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ABSTRACT

We have encountered an unexpected property of rRNA secondary structures that may generalize to all RNAs. Analysis of 8892
ribosomal RNA sequences and structures from a wide range of species revealed unexpected universal compositional trends.
First, different categories of rRNA secondary structure (stems, loops, bulges, and junctions) have distinct, characteristic base
compositions. Second, the observed patterns of variation are similar among sequences from large and small rRNA subunits and
all domains of life, despite extensive evolutionary divergence. Surprisingly, these differences do not seem to be related to
selection for different compositions in different structural categories, but rather relate to the overall composition of the
molecule: Randomized RNAs with no evolutionary history show the same structure-dependent compositional biases as
rRNAs. These compositional trends may improve the accuracy of RNA secondary structure prediction, because they allow us
to compare predicted structures against known compositional preferences. They also suggest caution in interpreting differences
in the rate of change of the GC content in different parts of the molecule as evidence of differential selection.
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INTRODUCTION

RNA molecules can be divided into secondary structure
components, which may have distinct biological functions.
For example, loops that terminate a single stem, such as the
GNRA tetraloop, may engage in tertiary interactions, or
junctions that link several helices together may be selected
to orient the helices specifically. Recently, comparisons
between crystal structures of homologous RNAs have
revealed a surprising amount of flexibility in how a given
structure is achieved (Westhof and Massire 2004), and
within the context of highly conserved structural motifs,
the ability for bases to substitute for one another can be
predicted from first principles of structural similarity (Les-
coute et al. 2005). Although these structural constraints are
critical for understanding how highly conserved regions of
RNA essential for biological function evolve, we expect that
more general rules that constrain the less highly conserved

features of RNA secondary structure also exist. These rules
may help us improve algorithms for structure prediction
and will inform our understanding of the vast diversity of
RNAs that can perform a given catalytic task.

Because organisms vary widely in genome GC content in
a manner consistent with directional mutation pressure
(Sueoka 1962, 1988), we might expect the different parts
of the RNA molecule to change in composition at different
rates due to the different selective constraints in different
regions, just as the three reading frames within mRNAs
change in composition at different rates that reflect the
average effect of mutations in each frame (Muto and
Osawa 1987). Specifically, third position changes have the
least effect because they are often synonymous, and second
position changes have the greatest effect because they often
substitute an amino acid that is chemically very different.
This gives rise to substantially different slopes when regres-
sing the GC content at a particular codon position against
the overall GC content and also affects the amino acid
composition of the protein correspondingly (Sueoka 1961;
Muto and Osawa 1987; Lobry 1997; Sueoka 1999; Singer
and Hickey 2000; Knight et al. 2001). Indeed, different RNA
molecules such as tRNAs, rRNAs, and mRNAs also change
in composition at different rates relative to overall GC
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content (Muto and Osawa 1987). Even within a single
molecule, the paired and unpaired regions of 16S rRNA in
bacteria and archaea have been shown to differ in slope
substantially (Wang and Hickey 2002). In this article, we
test whether these differences in response to overall genome
GC content hold for finer-grained structural categories,
within both large and small subunit rRNAs in all three
domains of life. We also test whether the differences in
response are due to differences in purifying selection in
the different regions, or whether they are due to intrinsic
differences in the amount of base-pairing expected in
sequences of different composition (Schultes et al. 1999).

In RNA, each nucleotide can be assigned to one of six
secondary structure categories: stem, loop, bulge, junction, or
end, or a type of unpaired base that we provisionally call
‘‘flexible’’ (Fig. 1). Stems are the base-paired regions of the
molecule. Loops, bulges, and junctions are unpaired regions
enclosed by stems. Let the degree of an unpaired region be the
number of stems attached to it. Then, loops have degree one,
bulges have degree two, and junctions have a degree higher than
two. The ends are all unpaired bases on the 5¢ and 3¢ end of the
molecule. Flexible bases—also known as ‘‘freely rotating joints’’
(Schuster et al. 1994), although this may be a misnomer at the
tertiary structure level—make up unpaired regions that connect
two stems but that are not part of a closed RNA structure.

We examined whether the four bases were differentially
abundant in these different structural categories. We had
three primary motivations for this analysis: First, we wanted
to test whether a finer-grained analysis of the unpaired
bases would reveal differences among bulges, loops, and
junctions; second, we wanted to test whether any composi-
tional patterns were specific to 16S rRNA, as previously
observed (Wang and Hickey 2002), or were shared between
subunits and domains of life; third, we wanted to test
whether the compositional patterns resulted from selection
on the biological sequences or would be obtained from any
arbitrary sequence of the same composition. If there are

consistent differences in the compositions of different
structural elements that hold across many types of RNA
molecule, we may be able to use these differences to refine
the accuracy of secondary structure prediction programs
such as BayesFold (Knight et al. 2004) by testing whether
a computed secondary structure matches the known com-
positional preferences.

In this study we asked the following four questions about
rRNA structure and composition:

1. Do the different categories of unpaired regions differ in
composition from one another? There is a known bias
toward purines in rRNAs and several other biological RNAs
(Elson and Chargaff 1955; Schultes et al. 1997, 1999; Lao and
Forsdyke 2000), which can only come from the unpaired
regions because the paired regions have a 1:1 ratio of purines
to pyrimidines. We tested whether the different types of
unpaired regions (especially loops, bulges, and junctions)
contribute equally to this purine bias in the vast sample of
rRNAs now available in the rRNA database (Wuyts et al.
2001, 2002) and, more generally, whether compositions in
these unpaired regions are identical within each molecule.
2. Are patterns of composition conserved across different
molecules and different domains of life? rRNA is often used
to infer phylogenetic relationships between species, in part
because it is seldom horizontally transferred. Because there
has been no detectable recombination between the large
and the small subunits, or between sequences from the
three domains of life (bacteria, archaea, and eukaryotes),
the six combinations of domains and subunits provide six
independent evolutionary ‘‘experiments’’ about the extent
to which a long RNA molecule can vary while maintaining
its function. We tested whether the patterns of variation
were similar in each subunit (the two subunits differ in
function) and each domain of life, which could suggest
that the processes of RNA evolution are generalizable across
RNAs of different kinds and long time spans.
3. Are differences in composition between structural cate-
gories due to natural selection? Structural motifs that depend
on specific sequences— including but not limited to UNCG
tetraloops (Tuerk et al. 1988; Molinaro and Tinoco 1995),
GNRA tetraloops (Woese et al. 1990), A platforms (Cate et al.
1996), and the A minor motif (Wimberly et al. 2000; Gutell
et al. 2000; Doherty et al. 2001; Nissen et al. 2001)—have been
proposed to play a major role in structuring rRNA and in
causing the purine bias in unpaired regions. If this hypothesis
were correct, we would expect that natural rRNA sequences,
which are under strong natural selection to maintain their
function and hence structure, might have substantially differ-
ent compositions in each structural component than would
randomized sequences with the same composition. Evolved
RNAs would certainly be expected to have a much smaller
range of composition. However, if the differences between
structural categories arise automatically from differences in
overall sequence composition, we would expect that the nat-

FIGURE 1. Structural elements in RNA secondary structure. There
are six different structural categories: stem, loop, bulge, junction, end,
and flexible. Each element has been assigned a color that is used
throughout this article to visualize data on that element. The seventh
color (purple) is used to show data for the whole molecule (total).
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ural and randomized sequences would show similar composi-
tional patterns and spans in different structural components.
4. Are differences in the strength of the response of each
structural category to changes in genome GC content due to
natural selection? The composition of the rRNA is known to
correlate strongly with the composition of the surrounding
genomic context (Muto and Osawa 1987; Guy and Roten
2004), except in hyperthermophiles (in which it correlates
with optimal growth temperature) (Galtier and Lobry 1997).
We tested whether these correlations hold true for each
structural category independently, or whether the structural
categories are negatively correlated such that directional
changes in one category are counterbalanced by opposite
changes in another structural category (this latter scenario
would be expected if the composition of the overall rRNA
sequence were under selection). Traditionally the correla-
tions in GC content with other informational macromole-
cules have been explained by purifying selection (Sueoka
1961; Muto and Osawa 1987; Wang and Hickey 2002); we
looked at the role of self-organization by examining these
correlations in randomly generated RNA sequences.

RESULTS AND DISCUSSION

Are the different types of unpaired regions identical
in composition?

Analyses of the base composition of RNA have typically
focused on the differences between paired and unpaired
regions (Schultes et al. 1997; Wang and
Hickey 2002). Here, we address the dif-
ferences among six separate elements of
secondary structure. This separation is
easily justified, because all structural ele-
ments are believed to have distinct func-
tions in the molecule. For example,
junctions affect the spatial orientation of
the stems that they connect and
certain kinds of loops and bulges are
involved in docking interactions that
hold the three-dimensional structure
together (Tinoco 1996). There is thus
no reason to believe a priori that differ-
ent unpaired elements would have the
same base composition. Similarly, ends
and flexible regions are often combined
into one category, ‘‘external elements’’
(Hofacker et al. 1994), but there are rea-
sons to believe that they might have dif-
ferent compositions. The ends are not
constrained in their conformation, but
the flexible regions are bounded by
helices and thus may appear more similar
to junctions than to free ends.

The base composition for each of the six structural
elements and the overall base composition of the molecule
are visualized in composition space (Fig. 2). An important
feature for orientation in this space is Chargaff ’s axis. This
axis, where the amounts of C and G are equal and the
amounts of A and U are equal, indicates the line in composi-
tion space where Watson-Crick base-pairing holds exactly.
Deviations from Chargaff ’s axis tell us about compositional
differences due to processes other than changes in GC con-
tent, which can simply result from compensatory mutations
in stems. Our results show that all structural elements have
distinct compositions. The compositions of the whole mole-
cules and the stems show linear distributions along
Chargaff ’s axis, as expected (Schultes et al. 1997), with con-
siderable variation in GC content but very little variation in
the other directions (Fig. 2B). Remarkably, the three
unpaired regions that contain a substantial number of bases
(loops, bulges, and junctions) have separate distributions.
The ends and the flexible bases are scattered throughout
composition space, because there are very few bases in
these categories, so the sampling error is large. Therefore
these latter two categories are excluded from the rest of the
analysis.

In a first attempt to quantify the compositional patterns, we
looked at the amount of bias and its direction for the mean
composition of every structural element, except ends and
flexible bases, for all annotated sequences. We calculated the
amount of bias as the smallest distance between the mean of the
sample and Chargaff ’s axis. Looking down Chargaff ’s axis, the
bias can be in any of four directions: toward purines (AG),

FIGURE 2. Compositional biases in SSU archaea. The composition space is visualized as a
tetrahedron, which can be viewed from many different perspectives. All structural elements
have a different color, as defined in Figure 1. In the oblique view (A), we show the linear
distributions along Chargaff’s axis (green line) of the totals and stems. The loops, the bulges,
and the junctions are clearly distinct. The ends and the flexible bases contain few bases and are
therefore scattered by sampling error throughout composition space. In the other view, down
Chargaff’s axis (B), in which the variation in GC content is not visible, we show how
constrained all elements are in their variation in the two other directions. This view also
emphasizes the purine bias in the totals and the unpaired regions.
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pyrimidines (UC), nucleotides with an amino group (AC), or
nucleotides with a keto group (GU). Thus, we expressed the
bias as the sum of the excess of either G or C and the excess of
either A or U. For example, the sequence CUUAAAGGGG,
which consists of 10% C, 20% U, 30% A, and 40% G, has an
excess of 0.3 (0.4 � 0.1) in the direction of G and an excess of
0.1 (0.3 � 0.2) in the direction of A. The total bias in the
example is therefore 0.4 (0.3 + 0.1), where 75% of the bias is
toward G and 25% is toward A.

We present several general observations based on these
calculations. First, looking at the composition of the total
molecule, LSU sequences are more biased than are SSU
sequences, and bacteria are more biased than are archaea,
which are more biased than are the eukaryotes. Second, the
molecules contain a purine bias, which consists of more G
than A: �60% G for the archaea and bacteria and up to
94% for eukaryotes (in the SSU eukaryotes, the other part is
6% U). Third, most of the variation in GC content of the
total molecules can be explained by the stems that form
very similar distributions along Chargaff ’s axis. The stems
have an almost equal bias in all domains of life toward U
and G, because of wobble base pairs. Interestingly, SSU
sequences have a higher GU bias in their stems than LSU
sequences do. Finally, the unpaired regions explain the
purine bias in the molecules. For both archaea and bacteria,
we find that the bulges are the most biased, that the loops
are least biased, and that the junctions are between the
loops and the bulges. The purine bias is on average 65% A
in these domains. In eukaryotes, the bias in the unpaired
regions is much smaller overall, and the order from least to
most biased is as follows: loop, bulge, junction.

Because rRNA sequences are biased toward purines and
because the overall composition is constrained by a sum,
the paired regions and the unpaired regions will necessarily
differ in composition. Specifically, a line drawn through
points representing the composition of the paired and the
unpaired parts of an RNA molecule will pass through the
overall composition, showing that the compositions of the
paired and the unpaired regions differ from the overall
composition in precisely opposite directions. However,
the magnitude of the change in composition can differ,
because the paired and the unpaired regions can contain
different numbers of bases, and the different types of
unpaired regions, for example, loops, bulges and junctions,
are not constrained to share the same composition. Thus,
for example, if GC pairs were preferentially incorporated
into stems, the compositional differences between paired
and unpaired regions would be much greater than would be
the case if the bases that participate in pairs were randomly
chosen from the whole molecule. Similarly, the amount of
the sequence contained in each structural category is poten-
tially free to vary, affecting the extent to which each com-
ponent can differ in composition from the overall sequence.
Thus the compositions of individual structural components
cannot be inferred from the number of base pairs and the

overall composition of the molecule, and this composi-
tional information may provide important clues about the
assembly of RNA structures.

The unexpected differences in composition among the
three different unpaired structural categories suggest that
these categories should be considered separately in studies
of RNA composition, and underscore the importance of the
fine-grained approach.

Do the different structural categories have the same
composition in the large and small subunit rRNA,
and across all domains of life?

The three domains of life diverged billions of years ago and,
although the rRNA molecule is conserved for function in
the different domains, the nonfunctional parts presumably
varied independently in each lineage. Since there is no
known sequence homology between the two ribosomal
subunits, these subunits have no apparent shared ancestry.
It is therefore surprising to see the same patterns of varia-
tion across all domains and both subunits. These patterns of
variation, or space in which the rRNA molecules can
mutate freely without losing their function, are represented
by the tight distributions in composition space.

Figure 3 shows the compositions of the structural ele-
ments for large and small subunit sequences from archaea,
bacteria, and eukaryotes. The distributions for LSU and
SSU sequences within one domain are remarkably similar
with respect to location and variation. The separation
among the various structural elements is more pronounced
in the SSU sequences, because many more SSU sequences
than LSU sequences were available for analysis.

Across domains, slightly more difference is visible. For
example, the GC content differs, as shown by the positions
of the totals along Chargaff’s axis, and there is less purine
bias in eukaryotes than in the archaea and the bacteria.
Also, there is more scatter in the eukaryotes, which may
be an artifact of the sequence alignments. We have shown
that removal of sequences with extreme overall base com-
position greatly reduces the scatter in all structural elements
(data not shown). Despite these differences, the separation
among the loops, the bulges, and the junctions is clear in all
three domains, and similar patterns of variation are visible.
In particular, one should note the similar relative position-
ing of the loops, the bulges, and the junctions in composi-
tion space for archaea and bacteria.

Samples that look distinct by eye need not be statistically
different. Therefore, we applied Monte Carlo simulations to
determine whether the differences between any combination
of two samples (structural elements) within one species and
domain (126 combinations in total) were significant. The
calculations showed that the differences between all combi-
nations but one were highly significant: The remaining
P-values were <0.02 and for all SSU samples the P-values
were <1/n, where n is the number of randomizations
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(10,000 in our experiment). Consequently, the different
structural categories have significantly different composi-
tions in the large and the small subunits and in the three
domains of life, although these differences might be due to
overall differences in the composition of the molecule (see
below).

Despite the statistical significance of the differences, the
observed compositional biases are visually strikingly similar
across both subunits and all domains of life. Thus we tested
whether the patterns were significantly similar using one-
tailed two-sample t-tests on the distances between different
groups. Looking separately at the differences in subunit,
domain, and structural element tells us which variable
causes the most difference in means. Figure 4 (top) shows
the distance distributions of all possible combinations (Fig.
4A) and matches across subunits (Fig. 4B), domains (Fig.
4C), and structural elements (Fig. 4D). Comparing clusters
within a domain and a structural element on subunit gave
the highest significance (P = 0.00032, t = �3.5, df = 286).
In other words, we found the greatest similarities between
samples that came from the same structural category and
the same domain but from different subunits. The visual
similarities between clusters within a subunit and structural
element, but across domains, were confirmed by the t-test

(P = 0.00075, t = �3.2, df = 298). The data did not cluster
by structural element (P = 0.68, t = 0.47, df = 310).

Thus, the compositions of stems, loops, bulges, and junc-
tions differed significantly from one another in all samples
tested. Although the composition of a given structural
component (e.g., junctions) differed significantly between
domains and subunits, overall the composition of a parti-
cular component was significantly more similar across
domains and subunits than chance would predict. Addi-
tionally, the composition of stems varied much more than
did the composition of the unpaired components, varying
especially greatly in GC content. These results confirmed
previous observations that the composition of unpaired
regions in 16S rRNA are tightly constrained (Wang and
Hickey 2002).

Are the constraints on rRNA composition due
to natural selection?

Although the different structural components of rRNA are
tightly constrained within characteristic regions of the space
of possible compositions, these constraints might arise
naturally from the process of RNA folding rather than
because of purifying selection on the natural rRNA mole-

FIGURE 3. Visual comparisons of sequences from two ribosomal subunits and three domains of life. There is one row for each domain, where we
show left to right LSU totals and stems; LSU loops, bulges, and junctions; SSU totals and stems; SSU loops, bulges, and junctions (colors are
defined in Fig. 1). (Top to bottom) The rows show archaea, bacteria, and eukaryotes. The similarities are striking, considering the long time of
evolutionary divergence between the different domains.
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cules. To test whether the differences between structural
components within a molecule and the constraints on the
composition of each structural component were due to
selection, we compared the natural sequences to arbitrary,
randomized sequences with the same composition. Any
effects due to selection on the natural sequences should
not be observed in the randomized sequences.

Because obtaining structures for long, arbitrary RNA
sequences is prohibitively expensive, we estimated the sec-
ondary structures of the randomized sequences using the
Vienna RNA folding package (Hofacker et al. 1994).
Because the predicted structures are likely to contain errors,
we also predicted the structures for the natural rRNA

sequences using the same methods. This allowed us to
separate effects due to inaccuracies in the structure predic-
tion, which would be expected to be similar for natural and
randomized sequences, from effects due to special proper-
ties of the natural sequences. We thus examined three types
of data: annotated structures of natural sequences (NA),
computer-predicted structures of the natural sequences
(NP), and computer-predicted structures of randomized
sequences (RP). We used the NP structures to test the
effects of computer prediction, and we used the RP struc-
tures to test whether the compositional biases in structural
components depended on the sequence, as opposed to the
composition, of the natural rRNAs (the randomized
sequences were constrained to have the same composition
as the natural sequences).

The compositional biases observed in RP structures are
much more similar to the annotated sequences than was
expected (Fig. 5, top and bottom). Comparing the NP
structures to the NA structures reveals some loss of infor-
mation due to the computer predictions (Fig. 5, top and
middle). Specifically, the variance of the samples increases
in the NP structures, and some of the distinction among
structural components is lost. Remarkably, however, the
separation among loops, bulges, and junctions is still visi-
ble. The prediction of the composition of the stems is very
good, probably because base-pairing dominates in the
predictions.

Finally, the compositional biases in the RP structures are
almost identical to those in the NP structures (Fig. 5, middle
and bottom). We observe slightly more variation in the
samples from randomized sequences, because these sequences
are completely unrelated to each other. In contrast, the natural
sequences are all recognizably homologous.

We also tested whether the compositions of each struc-
tural category in the NA, NP, and RP structures were sig-
nificantly similar to one another by using the same test as
for similarities between domains and subunits. On the
lower half of Figure 4 are the graphs associated with the
comparison of natural annotated (NA) structures with the
computer predictions of the natural sequences (NP), and
the predictions of the randomized sequences (RP). The
statistics confirm the visual observations discussed above.
Results of t-tests between the subsets and the distribution of
all combinations (Fig. 4E) show that matches across the
computer predicted structures (NP vs. RP) (Fig. 4H) are
most significant (P = 2.1310�9, t = 5.9, df = 2578). The
matches both across NA and NP structures (Fig. 4F), and
across NA and RP structures (Fig. 4G) are still highly
significant (P = 1.6 3 10�7, t = �5.1 and P = 5.9 3 10�7,
t = �4.9, respectively), despite the observed shifts of the
unpaired regions in composition space.

Consequently, the different compositions of paired and
unpaired regions, and of the different types of unpaired
regions, do not depend on the sequence (to the limits of
our ability to predict the structure with RNAfold) but only

FIGURE 4. Histograms of the distances between the means of differ-
ent samples. The top half shows what factor, out of subunit, domain,
or structural element, is most important for compositional similarity.
(A) The distances for all possible combinations of samples. The three
other histograms show the distances from subsets of all these combi-
nations: combinations within the same domain and structural ele-
ment, across subunit (B); combinations within subunit and struc-
tural element, and across domains (C); and combinations within
subunit and domain, across structural elements (D). The bottom half
addresses the similarities between annotated and predicted structures.
(E) The distances between all possible combinations. The other three
graphs show subsets within domain, subunit and structural category,
but across sequence and structure type: NA vs. NP (F), NA vs. RP (G),
NP vs. RP (H).
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on the overall composition of the molecule. This suggests
that differential selection for composition in the different
structural categories does not cause the differences in com-
position, but rather that they arise automatically from the
process of RNA folding.

Are the different responses to overall GC content
in paired and unpaired regions due to natural selection?

If the constraints on the composition of the bases in each
structural component are not due to selection, the different
responses of each category to overall changes in genomic
GC content might not depend on selection either. Accord-
ingly, we tested whether the slope of the regression line
relating GC content in each structural component and in
the rRNA molecule overall or in the coding sequences in the
genome differed between the natural rRNA sequences and
randomized sequences with the same composition.

Figure 6 (top) shows the known correlation between
genomic GC content at the selectively neutral third codon
position and GC content of the total ribosomal RNA (Muto
and Osawa 1987). Positive correlations between the GC
content of the third codon position in protein-coding
regions and the GC content of paired and unpaired regions

in rRNA have been observed in bacteria
(N. Sueoka, pers. comm.). The same posi-
tive correlation holds true for each struc-
tural category individually, and the major
difference in slope is between paired and
unpaired elements. Graphs of the GC
content of the ribosomal RNA versus the
GC content in the different structural ele-
ments magnify these differences (Fig. 6,
middle), since the values are now con-
strained by a sum, and, at low overall
GC content, the composition of the
stems is thus much closer to the composi-
tion of the unpaired regions than at high
overall GC content. The slopes of the
stems are much steeper than the slopes
of the unpaired regions. There is no sys-
tematic distinction in slopes among loops,
bulges, and junctions. We find that the
correlations are positive for all structural
elements (i.e., stem, loop, bulge, and junc-
tion) for both subunits and all domains.
This means that there is no compensation
in base composition across different
structural elements.

Surprisingly, we see very similar cor-
relations in unevolved (or randomized)
sequences (Fig. 6, bottom). This raises
the question of whether the stems are
functionally less important and thus not
(as strongly) restricted in their muta-

tions, or whether the compositional variation in the stems
can be explained by the different overall amount of pairing
in RNA sequences of different composition (Schultes et al.
1999). In general, the slope of the stems is more shallow,
and the slopes of the unpaired regions are steeper than
observed in the annotated sequences.

We visualized these correlations in the tetrahedron by
grouping sequences by GC content and color-coding them
accordingly (Fig. 7A). A given color in each structural
element thus refers to the same set of sequences, which
are grouped by the GC content of the total molecule. The
simplex gives us more information than the previously
shown graphs in the sense that we can see the relative
positioning of the sets with similar GC content in the
different structural elements. The clusters of sequences
with similar GC content are still distinct clusters in all
structural elements.

This clustering might be due to either of two factors:
sequence homology or compositional similarity. In the
annotated sequences, we cannot separate these two poten-
tial causes, because homologous rRNA sequences have both
similar sequences and similar compositions due to evolu-
tionary conservation. To address this issue, we can use
randomized sequences, which have strong compositional

FIGURE 5. Comparison of the compositional biases found in annotated and predicted
structures. The first row shows the annotated structures of natural sequences (NA) in three
different perspectives. The second row, used as a benchmark, shows the predicted structures of
the natural sequences (NP). The predicted structures of randomized sequences (RP) are shown
in the third row. (Colors are defined in Fig. 1.)
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similarities, but no sequence homology whatsoever. If we
find the same clustering behavior in these randomized
sequences, nucleotide composition, rather than sequence
homology, must be the driving force behind the character-
istic compositions in the different structural elements.

Randomized sequences show strikingly similar patterns
to the natural sequences (Fig. 7B). These sequences are
constructed by calculating the base composition on 2%
intervals on a line through the mean of the SSU bacteria,
parallel to Chargaff’s axis, creating 100 random sequences
of length 1500 in each interval, folding the sequences with
RNAfold, and applying the same classification as used
throughout the analysis. The randomized sequences form
very smooth distributions through composition space with
seemingly mathematical precision. The clusters of
sequences with the same GC content in their total molecule
(dots in the graph) are visible as tight clusters in each

structural category. This pattern (Fig. 7) has two implica-
tions: First, the base composition of structural categories is
consistent at a given sequence composition, and second,
similar base composition in the whole molecule implies
similar base composition in each structural category.

Several mechanisms might influence these structure-
dependent compositional biases. The first is purifying selec-
tion, which would cause the nucleotide composition of the
whole sequence (and thus of all elements of the structure)
to change in one direction by mutation, limited by the rate
at which deleterious mutations are filtered out by selection.
Purifying selection would explain the difference in slope
between paired and unpaired elements of related and func-
tional sequences in terms of different functional constraints
for each structural element (Wang and Hickey 2002). For
comparison, in coding sequences, the three codon positions
have different rates of change in response to changes in
genome GC content, which can be interpreted in terms of
purifying selection (Muto and Osawa 1987; Sueoka 1988;
Lobry and Sueoka 2002). However, the purifying selection
model would predict that randomized sequences would
show no difference in slopes between paired and unpaired
regions, because they have no functions that need to be
conserved and, in any case, share no evolutionary history.

Contrary to this prediction, we found that even random-
ized sequences have different rates of response to change in
composition in each of the structural elements. Although it is
possible that purifying selection accentuates these differences,
much of the observed pattern can be attributed to the effects
of folding, and claims about the extent of purifying selection
based on these slopes (Wang and Hickey 2002) should be
treated with caution. Purifying selection is not required to
explain the compositional differences among stems, loops
and bulges, although it may affect details of the slopes.

The second mechanism is adaptive (or positive) selec-
tion, which means selection in favor of a particular compo-
sition, presumably because the composition is required for
function, such as GNRA tetraloops (Woese et al. 1990) and
the other motifs described above. Selection for a particular
sequence could in principle generate any possible composi-
tion, divided in any way among the structural components.
In other words, the function of the ribosomal RNA might
require more of certain bases in certain structural compo-
nents, and this positive selection might generate the com-
positional differences (Lao and Forsdyke 2000; N. Sueoka,
pers. comm.). We need adaptive selection to explain the
existence of functional RNAs and many ubiquitous struc-
tural motifs, but we do not need it to explain the composi-
tional biases, because they also occur in nonevolved,
nonfunctional sequences as an effect of RNA folding. How-
ever, positive selection might explain the subtle deviations
in real rRNAs from what is expected by chance based on the
randomized sequences.

Although rRNA sequences are highly selected and con-
served, the compositional biases are consistent with those in

FIGURE 6. Correlations with GC content in bacterial SSU rRNA.
First, we show the correlation between GC content in all structural
elements of the ribosomal RNA (including the total ribosomal RNA)
and the GC content in the third codon position in the genome (top).
The lower two graphs show the correlations between all structural
elements and the GC content of the ribosomal RNA for annotated
structures of real rRNA sequences (middle) and for predicted struc-
tures of randomized sequences (bottom). (Colors are defined in Fig. 1.)
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randomized sequences, suggesting that the compositional
biases in all structural elements are inherent to any
sequence with the same base composition. Thus, the
major force behind the formation of structural biases
appears to be what we call ‘‘self-organization,’’ the intrinsic
factors such as base-pairing and stacking that drive second-
ary structure formation.

What explains the trends in the composition
of the structural elements?

Having demonstrated that the different structural compo-
nents of rRNA differ in composition from one another in
both subunits and all three domains of life and that these
differences appear to be driven by the overall composition of
the molecule, we tested which parameters affect the result.
First, we investigated the accuracy of the RNA folding in
terms of its ability to assign bases to the correct structural
categories. In addition to the base composition of structural
elements, we examined the fraction of bases in all categories.
We analyzed the NA, NP, and RP structures. We found that
the fraction of bases ending up in each structural feature is
approximately the same for all domains of life and that there
are consistent differences between large and small subunit
sequences: SSU rRNA has a higher percentage of base pairs
than LSU sequences do (Fig. 8, left). It seems that the
amount of base-pairing differs between LSU and SSU
sequences but that the remaining bases are divided almost
equally over the loops, the bulges, and the junctions. On
average, <4% of bases appear in ends and flexible regions.
Figure 8 (middle and right) shows that computer predictions
systematically result in too many base pairs and thus too few

bases in the unpaired regions, which
might account for the observed increase
in variation for the NP structures. In
addition, the predictions are similar for
sequences with the lengths of either typi-
cal LSU or SSU sequences. There is no
visible difference between the predictions
of the natural and the randomized
sequences, suggesting that the bias is
due to the folding procedure rather
than being sequence-specific. Although
covariation methods, with which the
annotated structures are predicted, can
systematically underpredict base-pair-
ing because they cannot detect pairing
involving absolutely conserved positions,
the magnitude of the change (>10% of
the sequence is incorrectly predicted to
be paired) is much greater than the error
in the covariation structures.

Second, we tested whether some of
the effects were due to the annotations
in the databases. We identified 174

rRNAs that were derived from the same original GenBank
record in the rRNA database and the CRW database, of
which only 66 had identical sequences in the two databases.
We redid the analysis by using only this subset of rRNAs
and the predictions to each database. Although the struc-
tures differed in some detail, there was no meaningful
difference between the compositions of the structural com-
ponents calculated from each set, which differed by <2% on
average (ranging from 0.01% to 4.5%) and were very simi-
lar visually. We also verified that the structures of the
sequences for which high-resolution crystal structures
were available were correctly represented in the databases,
and we found that these structures were 97% identical to
those in the CRW database (when considering only Wat-
son-Crick and wobble pairing), consistent with previous
reports (Gutell et al. 2002).

Third, we tested whether the thermodynamic parameters
affected the result. The energies for tetraloops and certain
other ‘‘special’’ sequences used by RNAfold are calculated
by using sequence databases that include rRNA sequences
and might unfairly bias the structures for arbitrary
sequences to resemble the structures for natural sequences
in composition. However, repeating the analysis with the
‘‘�4’’ option in RNAfold, which eliminates the contribu-
tion of tetraloop energies, did not affect the compositions
of the different structural components significantly.

We next tested whether the differences between the
unpaired structural components arose simply from the
difference in pairing strength between AU and GC base
pairs. The RNAfold program provides an option to fold
sequences by using the abstract ‘‘ABCD’’ alphabet, in which
A pairs with B and C pairs with D and in which all kinds of

FIGURE 7. Variation in GC content in natural SSU bacterial sequences (A) and arbitrary
sequences with the same composition as the bacteria (B). Sequences with the same color have a
similar composition (specifically GC content). In the real SSU bacteria (A), the clusters of
sequences with similar overall base composition are recovered as tight clusters in all structural
elements (only stems and bulges are shown). The same phenomenon is visible in the arbitrary
sequences (B). The totals are tiny dots in the graph, because all 100 random sequences in each
interval have the same composition. The GC content in all structural elements is strongly
correlated with the GC content in the overall molecule.
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base pairs have the same energy parameters for pairing and
stacking. Repeating the analysis by translating the sequences
into the ABCD alphabet and folding with the thermodynamic
parameters for AU or GC pairs (i.e., all pairs were treated as
AU, or all were treated as GC) gave strikingly different com-
positions from normal folding, in part because GU pairs could
not be incorporated in this model. However, in all cases, the
loops, the bulges, and the junctions differed from each other
in composition. Reassuringly, sequences in which the mean-
ings of the bases were permuted (e.g., U might be exchanged
with C) gave symmetric patterns, indicating that whichever
bases are in excess over the 1:1 purine:pyrimidine ratio
required for stems will be found in the unpaired regions to a
similar degree to the bases that were in excess in the original
composition. In other words, when all bases have the same
energies, any bases in excess will be found more frequently in
the unpaired regions; however, when the thermodynamic
parameters are taken into account, the identity of the bases
matters because of differences in pairing and stacking energies.

These results suggest that the causes of differences among
bulges, loops, and junctions are not related to their properties
as parts of nucleic acid sequences per se but are rather a
general property of the class of formal grammars that includes
non-pseudo-knotted structures when applied to arbitrary
character strings. The results also indicate that the null
hypothesis for studies of composition should not be that all
unpaired structural components are identical in composition.

Conclusions

We have demonstrated several important features of
nucleotide composition patterns within ribosomal RNA.

First, there are striking similarities in the composition of
the different structural categories across both ribosomal
subunits and the three domains of life, despite much evolu-
tionary divergence. Second, randomized sequences appear
almost identical to natural sequences in the composition of
each structural component; furthermore, they show the
same patterns of variation, even though these randomized
sequences are not evolved and do not have biological func-
tions. Third, the GC content in all structural categories is
positively correlated with the GC content of the ribosomal
RNA overall, and randomized sequences show similar cor-
relations to the annotated sequences. Finally, the nucleotide
composition of individual structural features proves robust
over multiple randomizations, since clusters of sequences
with similar base compositions yield consistent clusters for
each structural element.

These results for randomized sequences emerged solely
from the inherent features of RNA folding, as reproduced
by the dynamic programming method and thermodynamic
parameters used for energy minimization in RNAfold. Our
conclusions thus depend on the ability of these algorithms
to provide information about arbitrary sequences:
Although the predictions are far from perfect, there is no
reason to believe that they are biased in ways that would
give the observed patterns as an artifact. The thermody-
namic parameters are derived from melting experiments on
oligonucleotides (Mathews et al. 1999), which are short
sequences that are neither evolved nor biologically active.
There is thus no reason to believe that the rules derived
from experiments on them would apply only to biologically
active sequences and not to arbitrary RNA sequences. The
predictions also use special bonus energies for particular
loop sequences, which are based on experimental data and
supported by statistics on known RNA structures. These
energies improve the predictions for natural RNA
sequences that were not themselves used to derive the
parameters (Mathews et al. 1999), and are thus likely to
provide the best available estimate of the structures of
arbitrary sequences. Changing details of the parameters,
such as eliminating the bonuses for tetraloops (which are
inferred from a database of structures) did not affect our
results.

The computer predictions are sufficiently accurate to
capture the features we examined: The predictions of the
natural sequences closely resemble the patterns observed
from annotated sequences. The predictions are very accu-
rate at specifying whether bases are paired or unpaired
(Mathews et al. 1999), suggesting that the composition of
the stems is probably most accurate, although there is less
accuracy in predicting the overall topology of the molecule
(data not shown). The predictions are good enough to show
the separation between the unpaired regions. However, this
distinction is less sharp than in the annotated sequences,
which might be due to some mixing of the unpaired cate-
gories.

FIGURE 8. Comparison of the fractions of bases in all structural
elements between natural annotated (NA) structures, predicted struc-
tures of natural sequences (NP), and predicted structures of rando-
mized sequences (RP). In each graph we show (from left to right) the
average fractions in each element for LSU and SSU archaea, bacteria,
and eukaryotes. (Colors are the same as in Fig. 1.)
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The discovery of general rules that determine the amount
of base-pairing and the nucleotide composition of a mole-
cule will have important consequences for the accuracy of
secondary structure prediction programs, such as BayesFold
(Knight et al. 2004). If the compositional preferences we
have demonstrated for rRNA generalize to other molecules,
we may be able to assess the plausibility of a structure by
asking whether the compositional patterns comply with the
specific compositional statistics, thus improving the predic-
tions. Specifically, a structure that reproduces typical com-
positional biases in the different structural elements is more
likely to be correct. However, the similarities between the
compositions in each component of the true structure and
the structures predicted by current methods suggest that the
power of this approach may be limited to eliminating the
more egregious mispredictions. A more promising differ-
ence is in the amount of the sequence that is assigned to
each structural category, which shows clear differences
between the natural and the predicted structures. We
should be able to compensate for the systematic deviations
in current computer predictions, especially the excess of
base pairs.

Because the constraints on the compositions of each
structural component and the slopes of the compositional
responses of each structural component to changes in over-
all and genome GC content are very similar, the null model
for evolutionary studies of rRNA should not be that these
components behave identically but rather that composi-
tional differences would be expected even in random
sequences. Our results suggest that only parts of the rRNA
are under strong selection and that most of the molecule is
able to change neutrally. Testing whether other classes of
RNA that are under stronger selection, such as the 5S
rRNA, may reveal cases where the change in each structural
component does differ from what would be observed in
random sequences of the same composition (and hence the
action of selection), but we see no evidence for these effects
in rRNA.

MATERIALS AND METHODS

Data collection and processing

We downloaded all large subunit (LSU) and small subunit
(SSU) rRNA sequences from the European Ribosomal RNA
database (Wuyts et al. 2001, 2002) at http://www.psb.ugent.
be/rRNA on November 11, 2003, which had not been subse-
quently updated as of July 2005. We retrieved the sequences in
distribution format, which contains gaps and secondary struc-
ture information interleaved with the sequence. Additionally,
we downloaded the helix numbering for all domains. In prin-
ciple, the helix numbering provides the locations of the
upstream and downstream parts of each helix in the alignment,
although not all sequences comply with this numbering. As a
control for the effects of the alignment in the database, we also
used rRNA sequences and structures from the Gutell Compar-

ative RNA Web (Cannone et al. 2002) and from the Protein
Data Bank (Bernstein et al. 1977).

We obtained natural rRNA sequences, which could be used for
computer predictions, by stripping out all gaps and secondary
structure information from our annotated data. We created ran-
domized versions of our annotated data by shuffling the natural
sequences completely, using the Fisher-Yates shuffle algorithm as
implemented in the random module of the Python standard
library. In this way, all structural motifs are broken, but the overall
base composition of the molecule is unaltered.

The structures associated with the rRNA sequences in the data-
base are predicted by comparative sequence analysis. We refer to
these structures as ‘‘annotated’’ because they are based on experi-
mental evidence and have been compared to crystal structures. For
randomized sequences there are no secondary structure models
available. Because experimentally determining structures for these
sequences is impossible, we used RNAfold from the Vienna RNA
folding package (Hofacker et al. 1994), which implements the
Zuker folding algorithm (Zuker and Stiegler 1981) to estimate an
optimal secondary structure both for each natural sequence and
for each permuted sequence.

RNAfold returns the optimal structures in dot-bracket (or
Vienna) format. In order to compare the annotated structures and
the computer-predicted structures, we developed an algorithm to
convert the distribution format from the database into the Vienna
format. Based on the helix numbering, it finds the most likely pairs
of upstream and downstream helix parts. We verify the actual base-
pairing and solve the matching for helix parts that are incorrectly
annotated or unannotated. Pseudo-knots are discarded because the
Vienna format cannot denote them, but because they comprise
<2% of all base pairs in rRNA (Mathews et al. 1999), this limitation
has little effect on our results.

The database contained 21,782 sequences. About 50% of these
sequences were unusable: They contained too many undeter-
mined positions (>50), had an odd number of helix parts, con-
tained pairing helix parts of different lengths, etc. From the
remaining 50% with good data, our conversion algorithm
could reliably convert 10,254 structures into dot-bracket format,
which corresponded to a data loss of 0.86% of the total number
of sequences (Table 1). In our analysis, we focused on RNA from
nuclear genomes: We included archaea, bacteria, and eukaryotes
(263, 5530, and 3099 sequences, respectively; 8892 sequences in
total).

Decomposing secondary structure into structural
categories

We identified secondary structure elements in two steps. First, by
using the dot-bracket notation of the structure, we built an
ordered rooted tree (Hofacker et al. 1994; Schuster et al. 1994),
a tree representation of the structure in which the nodes corre-
spond to bases or base pairs, ordered from the 5¢ to the 3¢ end.
Next, we assigned each base to a structural category during a tree
traversal, ignoring the virtual root. Bases associated with internal
nodes (i.e., base pairs) are assigned to a stem. Leaf nodes that are
children of the root are either ‘‘ends’’ or ‘‘flexible bases,’’ depend-
ing on their position relative to the outgoing stems. All other
leaves are assigned to loops, bulges, and junctions based on the
number of stems going out of their parent node. The result of
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this process is a string of labels representing the structural ele-
ments of each base, which correspond exactly to the dot-bracket
notation.

Calculating and visualizing base composition

We calculated the base composition for each structural element by
grouping all bases within a particular element together and count-
ing the number of each of the four bases: U, C, A, and G. We
normalized this composition vector by the number of residues in
the element (N) in order to compare elements containing different
numbers of bases. The base composition of any RNA sequence can
be visualized in a tetrahedral unit simplex (Schultes et al. 1997; Fig.
2). In this unit simplex, the three pairwise combinations of bases
define three orthogonal axes. For example, the amount of G + C
defines a position along Chargaff’s axis, where G = C and A = U.
The two other axes are the purine–pyrimidine axis, plotting the
amount of A + G versus C + U, and the amino–keto axis, plotting
the amount of A + C versus G + U. The four bases form the four
vertices; sequences containing more of a particular base lie closer
to the vertex for that base.

For our particular analysis, we plotted seven dots for each
sequence: six for the structural elements (stem, loop, bulge, junc-
tion, end, and flexible) and one for the overall base composition of
the molecule. Plotting the base compositions for many RNA
sequences allowed us to see the similarities or the differences
among species, structural elements, ribosomal subunits, or
domains of life.

We used the program MAGE (Richardson and Richardson
1992) to visualize the composition simplex. This program treats
the three dimensions (A/N, C/N, G/N) as orthogonal axes and
applies a distortion matrix to make them look like a tetrahedron.
However, we could not use these distorted coordinates to calculate
distances between points or samples. Therefore, we converted the
coordinates by using combinations of the four bases as axes that
form the orthogonal right-handed Cartesian coordinate system
described above.

Testing whether samples are different

To test whether the difference in location
between two samples was significant, we
used Monte Carlo simulations. We com-
pared the observed distance between two
samples, i.e., the Euclidean distance between
the means of the two samples, to the distri-
bution of distances between many pairs of
random samples resampled from the original
data points. This technique does not depend
on assumptions about the shape or variance
of the underlying distributions.

To apply this technique, we first pooled
the points in the two samples. Next, we
randomly permuted the list of samples and
divided the list into two groups that con-
tained the same number of points as the
original samples. Finally, we compared the
distance between the means of the random-
ized samples to the distance between the
means of the original samples. We repeated

this 10,000 times, except when a small preliminary sample was
sufficient to show that the difference was not significant. The P-
value is the number of times the observed distance was greater
than or equal to the benchmark divided by the number of ran-
domizations. Any P-value �0.05 was considered significant.

Testing whether samples are similar

The Monte Carlo simulations sensitively reveal whether samples
differ but cannot directly tell us which samples are similar. We
needed to test whether patterns were more similar within struc-
tural categories, domains, or ribosomal subunits. For example,
looking at this problem in only two dimensions, the data might
be clustered as in Figure 9A. This figure shows a situation in which
the strongest similarities are within each domain rather than
within each subunit, suggesting that the domain is more impor-
tant in determining composition. Alternatively, the data might be
clustered as in Figure 9B, where subunit identity dominates the
clustering. In the first case, the distances between points within a
domain will on average be smaller than the distances between all

TABLE 1. Number of sequences analyzed; we focused on archaea, bacteria, and eukaryotes
(8892 sequences total)

In database Unusable Good Analyzed
Data

loss (%)

LSU
Archaea 37 6 31 31 0.00
Bacteria 399 129 270 270 0.00
Eukaryotes 157 79 78 78 0.00
Mitochondria 659 225 434 430 0.92
Plastid 70 7 63 63 0.00
Total 1322 446 876 872 0.11

SSU
Archaea 590 358 232 232 0.00
Bacteria 12,107 6839 5268 5260 0.15
Eukaryotes 6590 3493 3097 3021 2.45
Mitochondria 1039 274 765 764 0.13
Plastid 134 29 105 105 0.00
Total 20,460 10,993 9467 9382 0.89

FIGURE 9. Possible outcomes of data clustering. Symbols represent
the base compositions for archaea (squares), bacteria (circles), and
eukaryotes (stars) in two dimensions. Letters indicate the ribosomal
subunit: large (L) and small (S). Data might be clustered by domain of
life (A), where most similarity is within a particular domain and across
subunits. In contrast, the subunit might be the most important factor
for base composition (B), in which case sequences from the same
subunit would be most similar, independent of the domain of life to
which the sequences belong.
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combinations of two points. In the second case, the distances
between points within a subunit will be smaller than the distances
between all combinations of points. To generalize, points within a
cluster will on average be closer than points chosen at random. We
can compare these two populations of distances (within and
between putative clusters) by using a one-tailed two-sample t-
test: The lower the P-value, the greater the significance of the
relationship represented by the clustering.

We applied this procedure in three dimensions to all anno-
tated data. We looked for similarities among two subunits, three
domains, and four structural elements. We considered only
stems, loops, bulges, and junctions. The number of possible
combinations between n samples is n(n � 1)/2, so in case of 24
(2 3 3 3 4) samples, the number of distances between (the
means of) any two samples is 276 (24 3 23/2). Within clusters
of equal domain and structural category (across subunits), we
had 12 distances; within subunits and structural elements (across
domains), 24 distances; and across structural elements, 36
distances.

We also applied this method to confirm the visual similarities
between annotated and computer-predicted structures. This gives
three times as many samples as above, thus 2556 distances in the
full sample. We made three subsets, each time within a subunit,
domain, and structural category, but across structure type (NA,
NP, and RP). Each of the subsets contained 24 distances. The
distributions of distances are visualized with histograms and com-
pared with a one-tailed two-sample t-test.
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