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The Noc proteins involved in ribosome synthesis
and export contain divergent HEAT repeats
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ABSTRACT

The Noc1-4p proteins were previously reported to be involved in intranuclear and nucleocytoplasmic transport of pre-
ribosomes. Using fold recognition and structural modeling, we show that Noc1-4p are largely comprised of a-helical repeats
similar to HEAT repeats. Because other HEAT-repeat proteins play key roles in transport processes, this finding provides a
plausible mechanistic explanation for the function of the Noc proteins.
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Eukaryotic ribosomes are assembled in the nucleolus in a
series of highly coordinated events (for review, see Fatica
and Tollervey 2002; Tschochner and Hurt 2003). In recent
years, several reports have described around 140 nonribo-
somal factors involved in this multistep process (Harnpi-
charnchai et al. 2001; Dragon et al. 2002; Fatica et al. 2002;
Grandi et al. 2002; Nissan et al. 2002). An important aspect
of ribosome subunit synthesis is their transport from the
nucleolus to nucleoplasm and then to the cytoplasm. Two
recent reports identified a family of pre-ribosome-associ-
ated transport factors termed Noc proteins (Milkereit et al.
2001, 2003). These proteins are involved in intranuclear
transport and export of the pre-60S subunit (Nocl/2/3p)
and nuclear export of the pre-40S subunit (Noc4p). More-
over, Noc3p also plays a key role in the initiation of DNA
replication (Zhang et al. 2002). The biochemical and genetic
characterization of the Noc proteins (Milkereit et al. 2001,
2003) did not, however, reveal the mechanism(s) by which
they mediate ribosomal subunit transport.

Limited sequence similarity between the Nocl1/3/4p pro-
teins over a short region of ~45 residues has been noted
previously (Milkereit et al. 2001, 2003). Using profile con-
sistency analysis (Pei et al. 2003), we have extended this
alignment into a larger Noc domain (Fig. 1). This extended
similarity provides further evidence that these proteins have
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related functions despite their nonredundancy. Orthologs
of Noc proteins are present in all higher eukaryotes and
were used as starting queries for PSI-BLAST searches
(Altschul et al. 1997). We could not identify convincing
sequence similarity to proteins of known structure or func-
tion. The search of the hidden Markov model (HMM) da-
tabase of protein families (Bateman et al. 2000) resulted
in Noclp and Noc3p matching CBF/Mak2l domain
(PF03914). The annotation for this domain, however, con-
tains no additional information beyond what is already
known about Noc proteins. Multiple alignments of Noc
proteins were then used to train HMMs and scan the pro-
tein database, but again, no informative matches were
found. We therefore resorted to fold recognition using the
3D-PSSM  server (http://www.sbg.bio.ic.ac.uk/~3dpssm/;
Kelley et al. 2000). With confidence in the range 70%—90%,
the server returned predictions that all Noc proteins share
structural similarity with proteins containing HEAT/Arma-
dillo repeats (Andrade and Bork 1995; Andrade et al. 2001).
This prediction was confirmed using the consensus of mul-
tiple fold recognition methods at the 3D-Jury metaserver
(Ginalski et al. 2003). In a follow-up to this prediction, we
compared Noc proteins to HMMs trained on all major
classes of HEAT-repeat proteins (Andrade et al. 2001).
Noc2p and Noc4p had no sequence similarity to known
HEAT repeats with E < 10, while Noclp and Noc3p had five
and two HEAT repeats, respectively, with statistically insig-
nificant E-values (E = 6.9 for Noclp and E = 1 for Noc3p).
We conclude that at the sequence level Noc proteins do not
have convincing sequence similarity to any of the major
classes of HEAT repeats previously described (Andrade et
al. 2001).
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FIGURE 1. Multiple sequence alignment of Nocl/3/4p proteins. Numbers flanking the alignment correspond to parts of proteins that were
aligned. Numbers in parentheses indicate lengths of sequences that were omitted due to insertions or deletions. Protein names are separated by
an underscore from species abbreviations: YEAST, Saccharomyces cerevisiae; SCHPO, Schizosaccharmyces pombe; HUMAN, Homo sapiens; ARATH,
Arabidopsis thaliana. Letters on the consensus line are: s, small residues; ¢, tiny; b, big; h, hydrophobic; g, aromatic; ], aliphatic; p, polar; ¢, charged;
—, negatively charged; +, positively charged. Individual residues with more than 80% identity in the entire alignment are colored yellow and shown

as capital letters on the consensus line.

The plausibility of the fold recognition prediction and the  criteria for comparative modeling (Sanchez and Sali 1998).
degree of structural similarity with known HEAT-repeat A probability (pG) that estimates the reliability of the over-
proteins were further tested by building 3D models of all  all fold of protein models was calculated for each Noc pro-
Noc proteins (Sali and Blundell 1993). Shown in Figure 2 tein. Models with pG > 0.7 are considered to have a correct
are models for Noclp (residues 349-771) and Noc2p (resi-  overall fold (Sanchez and Sali 1998), although they will
dues 146-699). The models were evaluated using quality =~ not be correct in all details. According to these criteria,

FIGURE 2. (A,B) 3D-models of Noclp and Noc2p. Noclp model (residues 349-771) and
Noc2p model (residues 146-699) were built with MODELLER (Sali and Blundell 1993) using
the PR65/A subunit of protein phosphatase 2A (Groves et al. 1999) as a template. Automatic
alignments obtained by 3D-PSSM (Kelley et al. 2000) were corrected manually to minimize
insertions and deletions within secondary structure elements of the template. Colors change
from blue at the N-terminus to red at the C-terminus. (C,D) Electrostatic potential represen-
tations of Noclp and Noc2p models. Electrostatic surface potential was calculated using
GRASP (Nicholls et al. 1991). Blue and red colors correspond to positive and negative poten-
tial, respectively. Strong clusters of positive charge suggest that these proteins may interact with
other negatively charged molecules, rRNA being an obvious candidate.
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models of Noc proteins are very reli-
able (pGNoclp =0.97; pGNoc2p = 0.96;
pGNoc3p = 0.94; pGNoc4p = 0.78). This
is particularly convincing because the
Noc proteins show only 8-13% identity
with the templates used for modeling,
and in this range of sequence identity
high pG values are unlikely unless the
structural relationship between model
and the template is genuine. The loca-
tions of the predicted HEAT repeat ele-
ments in the primary sequence of
Noclp are shown in Supplementary Fig-
ure S1 (http://www.homepage.montana.
edu/~mdlakic/heat_Noclp_suppl_FIGI.
html).

In addition to the Noc proteins, we
have identified four other essential
HEAT-repeat proteins that are associ-
ated with yeast pre-ribosomes: Rrp12p,
Sdalp, Utpl0p, and Utp20p (Oeffinger
et al. 2004). It was recently estimated
that at least 0.2% of eukaryotic proteins
have HEAT or Armadillo repeats (An-
drade et al. 2001). This abundance may
reflect the functional versatility of pro-
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teins with HEAT repeats. The PR65/A subunit of protein
phosphatase 2A (PP2A) functions as a scaffold for assembly
of the catalytic and regulatory subunits (Groves et al. 1999),
while the importin-f/karyopherin-f (imp-B/kap-f) family
act as molecular transporters across the nuclear envelope
(Gorlich et al. 1997; Malik et al. 1997; Chook and Blobel
1999; Cingolani et al. 1999; Kobe et al. 1999; Vetter et al.
1999). Many assembly and transport steps are critical for
ribosome biogenesis, potentially involving multiple HEAT-
repeat proteins.

Ribosome synthesis dominates nucleocytoplasmic trans-
port in yeast, with each nuclear pore complex (NPC) im-
porting ~1000 ribosomal proteins and exporting ~25 ribo-
somal subunits per minute (for review, see Jorgensen et al.
2004). Efficient import of ribosomal proteins relies on mul-
tiple, partially redundant members of the imp-B/kap-
family, the founding member of which has a HEAT-repeat
structure (Chook and Blobel 1999; Cingolani et al. 1999;
Vetter et al. 1999). Ribosome export is also known to re-
quire a member of the imp-B/kap-p family, Crm1p/Xpolp
(for review, see Johnson et al. 2002; Tschochner and Hurt
2003), but it is unlikely that single extrinsic factor mediates
the export of the very large ribosomal subunits. We there-
fore predict that efficient subunit export will require mul-
tiple transport factors. At least one of the other HEAT-
repeat proteins we have identified, Rrp12p, is required for
ribosomal subunit export (Oeffinger et al. 2004).

Here we have reported that pre-ribosomes are associated
with a family of divergent HEAT-repeat proteins, which are
required for ribosomal subunit transport. The Noc proteins
are structurally, and potentially functionally, related to gen-
eral transport factors, despite lacking detectable sequence
similarity to known HEAT-repeat proteins. Future studies
will determine the relative contributions of these versatile
proteins to ribosome assembly and subunit transport.
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