mol to the GNRA tetraloop (Mathews
et al. 1999). (5) The single mismatch energy parameters
(Kierzek et al. 1999) are used.

THERMAL STABILITY AND COOPERATIVITY FOR
THE P5ABC REGION OF TETRAHYMENA GROUP I
RIBOZYME

The P5abc domain plays a key role in the activity of the
Tetrahymena ribozyme tertiary folding (Joyce et al. 1989;
van der Horst et al. 1991). The structural details of the
truncated P5abc subdomain (tP5abc) both with and with-
out Mg2+ have been fully investigated by NMR experiments
(Thirumalai 1998; Wu and Tinoco 1998; Zheng et al. 2001),
which shows the tertiary interactions between the unpaired
bases of the secondary structure. Furthermore, nondenatur-
ing gel electrophoresis and NMR spectroscopy show that
single point mutations can disrupt the tertiary interaction
of the tP5abc subdomain (Silverman et al. 1999), a trun-
cated P5abc subdomain. In this section, we apply the model
to investigate the stability and the equilibrium folding path-
way for the secondary structure of the P5abc domain of the
Tetrahymena group I ribozyme. We also perform exhaus-
tive mutations for the three loop regions of P5abc and
investigate how the mutations affect the thermal stability
and folding cooperativity. Such information may be useful
for the investigation of the Tetrahymena ribozyme.

The heat capacity melting curve for P5abc (see Fig. 9a)
shows a main single peak at Tm � 80�C and a minor
transition around 67�C. To examine the structural changes
in the melting process, we compute the free energy land-
scape F(n, nn, T) for different temperatures; see Figure 9.

For T = 0�C, as shown in Figure 9b, the free energy
landscape has a single minimum N, which is the native
structure. Both our base-pairing probability analysis and
the structural prediction algorithm predict the same native
structure, and the predicted structure is in good agreement
with the NMR experiment (Wu and Tinoco 1998; Zheng et

al. 2001). We label the three loops in the native structure as
L5a, L5b, and L5c, respectively. The native structure defines
the native base pairs.

At T = 67�C, we find three free energy minima N, X, and
Z on the free energy landscape; see Figure 9c. X is a native-
like state and is formed through partial unzipping of N
from the tail, while Z is a misfolded state and is formed
through rezipping of the unfolded tail parts in X. The
minor transition at 67�C shown in the melting curve cor-
responds to the structural change from N to X and Z. The
emergence of the multiple minima on the landscape (and
the corresponding native-like and misfolded intermediates)
gives rise to noncooperative (i.e., non-two-state) RNA struc-
tural transitions. The rugged landscape and the structural
metastability are supported by extensive experimental stud-
ies (Zarrinkar and Williamson 1994; Li and Turner 1997;
Pan et al. 1999).

At T = 100�C, the free energy landscape has a single
global minimum corresponding to the fully unfolded state
U. The main transition at 80�C corresponds to the com-
plete unfolding of the molecule.

To identify the hotspots that are critical to the free energy
landscape, we perform exhaustive mutations for each and
every nucleotide in the loop regions and examine the free
energy landscape for each mutation. To quantify the free
energy landscape change, we define parameter DF as a
measure for the RMS change of the landscape between the
mutants and the wild-type sequence:

DF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n�nn Fðn; nnÞ � F�ðn; nnÞ½ �2

Ns

s

where n and nn are the number of the native and of the
non-native base pairs defined according to the wild-type
sequence native structure, respectively. SnSnn is the sum
over all the (relatively stable) states on the landscape of
which F(n, nn) is within 3kBT above the global minimum
on the landscape. Ns is the number of such low free energy
points on the landscape. F*(n, nn) is the free energy of the
wild-type sequence. Larger DF means a greater change in
the free energy landscape due to the mutation. By defini-
tion, DF is zero for wild-type sequence. In the calculation
for DF, F*(n, nn) and F(n, nn) are evaluated as the free
energies relative to the global minima on the respective
landscapes. Such calculated DF would be able to provide
a quantitative measure for the landscape shapes. For exam-
ple, DF = 0 if the mutation causes only a uniform shift of
the free energy landscape without altering the shape. Muta-
tions that give large DF are identified as lethal mutations
that would likely cause large changes in the native structure
and the folding thermodynamics. Figure 10A shows the
results of DF for all the possible mutations. From the
change of the energy landscape, we find the following lethal
mutations in the loops: A62C, A64G, A65G in loop L5a and
A49C, A50G in loop L5c.
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Within a valley on the landscape, the conformations
differ usually only by one or two base pairs. For example,
in the macrostate of native minimum N, A70 can either
base-pair with U8 or with U9, and both conformations
reside in the same valley of the native minimum N; see
Figure 9b. Therefore, we treat these conformations in the
same valley as a macrostate. Specifically, in each valley, we
define a macrostate for all the conformations that deviate
from the local minimum structure by less than 2 in n or nn.
By using the macrostates, we neglect the small local struc-
tural changes and focus only on the large structural changes.
Such large structural changes are often more important for
RNA functions than small local fluctuations.

To investigate the mutational effect on the stability, we
define the stability of the native state:

S ¼
X
i

e�Fi=kBT=Q

where the sum for i is for all the conformations in the
native valley. In Figure 10B, we show the results for S at
T = 0�C for the wild type and all the mutations. Consistent
with the energy landscape analysis, we find five lethal
mutations that cause significant changes in native stability:
A62C, A64G, A65G, A49C, and A50G. These mutations can
destabilize the native state N while stabilizing an alternative

FIGURE 9. (a) The predicted heat capacity melting curve in 1 M NaCl for the P5abc domain of the Tetrahymena group I ribozyme. (b–d) The
density plots for the free energy landscapes F(n, nn) and the stable structures at different temperatures for P5abc. F(n, nn) is the free energy for
conformations with n native base pairs and nn non-native base pairs, where the native state is the structure shown in b.
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structure. For example, the A62C mutation can stabilize the
misfolded state Z and destabilize state N. These predicted
hotspots can be directly tested by experiments.

To investigate the folding thermodynamic cooperativity, we
compute the van’t Hoff enthalpy

DHvH ¼ 2Tm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmCðTmÞ

p
from the heat capacity C(Tm) at the melting temperature Tm

and the calorimetric enthalpy DHcal = H(1) � H(0) of the
entire transition (Chan et al. 2004). We quantify the coopera-
tivity using the parameter k = DHvH/DHcal. Larger k means
higher cooperativity. Here the enthalpy H(T) can be com-
puted from the partition function as H(T) = kBT2d lnQ(T)/
dT. We find that for both the wild-type P5abc sequence and
the loop mutations, the cooperativity is between 0.4 and 0.6
(data not shown). Compared with the protein folding, which
usually involves highly cooperative transitions with k close to
1, RNA folding is much less cooperative. The noncooperativ-
ity and metastability of RNA folding are consistent with the
bumpy RNA folding free energy landscape (Chen and Dill

2000). Physically, the RNA noncooperativity stems from the
additive stabilities (nearest-neighbor interactions) in RNA
secondary structures.

SUMMARY

We develop a statistical mechanical model for RNA folding
thermodynamics. The model is based on the reduced (vir-
tual bond) chain representation for RNA conformations.
The model, which can account for the atomic details for
realistic RNA conformations, can be further used to study
RNA tertiary folds. Distinctive features of the model include
(1) the explicit inclusion of the intra-loop base-stacking
interactions and the loop–helix correlations in the free
energy calculation and (2) the rigorous polymer principle
treatment for the conformational statistics. Experimental
tests show that the model is able to give improved predic-
tions for the melting curves and the native structures for
simple RNA secondary structures. Moreover, application of
the model to the investigation of the folding thermody-

FIGURE 10. (A) The density plot for the change in the free energy landscape DF at different temperatures for different mutations in loops L5a,
L5b, and L5c, respectively. The top lines show the color scale. (B) The variations of thermal stabilities at T = 0�C for the wild-type sequence and
different mutations in loops L5a, L5b, and L5c, respectively. Loop 5b contains no hotspots of which the mutations can cause drastic changes in the
native structure and the stability.
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namics for the P5abc region of the Tetrahymena group I
ribozyme leads to the following predictions: (1) The folding
of P5abc involves a native-like intermediate and a misfolded
intermediate. (2) The A62C, A64G, and A65G mutations in
loop L5a and A49C and A50G in loop L5c can cause drastic
changes in the free energy landscape and thus cause signifi-
cant changes in the folding thermodynamics. None of the
mutations in loop L5b can cause notable changes in the
shape of the free energy landscape. (3) The wild-type
sequence as well as the mutants show low thermodynamic
folding cooperativity.

The present form of the model is limited by neglecting (1)
the temperature dependence of the base-stacking enthalpy
and entropy parameters and (2) the possible single-strand
base stacking. These limitations may contribute to the the-
ory–experiment differences. Nevertheless, the present theory
provides a statistical mechanical machinery for a systematic
development of the model by including more energetic and
conformational details. Although the current form of the
model is developed for secondary structures, the present
conformational model can be directly applied to model
complex tertiary folds.

Moreover, the model may provide a framework for further
inclusion of the ion electrostatic effects in RNA folding
(Koculi et al. 2004; Draper et al. 2005; Tan and Chen
2005). With the virtual bond representation, the model can
generate an ensemble of RNA structures
at the reduced atomic level (virtual
bonds through the P and C4 atoms).
Such a model can give a coarse-grained
description for the ion-binding modes
(distributions of the bound ions). Ion-
binding in some tertiary interactions
may involve atomic details that the cur-
rent form of the model cannot treat. For
such cases, we need to refine the model
by including more complete atomic
coordinates for the part of the structure
involved in the tertiary interaction.
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APPENDIX

Calculating the partition function

According to whether the chain is closed
by a base stack, we classify two types of
RNA conformations: ‘‘closed’’ if the two
ends of the chain are closed by a base

stack and ‘‘open’’ otherwise. For example, the conformations
for the chain from a � 1 to b + 1 in Figure 11A,B are
‘‘closed’’ because a � 1 and b + 1 are paired in a base stack,
while the conformations for the chain from a to b in Figure
11C are ‘‘open.’’

RNA secondary structure shows a recursive hierarchy:
the closing base stack of a closed conformation can be
connected to another smaller closed conformation either
through an unstacked loop (loop without any intra-loop
base stacks; see the loop of length l in Fig. 11A) or through a
base stack (see the stack formed by a, b, a + 1, and b � 1 in
Fig. 11B). To account for the correlation between the
unstacked loop (the loop a ! b of length l in Fig. 11A)
and the neighboring closing base stack (the stack formed by
a, b, a � 1, and b + 1 in Fig. 11A), we classify the unstacked
loop conformations (a ! b) according to the position of a1

(bn) relative to a (b):

type L (left): a1 = a + 1 and bn 6¼ b � 1
type R (right): bn = b � 1 and a1 6¼ a + 1
type LR (left and right): a1 = a + 1 and bn = b � 1
type M (middle): a1 6¼ a + 1 and bn 6¼ b � 1

See also Figure 11C. Here we note that a is the (left)
50-terminal nucleotide and b is the (right) 30-terminal
nucleotide.

FIGURE 11. A closed conformation with the closing stack connected to a loop (A) or to a
stack (B). (C) The four open conformation types (L, M, R, and LR). The closed conformation
in A is formed from the open conformation in C through the closure of the unstacked loop of
length l in A. (D) The partition function for L-type conformations for a chain from a to b can
be computed as the sum of the partition function for a shorter chain from a to b � 1.
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According to the above definition, a type LR open con-
formation contains at least two closed conformations.
Types L, R, LR, and M correspond to a bulge on the strand
close to the 30-end, on the strand close to the 50-end, on
both the 50 and the 30 strands, and an internal unstacked
loop, respectively.

We use Ot(a, b, l) to denote the partition function for all
the type-t open conformations from a to b with an
unstacked loop of length l (see Fig. 11A,C). We also use
C(a, b) to denote the partition function for all the possible
closed conformations from a to b. The hierarchical relation-
ship of the secondary structure results in the following
recursive relation for the partition functions:

C a� 1; bþ 1ð Þ ¼ ðe�DGstack=kBTÞ
C a; bð Þ þ e DSunstackedðb�a�1Þ=�B þ �

t;l
e DSunstackedðlÞ=kBOtða; b; lÞ

n o
ð7Þ

where DGstack is the free energy of the closing stack formed by
base pairs (a, b) and (a � 1, b + 1) and DSunstacked(l) is the
entropy for the unstacked loop of length l for a given type t.

From Equation 7, we find that the key for the partition
function is to obtain Ot(a, b, l) for different as and bs. For
RNA secondary structures, Ot(a, b, l) can be conveniently
calculated recursively from the partition functions of
shorter chains:

OLða; b; lÞ ¼ OLða; b� 1; l � 1Þ þOLRða; b� 1; lÞ
þ Cðaþ 1; b� 2Þ ð8Þ

OMða; b; lÞ ¼ OMða; b� 1; l � 1Þ þORða; b� 1; lÞ ð9Þ

ORða; b; lÞ ¼ ORðaþ 1; b; l � 1Þ þOLRðaþ 1; b; lÞ
þ Cðaþ 2; b� 1Þ ð10Þ

OLRða; b; lÞ ¼
X

a<x<b

Cðx; b� 1Þ � OLða; x; l � 2Þf

þOLRða; x; l � 1Þ þ Cðaþ 1; x� 1Þg ð11Þ

Figure 11D shows an illustration for the recursive rela-
tion for the calculation of OL(a, b, l): The complete con-
formational ensemble of open conformations from a to b
can be generated by adding the nucleotide b to the 30-end of
(1) all the possible type L and LR open conformations from
a to b � 1 and (2) all the possible closed conformations
from a to b � 1. The recursive relations for type R, LR, and
M conformations can be understood through similar dia-
grammatic illustrations.

The total partition function Q(a, b) for a chain from a to
b is given by the sum of the partition functions for all the
different types of conformations:

Qða; bÞ ¼ 1þ Cða; bÞ þ
X

l t¼L;R;M;LR

X
Otða� 1; bþ 1; lÞ

ð12Þ

The first term comes from the contribution of the
unfolded coil state. The computational time scales with
the chain length N as O(N4) and the memory scales as
O(N2).

Compared with the previous models, the present model
is based on base stacks instead of base pairs. More impor-
tantly, the conformational entropies in the model are com-
puted from an ab initio polymer principle theory with
detailed accounts of the loop-coil atomic structures instead
of from empirical approximations (e.g., the linear approxi-
mation for the multiloop entropy) (McCaskill 1990) or
from other unrealistic simplified models (Chen and Dill
1995, 1998, 2000; Zhang and Chen 2001). Furthermore,
the classification of the four types of conformations allows
for more accurate treatment for the correlations between
the connecting unstacked loop and the connected helical
stacks. For example, for a multibranched unstacked loop of
a given length l, different types (types L, R, LR, and M)
would have different loop entropies in the calculation. In
addition, the model accounts for the mismatched base
stacks in a loop ( 6¼ unstacked loop). Therefore, the present
model is more physical and may be able to give improved
predictions for RNA thermodynamics.

Received May 13, 2005; accepted September 9, 2005.
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