
Depletion of licensing inhibitor geminin causes
centrosome overduplication and mitotic defects
Kiku-e K. Tachibana1+, Michael A. Gonzalez1, Giulia Guarguaglini2w, Erich A. Nigg2 & Ronald A. Laskey1

1Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Cambridge, UK, and 2Department of Cell Biology,

Max-Planck Institute of Biochemistry, Martinsried, Germany

Metazoans limit origin firing to once per cell cycle by oscillations
in cyclin-dependent kinases and the replication licensing inhibitor
geminin. Geminin inhibits pre-replication complex assembly by
preventing Cdt1 from recruiting the minichromosome mainte-
nance proteins to chromatin. Geminin depletion results in
genomic over-replication in Drosophila and human cell lines.
Here, we show that loss of geminin affects other cell cycle-
dependent events in addition to DNA replication. Geminin
inactivation causes centrosome overduplication without passage
through mitosis in human normal and cancer cells. Centrosomes
are microtubule-organizing centres that are duplicated during S
phase and have an important role in the fidelity of chromosome
transmission by nucleating the mitotic spindle. Consistent with
this, geminin-depleted cells show multiple mitotic defects,
including multipolar spindles, when driven into mitosis by
checkpoint abrogation. These results show that the consequences
of geminin loss exceed its immediate role in DNA replication and
extend to promoting chromosome mis-segregation in mitosis.
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INTRODUCTION
Centrosome duplication, similar to DNA replication, is a
semiconservative process that occurs once and only once per
cell cycle. The assembly of pre-replication complexes that are
essential for DNA replication is limited to late mitosis and G1
phase, when the replication licensing inhibitor geminin is absent
and cyclin-dependent kinase (CDK) activity is low (McGarry &
Kirschner, 1998; Wohlschlegel et al, 2000; Tada et al, 2001;
Diffley, 2004). Similarly, G1-phase cells contain one centrosome

that is ‘licensed’ for a single duplication event (Wong & Stearns,
2003). Centriole duplication and genomic replication initiate
at the G1–S transition, and several studies indicate that cyclin A
or E complexed to CDK2 couple these two processes to S-phase
progression (Hinchcliffe et al, 1999; Matsumoto et al, 1999;
Meraldi et al, 1999; Coverley et al, 2002; Sluder, 2004). The
mechanisms that regulate centrosome duplication have been
studied in part by the administration of DNA synthesis inhibitors
such as aphidicolin and hydroxyurea, which lead to centrosome
amplification in p53 mutant cell lines (Balczon et al, 1995).
Likewise, subtoxic concentrations of anticancer drugs such as
actinomycin D, cytosine arabinoside and 5-fluorouracil result in
centrosome overduplication without DNA synthesis (Bennett et al,
2004). Centrosome amplification has also been observed in
Rad51-deficient cells during a prolonged G2-phase arrest (Dodson
et al, 2004). In most of these studies, DNA replication and
centrosome duplication have been synthetically uncoupled,
whereas they are normally linked to S-phase progression. Here,
we show that the inhibition of geminin expression is sufficient
to induce centrosome overduplication. This provides a novel
approach to the study of centrosome duplication without a
need for genotoxic chemicals, and indicates a new, more general
role for geminin in coordinating the chromosome inheritance
cycle in metazoans.

RESULTS AND DISCUSSION
To investigate the function of geminin in cell-cycle progression,
we examined the effects of inhibiting geminin expression using
short interfering RNA (siRNA) in a variety of human cell lines. In
U2OS osteosarcoma cells, geminin depletion resulted in a relative
increase in cyclin A levels, as shown by western blotting of whole-
cell lysates (Fig 1A). The same was observed in geminin-depleted
HCT116 colorectal cells (Zhu et al, 2004), although the
transfection efficiency was lower in HCT116 than in U2OS
(Fig 1A). The increase in cyclin A levels could reflect the increased
proportion of replicating cells that fail to exit S phase after geminin
depletion (Fig 3A). However, indirect immunofluorescence of
geminin-depleted cells shows that cyclin A protein levels are also
upregulated on a per cell basis. This is particularly obvious in
HCT116 cells because the lower transfection efficiency allows a
direct comparison of geminin-depleted and untransfected cells in
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the same population (Fig 1B). Cyclin A levels are higher in the
nuclei of some geminin-depleted cells, which can be clearly
identified by their significant increase in size compared with
control cells.

As loss of geminin alters the relative levels of cyclins, we asked
whether geminin depletion affects S-phase events other than DNA
replication. Centriole duplication, similar to DNA replication,

initiates at the G1–S transition and is tightly regulated by various
kinases (Sluder, 2004). In particular, cyclin A/CDK2 has been
implicated in centrosome duplication (Meraldi et al, 1999), and
several studies have shown that its overexpression is linked to
centrosome abnormalities in cell lines (Balczon et al, 2001; Faivre
et al, 2002) and tissues (Hsu et al, 2004). Therefore, we analysed
geminin siRNA-treated HCT116 cells for centrosome defects
and found that cells with increased cyclin A levels also contain
more than two centrosomes (Fig 1C). Cyclin A/CDK2 is a good
candidate for mediating centrosome amplification in geminin-
depleted cells, although cyclin E/CDK2 and other kinases might
also be involved. Multiple centrosomes were also detected in
geminin-depleted U2OS cells by two independent centrosome
markers, g-tubulin and centrosomal Nek2-associated protein 1
(C-Nap1; Fry et al, 1998; Fig 1D,E). A similar phenotype was
also observed in TIG3 human diploid fibroblasts (Fig 1E), which
indicates that loss of geminin affects centrosome duplication in
both normal and cancer cells.

As a control for the specificity of the siRNA oligonucleotides,
we used two different U2OS cell lines stably expressing
haemagglutinin (HA)-tagged geminin in which two residues in
the siRNA target sequence were changed in a way that altered the
nucleotide sequence but not the amino acids (Melixetian et al,
2004). Treatment of these cell lines with geminin siRNA caused
a decrease in endogenous geminin levels, but the HA-tagged
geminin expression remained unaffected and the number of
cells with more than two centrosomes remained at background
levels (Fig 2A,B). This shows that multiple centrosomes are a
consequence of geminin loss.

Cells can acquire multiple centrosomes by different mechan-
isms. We used several approaches to distinguish between
centrosome overduplication and centrosome accumulation by
cell division failure. Geminin depletion caused genomic over-
replication in U2OS (Fig 3A) and HCT116, as has been reported
recently (Melixetian et al, 2004; Zhu et al, 2004). We used
nocodazole at a concentration that resulted in a G2–M arrest in
control cells but did not result in significant microtubule
depolymerization during interphase (Fig 3A; data not shown).
Prolonged incubation with nocodazole did not affect over-
replication (compare 48 h�nocodazole with 32 hþ 16 h nocoda-
zole). Importantly, the addition of nocodazole did not prevent
centrosome overduplication in geminin-depleted cells (Fig 3B).
The insensitivity of geminin-depleted cells to nocodazole can be
explained by loss of geminin preventing entry into mitosis
(Melixetian et al, 2004) and, hence, cell division (Fig 3C).

The results indicate that centrosome overduplication occurs
without passage through mitosis in geminin-depleted cells. We
have investigated this further by examining the number of mature
centrioles in control and geminin siRNA-treated cells. The
centrosomal protein 170 (Cep170) is a marker of mature
centrioles, and antibodies against this protein were recently used
successfully to explore the mechanisms underlying centrosome
amplification (Guarguaglini et al, 2005). Cep170 associates with
a single mature centriole in G1-, S- and early-G2-phase cells,
but with two mature centrioles in late G2 phase. A minority of
control cells (o5%) contain more than two mature centrioles
(Fig 3D,E), which have probably arisen owing to cell division
failure. If multiple centrosomes detected by g-tubulin staining
in geminin-depleted cells (Fig 1D) arise from cell division failure,
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Fig 1 | Depletion of geminin by short interfering RNA causes aberrations

in centrosome number. (A) U2OS and HCT116 cells were treated with

geminin (gem) or control (con) short interfering RNA (siRNA) and

collected 48 h after transfection. Untransfected cells were included as a

negative control. Western blots were probed with antibodies specific for

geminin and cyclin A. The loading control is a crossreacting protein.

(B) HCT116 cells were immunostained with cyclin A and geminin

antibodies, and DNA was counterstained with Hoechst (blue). Scale bars,

10 mm. (C) HCT116 cells were immunostained with cyclin A and

g-tubulin antibodies. Scale bars, 5mm. (D) U2OS cells were

immunostained for centrosomes with g-tubulin and C-Nap1 antibodies.

Scale bars, 5mm. (E) Quantification of supernumerary centrosomes in

U2OS, HCT116 and TIG3 cells. The number of g-tubulin spots was

counted in at least 300 cells in three independent experiments. Error

bars represent one standard deviation.

Geminin and centrosome duplication

K.K. Tachibana et al

&2005 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION EMBO reports VOL 6 | NO 11 | 2005

scientificreport

1053



then these cells would also be expected to contain multiple Cep170-
positive centrioles. However, most geminin-depleted cells contain
only a single mature centriole, as shown by Cep170 staining
(Fig 3D,E), which argues strongly in favour of bona fide
centrosome overduplication.

Furthermore, we were interested to study the effects of
overduplicated centrosomes on mitosis. Geminin depletion causes
DNA damage and CHK1/2 activation, and metaphase spreads of
geminin-depleted cells showed chromosome breaks (Melixetian
et al, 2004; Zhu et al, 2004). On the basis of our data, we
suggested that geminin-depleted cells would also have other
mitotic defects that stem from overduplicated centrosomes. We
used caffeine to override the G2–M DNA damage checkpoint and
induced mitosis. Caffeine addition to geminin siRNA-treated cells

caused a marked increase in the proportion of cells showing
abnormal spindles (Fig 4A,B). Similar spindle defects were
observed after 2 or 15 h incubation of geminin siRNA-treated
cells with caffeine, although the number of mitotic cells was much
higher after the longer treatment. Remarkably, some geminin-
depleted cells were able to form nearly bipolar spindles despite
the presence of multiple centrosomes, and unattached chromo-
somes could be detected frequently in these cells (Fig 4C). Other
cells containing multiple centrosomes formed multipolar spindles,
which may result in chromosome mis-segregation. To ensure that
these phenotypes are specific to geminin loss rather than isolated
aneuploid U2OS cells, checkpoint-abrogated cells were double
labelled with geminin and a-tubulin to mark the mitotic spindle.
In untreated and control cells, geminin was present in prometa-
phase and metaphase cells. Most of the prometaphase-like cells
with abnormal spindles were negative for geminin, which
confirmed that these mitotic defects are due to geminin depletion.
Therefore, the loss of geminin may promote chromosome mis-
segregation and aneuploidy, which are characteristics of human
cancer (Nigg, 2002).

In summary, our results show that loss of geminin has
consequences beyond its immediate role in DNA replication.
Geminin depletion causes continuous centrosome duplication
without passage through mitosis (Fig 4D). It is possible that this is a
downstream effect of genomic over-replication and activation of
the G2–M DNA damage checkpoint pathway (Melixetian et al,
2004; Zhu et al, 2004), which is implicated in causing aberrations
in centrosome number during a prolonged G2 arrest (Dodson
et al, 2004). However, a direct role for geminin in regulating
centrosome duplication cannot be excluded at present. Indeed, it
is tempting to speculate that geminin functions as a licensing
inhibitor of both DNA replication and centrosome duplication
during S and G2 phases. Moreover, whereas chemicals that
induce genotoxic stress cause centrosome overduplication in the
absence of DNA synthesis (Balczon et al, 1995; Bennett et al,
2004), geminin depletion leaves the link between DNA replica-
tion and centrosome duplication intact. This offers the opportunity
to explore further how these crucial cell cycle events are coupled.

METHODS
Cell lines and drugs. Human U2OS osteosarcoma, HCT116
colorectal cancer cells and TIG3 human diploid fibroblasts were
grown in 10% fetal calf serum in Dulbecco’s modified Eagle’s
medium (Invitrogen, Paisley, UK). Cells were incubated with 5 mM
caffeine (Sigma, Dorset, UK) or 500 ng/ml nocodazole (Sigma, UK).
RNA interference. siRNA oligonucleotides were made to the
following target sequences: AACUUCCAGCCCUGGGGUUAU
and AAUGCCAACUCUGGAAUCAAA for human geminin siRNA
(MWG, Munich, Germany) and AATTCTCCGAACGTGTCACGT
for control siRNA (Qiagen, West Sussex, UK). Transfections
were carried out with 130 nM siRNA oligonucleotide duplexes
with Oligofectamine (Invitrogen, UK), according to the
manufacturer’s instructions.
Antibodies, immunoblotting and immunofluorescence. Rabbit
anti-geminin (Gonzalez et al, 2004), rabbit anti-C-Nap1 (Fry
et al, 1998) and rabbit anti-Cep170 (Guarguaglini et al, 2005)
antibodies were raised as described earlier. Mouse anti-a-tubulin
(Sigma, UK), rabbit anti-g-tubulin (Sigma, UK) and mouse anti-
cyclin A antibodies (Novocastra, Newcastle, UK) were used for
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Fig 2 | Rescue of geminin short interfering RNA phenotype in cells stably

expressing haemagglutinin-tagged RNA interference mutants of geminin.

(A) U2OS cell lines expressing two different mutant haemagglutinin

(HA)-tagged RNA interference mutants of geminin in which two residues

were changed in the short interfering RNA (siRNA) target sequence

in a way that altered the nucleotide sequence but not the amino acids

(Melixetian et al, 2004). The cell lines were treated with geminin siRNA

for 48 h and analysed by western blot with a geminin antibody.

(B) Quantification of supernumerary centrosomes by g-tubulin staining

in U2OS cell lines.

Geminin and centrosome duplication

K.K. Tachibana et al

EMBO reports VOL 6 | NO 11 | 2005 &2005 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION

scientificreport

1054



immunofluorescence and mouse anti-cyclin A antibody (Vector
Labs, Peterborough, UK) was used for immunoblotting. For
western blotting, whole-cell lysates were boiled in Laemmli buffer
and proteins were resolved by SDS–polyacrylamide gel electro-
phoresis, transferred to nitrocellulose membranes and probed with
appropriate antibodies. Immunofluorescence was carried out as
follows. Cells were either grown on coverslips or spun through a

sucrose cushion onto polylysine-coated coverslips and fixed with
4% paraformaldehyde. Cells were permeabilized with 0.1%
Triton X-100/0.02% SDS in PBS for 10 min and blocked in 1%
bovine serum albumin in PBS for 30 min. Coverslips were
incubated with primary antibody for 1 h at 37 1C, then washed
and incubated with Alexa Fluor 546-conjugated goat anti-mouse,
Alexa Fluor 546-conjugated goat anti-rabbit or Alexa Fluor
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Fig 3 | Loss of geminin induces centrosome overduplication and genomic over-replication without passage through mitosis. (A) Flow cytometric

profiles of U2OS treated with geminin or control short interfering RNA (siRNA) for 32 or 48 h. Cells were either collected at 32 h after transfection or

incubated for another 16 h with nocodazole (Noc). Cells were stained with propidium iodide for DNA content analysis. (B) Quantification of

supernumerary centrosomes by g-tubulin staining of cells treated with or without nocodazole. (C) Total cell number was counted at 48 and 72 h after

transfection. (D) U2OS were treated with geminin or control siRNA for 48 h and immunostained with a Cep170 antibody to mark mature centrioles.

Scale bars, 5mm. (E) Comparison of the number of Cep170-positive centrioles in geminin and control siRNA-treated U2OS cells. Error bars represent

one standard deviation.
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488-conjugated goat anti-rabbit secondary antibodies (Molecular
Probes, Eugene, OR, USA) for 30 min at 37 1C. DNA was
counterstained with Hoechst (Sigma, UK). The cells were
examined using a Zeiss 510 confocal microscope (Zeiss, Jena,
Germany). For Z-projection analysis, sequential single-plane
images were collected through cells at 0.2 mm intervals.
Fluorescence-activated cell sorting analysis. Cells were collected
by trypsinization and fixed in 70% methanol overnight at �20 1C.
Cells were stained with 50mg/ml propidium iodide (Sigma, UK) in
0.05% NP-40 (BDH, Poole, UK) and 100 mg/ml RNase A (Sigma,
UK) in PBS for 1 h at 20 1C. The cells were analysed on a Becton
Dickinson flow cytometer using FACSDiva software (Becton
Dickinson, Oxford, UK).
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