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ABSTRACT

With the increasing amount of data produced by
high-throughput technologies in many ®elds of
science, clustering has become an integral step in
exploratory data analysis in order to group similar
elements into classes. However, many clustering
algorithms can only work properly if aided by
human expertise. For example, one parameter which
is crucial and often manually set is the number of
clusters present in the analyzed set. We present a
novel stopping rule to ®nd the optimal number of
clusters based on the comparison of the density of
points inside the clusters and between them. The
method is evaluated on synthetic as well as on real
transcriptomic data and compared with two current
methods. Finally, we illustrate its usefulness in the
analysis of the expression pro®les of promyelocytic
cells before and after treatment with all-trans
retinoic acid. Simultaneous clustering for gene
regulation and absolute initial expression levels
allowed the identi®cation of numerous genes asso-
ciated with signal transduction revealing the
complexity of retinoic acid signaling.

INTRODUCTION

Cluster analysis is nowadays a major challenge in many
disciplines where specialists need to know how their data are
organized. In many cases, clustering is still supervised by an
expert who customizes the algorithm he uses to obtain the
most meaningful results. There is clearly a need for automa-
tion if the data sets to be clustered become huge or if there are
too many of them to be humanly manageable. This is the case
in biology and particularly in transcriptomics where more and
more genes are assayed under multiple conditions such as
different time points during a biological process or different
tissue samples. Two major problems which are intimately
linked and that should be solved automatically are the
determination of a good number of clusters and the assessment
of the results.

There is a wide literature that describes how to determine
automatically the number of clusters; in 1985 Milligan and

Cooper (1) reviewed 30 different methods. However, they
were mainly applied to theoretical sets and only in the last
5 years have methods that ®nd the number of clusters
automatically been applied to real data and in particular
transcriptomic data. Among these methods we distinguish
those that work on similarity values such as CLICK (2),
CLIFF (3), Horimoto's method (4) and Taxmap (5), or
distances such as Lukashin's method (6) and Secator (7) from
those that use the elements' coordinates such as Mclust (8) and
mode analysis (9).

Similarity values are useful for clustering elements that vary
similarly in the different dimensions, for example, for
grouping together genes which vary in the same way with
time. However, similarity values are usually obtained by
normalizing the elements' coordinates either implicitly by
calculating a correlation coef®cient or explicitly by normal-
izing and then performing a dot product for example. In
general, information is lost in the normalization process. In
fact, one cannot deduce the original coordinates from the
similarity values. Distances calculated from the coordinates
can also be valuable due to their simplicity but, until now,
distances in either a very tight cluster or in a very sparse
cluster are considered in the same way, which is unrealistic in
many cases. As for methods clustering raw data, i.e. the
elements' coordinates, the most successful methods that
estimate automatically the number of clusters in a data set
are model-based methods such as Mclust (8), which considers
each cluster as a sample of a Gaussian mixture distribution.
The model-based methods are interesting for their statistical
background but at the same time the model they use is not
always adapted to a particular data set.

In this paper, we will deal primarily with the problem of
®nding the correct number of clusters and will assess the
clusters' quality only if a reference clustering is available. We
propose a new method to ®nd the number of clusters,
implemented in a program called DPC (density of points
clustering). DPC uses coordinate values, as with Mclust, but
contrary to it, makes no a priori assumption about a
distribution function describing the clusters. At the heart of
the algorithm is the idea that a cluster should be divided into
two clusters if between these clusters there is a scarcity of
points compared with the density of points in the neighbor-
hood of the clusters. Intuitively, clusters are separated if there
is a too tenuous connectivity between them. Other density-
dependent clustering algorithms are Taxmap (5) and mode
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analysis (9). However, Taxmap initially requires a threshold
value for its measure of discontinuity and mode analysis
requires a density threshold. Therefore, these methods are not
fully automatic.

DPC is ®rst tested on a two-dimensional synthetic non-
normalized set in order to verify its agreement with true
clusters that can be visually determined and then on other data
sets in higher dimensions. The DPC results are compared with
the results of Mclust (8) which is one of the best programs that
can automatically determine the number of clusters in a set of
points described by non-normalized data. DPC is also tested on
the yeast normalized data set analyzed by Tavazoie et al. (10)
and compared with Mclust (8) and CLICK (2) which is one of
the best methods for normalized data. Finally, we apply DPC
to a three-dimensional non-normalized leukemic data set
taking advantage of the method's ability to automatically ®nd
the number of clusters.

MATERIALS AND METHODS

Let us consider a set E of n points P1, ..., Pn with each Pi = (Pi1,
Pi2, ..., Pim) in Âm, where Â is the set of real numbers. For
DNA chips data, E stands for a set of n genes for which m
hybridization conditions are available. Starting with an initial
cluster containing all the points, DPC divides it and tests
whether it should be divided or not. If it is not divided then
there is only one cluster in the data set, otherwise there are at
least two clusters that will be iteratively divided if necessary.
The division is attempted by the k-means method with k = 2.
The test is based on point density measures. If the density
measure between two possible clusters is too small compared
with the density measure inside both clusters, the two clusters
are kept because they are not well connected to each other.

In order to explain how the density measure is computed we
have to ®rst introduce some de®nitions, and in particular what
we call the proximity index which indicates how close a point
is to other points. Let Min be the point whose coordinate in
each dimension is the minimum of the coordinates in that
dimension for all the points of E, "k Î 1, ..., m, Mink =
miniÎ1,...,n Pik, let~c = (c1, c2, ..., cm) be the vector de®ned by
coordinates ck = maxiÎ1,...,n Pik ± miniÎ1,...,n Pik, and HR be the
hyper rectangle enclosing E de®ned by the extreme points Min
and Min + ~c and let A be a point in HR. Figure 1 shows an
example in two dimensions. The proximity index ProxI(A) for
the point A is equal to the number of divisions of HR necessary
to isolate A into a sub-hyper rectangle of HR from all other
points of E. Thus, the higher the proximity index is, the closer
A is to other points. When dividing a hyper rectangle into sub-
hyper rectangles, each side of the hyper rectangle is divided in
two. In Figure 1, the proximity index of the point A marked by
a cross is 3. Given l Î N, with N the set of natural numbers,
we associate with A a sub-hyper rectangle HRl(A) of size
(c1 / 2l) 3 (c2 / 2l) 3 ´´´ 3 (cm / 2l) de®ned by two
extreme points M1 and M2 such as "k Î 1, ..., m, M1k = Mink +
ë(Ak ± Mink) / (ck / 2l)û 3 (ck / 2l) and M2k = M1k + (ck / 2l).
Hence

ProxI(A) = min{l / /$i Î 1, ..., n, Pi ÎHRl(A)}
l Î N

Now we can de®ne the density of points between two
clusters C1 and C2. In fact we de®ne two such densities,

Density1 and Density2, the latter being aimed at noisy data.
For a subset S of pairs of points of C1 3 C2, we de®ne a set R1

(respectively, R2) of points for Density1 (respectively,
Density2) in the following way. For each pair of points (Pi,
Pj) Î S we de®ne a point A1 of R1 (respectively, a point A2 of
R2) such that "k Î 1, 2, ..., m, A1k = [(Pik + Pjk) / 2]
[respectively, A2k = Pik + u 3 (Pjk ± Pik) where u is a uniform
random variable which takes values between 0 and 1]. Then,
Density1(C1, C2) and Density2(C1, C2) are, respectively, the
means of the proximity indices in R1 and R2:

Density1(C1, C2) = [SA1ÎR1
ProxI(A1)] / |R1|

and

Density2(C1, C2) = [SA2ÎR2
ProxI(A2)] / |R2|

Similarly, we de®ne the density of points Density(C) inside
a cluster C as the mean of the proximity indices of points
generated randomly starting from points in cluster C.

For a subset of points S Ì C, we de®ne a set R of points in
the following way. For each point Pi Î S we ®nd its closest
point Pj in E \ Pi and we de®ne a point A of R such that:
"k = 1, ..., m, Ak = Pik + (±1)bu(Pjk ± Pik) where b is a
Bernouilli random variable of parameter 0.5 and u a uniform
random variable which takes values between 0 and 1 so that all
directions and all distances below the distance to the nearest
point are equally probable. Then, Density(C) is the mean of the
proximity indices of the points in R:

Density(C) = [SAÎRProxI(A)] / |R|

At each dividing step of the algorithm the question is
`should cluster C be divided into clusters C1 and C2?' Using
the density measures we can answer this by comparing
Density(C) with Density1(C1, C2) or with Density2(C1, C2) if
the data are noisy. We assume for a ANOVA test that the
proximity indices for R on one side and for R1 or R2 on the
other side are samples issued from the same population. If the
two samples are signi®cantly different and, respectively,
Density(C) > Density1(C1, C2) or Density(C) > Density2(C1,
C2) then we divide C into C1 and C2.

Figure 1. Example of the calculation of a proximity index in two
dimensions. Here the proximity index of the point A marked by a cross is 3
because to isolate it from all its neighbors it is necessary to divide the
original rectangle three times. (A) Original hyper rectangle HR which is
also denoted as HR0(A). (B) Division of HR0(A). (C) Division of HR1(A).
(D) Division of HR2(A) and separation of A from all other points.
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RESULTS

Synthetic data sets

To validate clustering algorithms, algorithms are generally
tested on data sets for which the `true' clusters are known. The
data may be either synthetic (1) or real, e.g. the Iris data set
(11) which is one of the best known data sets (Fig. 2). The Iris
data set is composed of 150 random samples of ¯owers from
the iris species setosa, versicolor and virginica. For each
species there are 50 observations in four dimensions for sepal
length, sepal width, petal length and petal width in centi-
meters. Fisher (11) used this data in 1936 to test his linear
discriminant function technique. Finding two clusters, one
containing all 50 iris ¯owers from the setosa species and the
other the 100 ¯owers from the versicolor and virginica
species, is usually accepted as being a good solution. In
addition to the low number of clusters these two clusters are
well separated and there is no noise between them. DPC ®nds
these two clusters but as nearly all algorithms perform well on
this data set we cannot use it to assess the quality of DPC.

Therefore, we de®ne a new synthetic data set of 875 two-
dimensional points (Fig. 3A) that presents a number of
dif®culties simultaneously such as different cluster sizes,
different compactness values, very close clusters and noise.
This data set is composed of three well de®ned clusters A, B
and C of 200 points each, two clusters D and E of 50 points
which are quite close, one cluster F of 50 points which has a
large sparseness in comparison with the others and two little
clusters G and H which are also close to each other, one of 12
points and one of 15 points. In addition, there are 98 noise
points, most of them constituting crowns around clusters A, B,
C and D, with others located between clusters A and F. This
data set is available on the web at http://www-bio3d-igbmc.
u-strasbg.fr/~wicker/DPC/dpc.html.

DPC ®nds 22 clusters in this data set, as shown in Figure 3B.
DPC identi®es the eight clusters described above as distinct
and homogeneous clusters, while most of the `noise' crowns
were de®ned as separate independent clusters. To estimate the
quality of this result we have calculated the adjusted Rand
index proposed by Hubert and Arabie (12) and also used by
Yeung et al. (13). The Rand index gives the percentage of
times two elements are together or separated in the solution
given by an algorithm that are also together or separated in the
`true' solution. The index takes values between 0 and 1,
1 being the best score. The adjusted Rand index corrects the
Rand index by taking into account the expected Rand index
calculated when doing random clusterings. We only consider
clusters A, B, C, D, E, F, G and H as we are not interested in
the remaining noise points. The DPC clustering scores 0.99,
which con®rms that the true clusters are well identi®ed. The
remaining 14 clusters are clusters of noise, whose existence
prevents the `true' clusters from being `polluted' by noise.

Mclust (8) has also been applied to this data set as it is to our
knowledge one of the best clustering programs applicable to
data sets described by coordinates that show no peculiar
properties such as mean-variance normalization. Using its
default setting (i.e. the unconstrained model VVV), Mclust
®nds 23 clusters, with an adjusted Rand index of 0.79. A closer
inspection of the Mclust results (Fig. 3C) reveals that clusters
A, B, C, D and F are not well identi®ed, since they have been
divided into sub-clusters and that G and H have been grouped
into one cluster. Grouping G and H may be legitimate
considering the proximity and smallness of these two clusters.
This may be due to the fact that Mclust is susceptible to the
presence of noise. In addition, it does not check whether the
Gaussian distributions it ®nds are overlapping or not.

To gain a more precise idea of the performance of DPC, we
have tested DPC on 14 other data sets with varying noise and
number of dimensions. Each data set consists of a variable

Figure 2. Iris data set represented with only two attributes: petal length (abscisses) and petal width (ordinates). The iris species setosa are in red, versicolor in
blue and virginica in green.
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number of groups, with each group containing 50 points
generated by a Gaussian multinormal law with a variance±
covariance matrix equal to s2I where I is the identity matrix
and s a value that can vary from group to group. For each data
set we have calculated the adjusted Rand index for Mclust and

for DPC ignoring the noise points. The results can be seen in
Table 1. Data sets 1±11 show that DPC is not sensitive to the
increase in the number of dimensions contrary to Mclust.
However, data sets 12±14, which contain groups more tightly
close to each other, and for 13 and 14 more noise, show limit
cases where both methods fail as the groups are not well
separated.

Yeast data set

In order to evaluate the performance of DPC for real data sets,
DPC has been applied to the classical yeast data set provided
by Cho et al. (14). This set contains the expression pro®les of
approximately 6220 genes over 17 time points covering nearly
two yeast cell cycles. Tavazoie et al. (10) discovered distinct
expression patterns by doing a k-means cluster analysis, ®xing
manually the number of clusters k to 30. The k-means method
was applied to the most variable 2945 genes which were
previously mean-variance normalized and with time points at
90 and 100 min removed. The authors selected seven clusters,
among the 30 clusters found by k-means, for which there is a
signi®cant grouping of genes within biologically meaningful
clusters.

This 2945 gene data set is very attractive because we can
use it to demonstrate that DPC is able to extract biologically
relevant clusters without any a priori knowledge of the number
of clusters. DPC ®nds 35 clusters which is close to the expert
decision of 30 clusters. To investigate whether this is indeed a
correct solution we inspected the resulting clusters more
closely.

Nearly all of the seven biologically meaningful clusters
were retrieved: cluster 14 (containing genes involved in the
organization of the centrosome), cluster 7 (budding and cell
polarity) and cluster 1 (ribosome) in Tavazoie's paper
correspond, respectively, to cluster 18, 6 and 16 in our
notation (Fig. 4). Cluster 2 identi®ed by Tavazoie as the
replication and DNA synthesis genes cluster is mainly
distributed on DPC's clusters 22 and for some genes on 20
and 23. This is due to the different pro®le heights in the second
cell cycle. Tavazoie's cluster 4 (mitochondrial organization)
and cluster 8 (carbohydrate metabolism) are merged in DPC's
cluster 5. These two clusters are very hard to separate as the
main difference between them lies in the ®rst time point where
the values for the carbohydrate metabolism genes are on
average higher than those for mitochondrial organization
genes. But looking more carefully at these values we see that
there is a continuum of values that join them. Tavazoie's
cluster 30 (methionine and sulfur metabolism) has been
divided in many of DPC's clusters, typically in cluster 9 with
genes not easily separable from them.

We have compared these results with the results given by
Mclust and CLICK for the same data set. Mclust with its
default settings (the unconstrained model VVV) gives three
clusters, which is far from the expected number of clusters.
This is almost certainly due to the lack of data in comparison
to the number of parameters which is proportional to the
square of the data dimension (8). Therefore, we have also
tested a more constrained model which implies less para-
meters, the unequal volume spherical model (VI) which gives
114 clusters. This last result seems more reasonable consider-
ing that at least seven meaningful clusters exist according to
Tavazoie et al. (10). CLICK could be tested on this data set

Figure 3. (A) Synthetic data set consisting of 875 two-dimensional points
containing eight well-de®ned clusters and a number of noise points.
(B) Clusters found by DPC. A different color is assigned to each DPC
cluster. DPC identi®es all eight clusters while (C) the groups A, B, C, D
and F are not well identi®ed by Mclust which tends to superpose two
mixture models on each of these groups instead of only one.

Nucleic Acids Research, 2002, Vol. 30 No. 18 3995



because the expression pro®les are normalized. It ®nds 15
clusters and 66 isolated points. To compare the three results
we use a measure of agreement, the adjusted Rand index
(12), between each automatic clustering and the expertly

determined clusters. Considering only the genes belonging to
the seven most signi®cant clusters of Tavazoie, DPC scores
0.46, CLICK 0.44 and Mclust 0.18. The execution times are
respectively 6, 1 and 11 min.

Table 1. Comparison of results of Mclust and DPC on 14 synthetic data sets

Data set 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No. of groups 10 20 10 20 10 20 10 20 10 20 5 5 5 5
No. of noise points 50 100 50 100 50 100 50 100 50 100 25 0 125 150
No. of dimensions 10 10 30 30 50 50 75 75 100 100 500 10 10 10
Mclust score 0.67 0.82 0.22 0.24 0.04 0.16 0.04 0.07 0.07 NA NA 0.31 NA NA
DPC score 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.93 0.78 0

For each data set the number of groups (each group contains 50 points), the number of noise points, the number of dimensions and the adjusted Rand index
for Mclust and DPC are shown. Data sets 1±11 show that DPC is not sensitive to the increase in the number of dimensions in contrast to Mclust. Data sets
12±14 contain groups in close proximity and show the limitations of both methods. NA, not available (when Mclust was unable to give a result).

Figure 4. Expression pro®les of the clusters obtained by DPC using the 2945 mean-variance normalized genes of the Tavazoie yeast data set (10) over 15
time points. Nearly all of the seven biologically meaningful clusters found by Tavazoie were retrieved in DPC clusters 5 (mitochondrial organization and
carbohydrate metabolism), 6 (budding and cell polarity), 9 (methionine and sulfur metabolism), 16 (ribosome), 18 (organization of the centrosome), 20, 22
and 23 (replication and DNA synthesis).
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We have also used DPC on the 6220 non-normalized genes
of the yeast genome cell-cycle microarray analysis. This is
interesting because the clustering is done on the raw expres-
sion pro®les without any ®ltering so we can treat all the 6220
genes and at the same time have access to their expression
levels. Indeed when doing clustering on mean-variance
normalized data the expression levels are lost and in addition
many genes must be discarded to avoid generating unrealistic
expression pro®les in the normalization process. It should be
noted that this analysis is possible because DPC does not need
normalized gene expression pro®les as it works on coordinate
values. CLICK, for example, if applied to this data set, would
automatically normalize the values.

We obtain 22 clusters including many constant pro®les
(Fig. 5). These are not clusters of genes whose expression does
not vary over the cell cycle but clusters whose average
expression level is approximately the same. To assess the
relevance of these clusters we have calculated the mean of
their gene's codon adaptation index (CAI) (15) which is a
theoretical measure of gene expressivity. The Spearman rank
correlation between the clusters' mean expression levels and
the clusters' mean CAI is 94% which is signi®cant for a risk of
0.1% and a sample of size 22. So, we can say that we have
separated signi®cantly different clusters with respect to their
mean expression level. Furthermore, we have identi®ed a
cluster (cluster 7) of 14 genes, nine of which are highly
expressed in mid or late G1 (RDH54, POL30, HEM13, CRH1,
YGR151C, YFL068W, HXT2, CLN1 and CLN2). Three of

these genes are implied in cell-cycle control: CLN1, CLN2 and
RDH54. This cluster is interesting as it clusters similar pro®les
which share not only the same relative variations but also the
same expression levels. We have also noticed that one gene in
this cluster was not present in Tavazoie et al.'s analysis (10)
after ®ltering genes too constant to be normalized, illustrating
the bias of this processing step. Another interesting cluster is
cluster 12 (size 10 genes) which has a decreasing expression
since time 0 and which stabilizes at time point 4. It contains
four heat-shock protein genes (HSP26, SSE2, HSP78 and
SSA4), one gene (SPI1) induced by heat-shock and three co-
induced in cell stress with HSP26 (YOR289W, YPR151C and
GAD1) found in the YPD database (16).

Leukemic data set

Promyelocytic cells undergo terminal differentiation and
apoptosis after treatment with all-trans retinoic acid (at-RA)
for 4 days (17). Previous studies revealed several waves of
proteins involved in regulating apoptosis (18). However, the
early steps of retinoic acid receptor signaling responsible for
inducing terminal differentiation and apoptosis remained
unclear. For this reason early events of transcriptional
regulation of target genes were studied using a transcription
pro®ling approach (19). Brie¯y, two independent untreated
samples of NB4 cells were compared with one sample
representing NB4 cells treated with at-RA for 18 h. Analysis
of the resulting transcription pro®le by DPC allowed cluster-
ing of 3995 genes in 252 clusters while simultaneously

Figure 5. Expression pro®les of the clusters obtained by DPC using the 6220 genes of the Cho yeast data set (14) without normalization. The clusters are
essentially clusters of genes whose average expression level is approximately the same, however, some have interesting pro®les such as cluster 7 containing
genes highly expressed in mid or late G1 and cluster 12 containing heat-shock and stress protein genes.
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considering two equally important factors, namely the basal
gene-expression status and the degree of gene regulation. The
frequency distribution of the number of genes per cluster is
shown in Figure 6. The median cluster size was 13 genes and
>75% of 3995 genes were grouped in clusters containing
between 5 and 24 genes. For 181 clusters whose gene-
expression values among the biological duplicates varied by
<10%, the median gene regulation was plotted against the
basal gene expression level (Fig. 7).

Two genes with extremely low basal transcription levels
induced by at-RA in a very strong fashion (>30-fold) were
found in cluster 0, one of them being a known cytokine
(SCYA2). Two distinct clusters of low level expressed genes
(approximately 500 ¯uorescence units, cluster 1 and 3) were
distinguished with respect to different intensity of
gene-induction. Cluster 3 which had a median induction of
11-fold, contained proteins associated with cell±cell signaling,
signal transduction, organelle motility and a transport protein.
In contrast, in cluster 1 which had less intensely regulated
genes (7-fold) we identi®ed several genes that may be
associated with the initiation of differentiation (apoptosis
inhibitor BCL2A1, purine metabolism, blood coagulation,

phagocytosis) serving basic functions in cell-growth and
maintenance. Two clusters for medium-low level initial
expression were identi®ed with 5-fold (cluster 2) or 2.7-fold
induction (cluster 37). The latter contains several genes
associated with signal transduction representing the ®rst wave
of target genes preparing terminal differentiation (EDNRB or
endothelin receptor B, CD79A, PTPRC, HPCA, PIM1, HCK)
in NB-4 cells. Interestingly, about half of the genes in this
cluster have not been identi®ed previously since they were
located outside the statistical test thresholds. The genes in
cluster 37 gave a pro®le rich in genes associated with or
suspected to play a role in signal transduction, revealing the
complexity of retinoic acid receptor signaling at this stage.

Similarly, more down-regulated genes were identi®ed
compared with previous studies using statistical tests not
considering the intrinsic structure of clusters. As the overall
number of down-regulated genes is low, clustering of the data
was a particularly challenging task. Previous studies based on
statistical tests without considering the additional structure of
clusters suggested only nine down-regulated genes. DPC
de®ned one cluster containing genes of various basal expres-
sion levels that are down-regulated 6±8-fold in at least half of
the cases. In addition, a total of 24 weakly down-regulated
genes (2±4-fold) were organized as three clusters correspond-
ing to low, medium-low and medium basal expression levels.

We also investigated the nature of clusters containing the
most constantly expressed genes. Cluster 166 contained 13
genes expressed at constant medium-low levels including
several genes involved in basic metabolism (PCCA, NMOR2,
CBR1, GTF2A2 and possibly TCN1). High level constant
gene expression was found in cluster 10 of size 27 covering a
wide variety of different functions ranging from cell structure
(ARPC2), membrane-associated proteins (GNB2, PVBP2,
VDAC3), cytochrome oxidases (COX5A, COX11) to chaper-
onins (CCT4) or DNA binding proteins (H3F3B). Detailed
cluster results can be viewed at: http://www-bio3d-igbmc.u-
strasbg.fr/~wicker/DPC/dpc.html.

Figure 6. Frequency distribution of cluster size for the leukemic data set.
Expression data for leukemic cells treated with retinoic acid were analyzed
using DPC. The 252 resulting clusters were examined for their size.

Figure 7. Gene regulation in the leukemic data set. Median gene expression changes were plotted against basal gene expression levels for each cluster whose
basal expression levels varied by <10%.
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DISCUSSION

In this paper we have presented DPC, a clustering program
implementing a new stopping rule which automatically
determines a reasonable number of clusters while the cluster-
ing is performed on coordinate values. The ef®ciency of this
approach has been veri®ed on a number of synthetic data sets
of non-normalized two-dimensional points. We have shown
that DPC can identify homogeneous clusters separating them
from clusters of noise. From this point of view, DPC performs
better than Mclust (8) which is another algorithm that uses
coordinate values.

We have also veri®ed that DPC can produce biologically
relevant results by analyzing the well-studied yeast cycle set
of Cho et al. (14). With this data set, DPC outperforms Mclust
and does as well as CLICK (2) which only considers
normalized data. The results were compared using the
adjusted Rand index which is an objective measure of the
quality of a clustering when the `true' clustering is known. On
a recent non-normalized data set, for which the true clustering
is not yet known, DPC was able to identify biologically
interesting clusters for expression pro®les of 3995 genes of
promyelocytic cells after treatment with retinoic acid.

Traditional techniques used to analyze transcription pro®l-
ing data were focused on only one variable, typically the
extent of gene regulation. However, a candidate genes' initial
expression level is of key importance especially in cases
de®ning biological switches of the type on/off or vice versa.
DPC was used for simultaneous consideration of both
parameters in a clustering analysis without deformation of
data by supplementary normalization. This high resolution
clustering approach distinguished 252 fairly homogeneous
clusters for 3995 genes with a median cluster size of 13 genes.
Interestingly, several clusters were characterized by similar
basal expression levels but different pro®les of gene regulation
(clusters 1 and 3 or 2 and 37). These clusters contain genes
with quite different biological functions. In the case of cluster
2, several genes responsible for transcription or general
metabolism were grouped together as highly inducible while
cluster 37 contains less induced genes, including numerous
genes associated with signal transduction. A statistical test
performed previously (19), suggested considering only half of
the genes in cluster 37 as signi®cantly regulated, while all the
genes in cluster 37 have very similar expression pro®les.

Highly induced genes can be easily identi®ed by a variety of
methods. However, the highest regulated genes may not be the
key molecular switches. The presence of noisy data makes
identi®cation of low level regulated genes a challenging task
where the clustering results provided by DPC were extremely
valuable. Consideration of the intrinsic structure of the
expression data opens novel perspectives reaching far beyond
cut-off values to identify regulated genes.

DPC requires the user to specify a data density type before
starting its clustering. Typically Density1 should be used on
non-noisy data such as our synthetic data set, whereas
Density2 is more suitable for noisy data sets such as DNA
chips data sets. Another drawback is the tendency of DPC
to create spherical clusters even if there is no assumption about
the distribution type. This is due to the k-means clustering
algorithm on which DPC is based. However, the stopping
rule implemented by DPC could be used by other clustering

algorithms such as the mixture model based methods or
von Heydebreck et al.'s method (20) to overcome this
problem.

In summary, DPC performs excellently in a wide variety of
cases that are dif®cult to analyze using current methods. DPC
can be applied successfully to data sets in a large range of
dimensions, can distinguish small groups from big ones and
create homogeneous clusters separating them from clusters of
noise. This represents a new strategy in clustering, which
focuses on a points' density analysis inside and outside
clusters and should be useful in gene expression data.

IMPLEMENTATION

DPC is written in C, has been tested on Unix and is free to
academic/non-pro®t research organizations on the site: http://
www-bio3d-igbmc.u-strasbg.fr/~wicker/DPC/dpc.html. Two
display programs are also available, one for normalized data
sets and the other for non-normalized data sets.
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