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ABSTRACT

The RNA interference (RNAi) phenomenon is a
recently observed process in which the introduction
of a double-stranded RNA (dsRNA) into a cell
causes the speci®c degradation of a mRNA contain-
ing the same sequence. The 21±23 nt guide RNAs,
generated by RNase III cleavage from longer
dsRNAs, are associated with sequence-speci®c
mRNA degradation. Here, we show that dsRNA
speci®cally suppresses the expression of HIV-1
genes. To study dsRNA-mediated gene interference
in HIV-1-infected cells, we have designed six long
dsRNAs containing the HIV-1 gag and env genes.
HIV-1 replication was totally suppressed in a
sequence-speci®c manner by the dsRNAs in HIV-1-
infected cells. Especially, E2 dsRNA containing the
major CD4-binding domain sequence of gp120,
as the target of the HIV-1 env gene, dramatically
inhibited the expression of the HIV-1 p24 antigen in
PBMCs for a relatively long time. The dsRNA inter-
ference method seems to be a promising new
strategy for anti-HIV-1 gene therapeutics.

INTRODUCTION

RNA interference (RNAi) occurs in a variety of organisms,
including Caenorhabditis elegans, Trypanosoma brucei,
plants, Drosophila, planaria, zebra®sh and mouse embryos.
In most of these organisms, the injection of a double-
stranded RNA (dsRNA) longer than 500 bp speci®cally
suppresses the expression of the gene with the corresponding
DNA sequence, but has no effect on genes with unrelated
sequences (1±10).

RNAi is initiated by the RNase III-like nuclease Dicer,
which promotes processive cleavage of long dsRNAs into
21±23-nt short interfering RNAs (siRNAs) with 2-nt 3¢
overhangs (11±15). Subsequently, the siRNAs are incorpor-
ated into an RNA-induced silencing complex (RISC),

identi®ed in Drosophila, and the protein±RNA effector
nuclease complex recognizes and destroys the target
mRNAs (16±18).

The use of this RNAi in mammalian cells appeared to be of
limited utility, because dsRNAs longer than 30 bp trigger
interferon responses through the activation of dsRNA-
dependent protein kinase (PKR) and 2¢,5¢-oligoadenylate
(2-5A) synthetase (19±21). To overcome this non-speci®c
effect in mammalian cells, it has recently been found that
21±23-nt siRNAs with 2-nt 3¢ overhangs exhibit an RNAi
effect (22). Transfection of synthetic siRNAs into mammalian
cells effectively inhibits the endogenous genes in a sequence-
speci®c manner (22±24). Lee et al. have reported the
inhibition of HIV-1 replication by the expression of small
interfering RNAs targeted against HIV-1 rev in human
cells (25).

Several RNA-based antiviral therapies are being studied for
HIV treatments, using ribozyme and antisense approaches
(26±28). However, dsRNA provides a more reliable method of
viral and reporter gene inactivation than antisense RNA (29).
Furthermore, the longer dsRNA-mediated inhibition of gene
expression is still being studied in mammalian systems.
Microinjection of dsRNA into mouse oocytes or early
embryos results in the speci®c inhibition of the activities of
both maternally and zygotically expressed proteins (9,10).
Recently, Billy et al. reported that the RNAi response could be
induced effectively by long dsRNA in non-differentiated
mouse cells grown in culture (30). In addition, Billy et al.
demonstrated that extracts prepared from mouse embryonal
carcinoma (EC) cells catalyzed the processing of dsRNA into
~23-nt RNAs and that the processing enzyme, Dicer, is
localized in the cytoplasm of EC and HeLa cells.

In this study, we used a long dsRNA, in place of antisense
DNA (31,32), to interfere with the expression of HIV-1 genes.
We found that the greatest inhibitory effects were detected
with 531 bp E2-dsRNA containing the major CD4-binding
domain sequence of gp120, as the target of the HIV-1 env gene.
We also found that the long dsRNA caused the sequence-
speci®c inhibition of HIV-1 replication. Especially, the E2-
dsRNA dramatically inhibited the expression of the HIV-1 p24
antigen in PBMCs for a relatively long time.
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MATERIALS AND METHODS

Plasmid and PCR template used for RNA synthesis

Plasmid pNL4-3 was used as the PCR template for the
synthesis of dsRNAs corresponding to the gag and env genes.
PCR templates for dsRNA synthesis targeting the ®re¯y
luciferase (luc) reporter gene (Photinus pyralis, Luc,
1032±1562, 531 bp) were ampli®ed from pEGFPLuc
(Clontech). The transcription templates were linear double-
stranded DNA (dsDNA) with blunt or 5¢-protruding ends. The
templates used for dsRNA synthesis were the products of
PCRs with primers designed to amplify limited regions of the
cDNA sequence for each gene. Each primer contained an SP6
promoter sequence (CATACGATTTAGGTGACACTATAG)
and a T7 promoter sequence (TAATACGACTCACTATAG)
on its 5¢ end. Sense and antisense RNAs were synthesized
in vitro with the SP6 and T7 polymerases, using the
AmpliScribe Transcription Kit (Epicentre Technologies).
DNA templates were then removed by DNase I treatment.
The RNA products were extracted with phenol/chloroform
and then precipitated in ethanol. The in vitro transcription
products were resolved by electrophoresis in a 1% agarose gel
prepared with denaturing buffer. For annealing, equimolar
quantities of sense and antisense RNAs were mixed in
annealing buffer (10 mM Tris pH 7.4, 0.1 mM EDTA),
heated to 90°C for 1 min and incubated at 37°C for 12±16 h.
The formation of dsRNA was con®rmed by its migration on a
1% agarose gel in TBE.

Cell culture and RNA interference assays

COS, HeLa-CD4+ and ACH2 cells were grown in RPMI 1640
medium (Sigma) supplemented with 10% fetal bovine serum
(FBS), 100 U/ml penicillin, 100 mg/ml streptomycin and 2 mM
L-glutamine at 37°C under a 5% CO2 atmosphere. Human
peripheral blood mononuclear cells (PBMCs) were isolated by
density gradient centrifugation, grown in RPMI 1640 medium
supplemented with 10% FBS, and activated with 1 mg/ml
phytohemaggulutinin (PHA) (Seikagaku Corp.) for 3 days in
the presence of IL-2 (100 U/ml; Shionogi) at 37°C. For the p24
accumulation assays, PHA-stimulated PBMCs were infected
with the HIV-1NL4-3 virus at a multiplicity of infection (MOI)
of 0.001 in the presence of various concentrations of the
dsRNAs. At 4, 7, 10 or 14 days after infection, culture
supernatants containing the viruses were removed and the
amount of p24 was measured by an HIV-1 p24 CLEIA assay
(Lumipulse; Fujirebio Inc.) (33). Fresh medium was then
added with one-half volume of culture medium and the cells
were transfected with the indicated amounts of dsRNA by
using the TransMessenger Transfection Reagent (Qiagen), as
described by the manufacturer. The plasmid pNL4-3 is an
HIV-based infectious vector, which was puri®ed with the
plasmid Maxi-Prep Kit (Sigma), followed by phenol extrac-
tion and ethanol precipitation. Twenty-four hours before
transfection, adherent cells were seeded in 6-well multiwell
plates at a density of 2 3 105 cells/well. COS cells were
transfected with 2 mg dsRNA and 2 mg pNL4-3, using 2 ml of
Lipofectin (Gibco BRL) and 3 ml of FuGENE 6 (Roche),
according to the manufacturers' optimized protocols. After a
72 h incubation, the virus replication was monitored in the
culture supernatants with the HIV-1 p24 CLEIA assay. For the

infection of HeLa-CD4+ cells, 2 3 105 cells were seeded into
6-well multiwell plates 24 h before infection and then were
infected with the HIV-1NL4-3 virus at a MOI of 0.5. After a 16 h
infection, the cells were washed and treated with dsRNA at a
2 mg concentration in the culture medium. HeLa-CD4+ cells
were transfected at ~24 h intervals and were asssayed 7 days
after infection.

RNA isolation and RT±PCR assay

The reverse transcription and the PCR analysis were per-
formed with total RNA from COS cells (prepared with the
GenElute Mammalian Total RNA kit; Sigma) as the template
(1 mg/reaction). These templates were ampli®ed for one cycle
of 60°C for 30 min and 94°C for 2 min, 40 cycles of 94°C for
1 min and 50°C for 1.5 min and one cycle of 50°C for 1 min
with env gene-speci®c primers. The primers were 5¢-ACA-
GCTGAACACATCTGTAGAAATTAATTG-3¢ and 5¢-GTT-
GTTATTACCACCATCTCTTGTTAATAG-3¢. The ampli-
®ed DNA was subjected to electrophoresis in a 1% agarose
gel and was visualized by ethidium bromide staining.

RESULTS AND DISCUSSION

The ef®cient cellular uptake of the dsRNAs is a critical step to
enable targeting to the mRNA. Using COS cells, we examined
the cellular uptake of ¯uorescently labeled E2-dsRNA with
several kinds of transfection reagents (FuGENE 6, Lipofectin
and Gene PORTER 2) at 37°C for 24 and 72 h. The cells were
washed twice with PBS, resuspended in PBS containing 1%
paraformaldehyde and analyzed by the FACS Calibur and
CellQuest software. When we used Lipofectin as the
transfection reagent, after 24 h, 94% of the COS cell-
associated ¯uorescence signal was found, while after 72 h it
had only decreased to 84%, which might explain the enhanced
RNAi effect (data not shown). To test for silencing of the
HIV-1 gene, we chose Lipofectin as the transfection reagent.

To test for silencing, we designed six longer dsRNAs
containing the HIV-1 gag (G1±G3) and env genes (E1±E3)
(Fig. 1A). We also designed a control long dsRNA, which
included the ®re¯y luciferase gene (Photinus pyralis, Luc
dsRNA, 1032±1562, 531 bp). Sense (ss) and antisense (as)
RNAs were transcribed in vitro from PCR products and
annealed to each other to produce the dsRNA. The ssRNAs,
asRNAs and dsRNAs were each tested for their ability to
suppress HIV-1 expression speci®cally. Using Lipofectin
(Gibco), dsRNA duplexes were co-transfected into COS cells
with the HIV-1 expression vector pNL4-3. The virus produc-
tion in the culture supernatant was assessed by the HIV-1 p24
antigen assay at 3 days, and was related to the amount
produced in the absence of dsRNA. The six longer dsRNAs
containing the HIV-1 gag (G1±G3) and env sequences
(E1±E3) speci®cally reduced the p24 expression by ~10- to
23-fold as compared to the untreated control cells. Notably,
the three dsRNAs targeted to the HIV-1 env gene (E1±E3)
inhibited p24 expression more effectively than those targeted
to the HIV-1 gag gene (G1±G3) (Fig. 1B). We also
investigated the sequence-speci®c inhibition of HIV-1 gene
expression, using the Luc-dsRNA as the control dsRNA. The
Luc-dsRNA showed higher expression of the p24 antigen than
the six dsRNAs targeted to the HIV-1 gag (G1±G3) and env
genes (E1±E3) (Fig. 1B). However, the Luc-dsRNA exhibited
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very low inhibition of HIV-1 replication. Some inhibition by
the control Luc-dsRNA might have occurred if it caused the
activation of a dsRNA-dependent enzyme, such as PKR or
2-5A synthetase. The greatest inhibitory effects were detected
with the 531 bp E2-dsRNA containing the major CD4-binding
domain sequence of gp120, as the target of the HIV-1 env
gene.

We also assessed whether the RNAi was dose dependent.
COS cells were transduced with 0.5±4 mg of the E2-ssRNA,
asRNA or dsRNA and the HIV-1 expression vector pNL4-3,
using Lipofectin. As expected, the E2-dsRNA exhibited the
HIV-1-dependent dsRNA-mediated inhibition in a dose-
dependent manner (Fig. 2). With this result, we con®rmed
the effectiveness of the dsRNAs by their dose dependence,
with the best response at 2 mg. Interestingly, the E2-asRNA
also reduced the p24 expression, with a similar dose-
dependent ef®ciency. The E2-ssRNA was incapable of
inhibiting HIV-1 gene expression, even when transfected with
an excess of the minimum saturating dsRNA concentration.

To characterize the relationship between RNAi and asRNAs
further, we compared the inhibitory effects of six longer
dsRNAs targeted to the HIV-1 gag and env genes with those of
the corresponding ssRNAs and asRNAs. A comparison of the
effects of the ss-, as- and dsRNAs containing the HIV-1 gag

sequences (G1±G3) is shown in Figure 3A. In comparison,
there was no dramatic difference in the p24 antigen suppres-
sion levels between the dsRNAs and asRNAs (G1±G3), as
shown in Figure 3A. The G1-ssRNA was ineffective in
reducing the amount of p24 antigen. In addition, the G2- and
G3-ssRNAs reduced the amount of p24 antigen by only

Figure 1. (A) The target sites of the dsRNAs used in this study and
described in the text. The target regions for the dsRNAs are indicated as
black bars below the coding region of the HIV-1 genes. Double-stranded
RNAs were generated corresponding to the HIV-1 gag (G1, 737~1184,
448 bp; G2, 1155~1595, 441 bp; G3, 1564~2010, 447 bp) and env
(E1, 6191~6712, 522 bp; E2, 7070~7600, 531 bp; E3, 7720~8186, 467 bp)
genes. The Luc-dsRNA, as a non-speci®c control, corresponds to the follow-
ing positions in the luciferase gene from the ®re¯y Photinus pyralis
(Luc, 1032~1562, 531 bp). (B) Speci®c RNAi by longer dsRNAs. The
dsRNAs (2 mg) encapsulated with Lipofectin (2 ml) were transfected into
COS cells ®rst, followed by encapsulated pNL4-3 proviral DNA (2 mg)
after 5 h. At 3 days post-transfection, p24 antigen production was detected
by the HIV-1 p24 CLEIA assay (C, positive control cells transfected with
pNL4-3 proviral DNA). The plotted data were averaged from duplicate
experiments and the bars represent 6 SD.

Figure 2. Dose dependence of E2-dsRNA in COS cells. ssRNA (ss),
asRNA (as) or dsRNA (ds) (0.5±4 mg), encapsulated with Lipofectin, was
transfected into COS cells ®rst, followed by encapsulated pNL4-3 (2 mg)
after 5 h. At 3 days post-transfection, p24 antigen production was detected
by the HIV-1 p24 CLEIA assay. The plotted data were averaged from three
independent experiments and the bars represent 6 SD.

Figure 3. Inhibition effects of ssRNAs (ss), asRNAs (as) or dsRNAs (ds) on
HIV-1 gene expression in COS cells. COS cells were transfected with
pNL4-3 (2 mg) alone or in the presence of different ss-, as- or dsRNAs
(2 mg) as indicated, using Lipofectin. After a 72 h incubation, the virus
replication was monitored in the culture supernatants with the HIV-1 p24
CLEIA assay (C, positive control cells transfected with pNL4-3 proviral
DNA). (A) Comparison of the effect of ss-, as- and dsRNAs containing the
HIV-1 gag gene (G1±G3). (B) Comparison of the effect of ss, as and
dsRNAs containing the HIV-1 env gene (E1±E3). Bars represent means 6
SE of triplicate experiments.
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2- to 3-fold. Figure 3B shows a comparison of the effects of
ss-, as- and dsRNAs containing the HIV-1 env sequences
(E1±E3). The three dsRNAs targeted to the HIV-1 env genes
(E1±E3) effectively inhibited HIV-1 gene expression more
than 2- to 3-fold relative to the asRNAs. In contrast, the
three control ssRNAs suppressed the p24 expression by only
~2-fold. Although the asRNA was able to inhibit HIV-1 gene
expression, the results presented in Figure 3 indicate that the
dsRNA is a more potent inhibitor than the asRNA. These
results strengthen the conclusion that the dsRNA is more
effective in targeting HIV-1 genes than the asRNA. The
dsRNA acted in a sequence-speci®c manner and did not
affect the expression from the non-complementary control
templates.

Moreover, we examined the HIV-1 mRNA levels to identify
the contribution of the dsRNA-mediated speci®c RNAi.
RT±PCRs were used to establish the level of uncleaved
HIV-1 mRNA. Equal amounts of total RNA from COS cells,
transfected with E2-dsRNA or ssRNA and pNL4-3 at a weight
(mg) ratio of 1:1, were subjected to RT±PCR analysis. HIV-1
env-speci®c DNA primers (sense, 7072±7101; antisense,
7571±7600) were used to amplify a 529 bp (7072±7600)
fragment in the transcripts. The COS cells transfected with the
E2-dsRNA showed an 85% reduction in HIV-1 transcripts.
However, the E2-ssRNA did not reduce the abundance of
HIV-1 mRNA (Fig. 4). The reduction in the functional full-
length HIV-1 mRNA is consistent with a dsRNA-mediated
interference effect at the post-transcriptional level. The results
of these experiments indicate that dsRNA causes a speci®c
reduction in the target mRNA levels.

In addition, to clarify the ability of dsRNA to inhibit viral
replication in HIV-1-infected cells, we used the HeLa-CD4+

cell line and the E2-dsRNA. HeLa-CD4+ cells were infected
with the HIV-1NL4-3 virus at a MOI of 0.5. After a 16 h
infection, the cells were washed and co-transfected with
E2-ss-, as- or dsRNA at a 2 mg concentration, using

Lipofectin. In the cells treated with the E2-dsRNA, the virus
replication was inhibited by ~70-fold, as compared to the
untreated control cells (Fig. 5). The long single-stranded
asRNA also had highly inhibitory effects, but the ssRNA had
virtually no effect. In this infection experiment, we also
observed sequence-speci®c, dsRNA-mediated silencing.

Next, the inhibitory activity of the E2-dsRNA against
HIV-1NL4-3 replication in PBMCs was also demonstrated by a
p24 accumulation assay of culture supernatants from virus-
infected cells. The dose dependence of the dsRNA effect was
investigated in PBMCs, using E2-dsRNA. PHA-stimulated
PBMCs were infected with the HIV-1NL4-3 virus at a MOI of
0.001, in the presence of various concentrations of the
dsRNAs. At 10 days post-infection, the amount of p24 antigen
was measured by an HIV-1 p24 CLEIA assay. As expected,
the E2-dsRNA (0.1±10 mg) reduced the p24 antigen levels in a
dose-dependent manner (Fig. 6A). We next measured the
persistence of the dsRNA silencing effect in PBMCs over a
14 day period. PHA-stimulated PBMCs were infected with the
HIV-1NL4-3 virus at a MOI of 0.001 in the presence of the E2-
dsRNA (10 mg). At 4, 7, 10 and 14 days after infection, culture
supernatants containing the viruses were removed and the
amount of p24 was measured by an HIV-1 p24 CLEIA assay.
As shown in Figure 6B, the E2-dsRNA (10 mg) was also
effective against HIV-1NL4-3 replication for a relatively long
time (14 days). These ®ndings highlight the general utility of
RNAi technology in suppressing HIV-1 expression.

To investigate the inhibitory mechanism of dsRNA on the
replication cycle of HIV-1, we examined the anti-retroviral
effect of a longer E2-dsRNA on ACH2 cells. The ACH2 cell
line, a model for chronic HIV-1 infection, possesses a single
integrated copy of the HIV-1 strain LAI and can be induced to
produce virus by a variety of stimuli (34). ACH2 cells were
transfected with E2-ss-, as- or dsRNAs and were stimulated
with 10 nM (®nal concentration in the cell culture medium)
tetradecanoyl phorbol acetate (TPA). In this induction system,
the E2-dsRNA was less effective in inhibiting virus replication
than in the transient system described above (data not shown).
These observations suggest that dsRNA may effectively
prevent early steps prior to integration, rather than later
post-integration steps, in the HIV-1 infection cycle. RNAi is
likely to re¯ect natural defenses against viruses, as a

Figure 4. RT±PCR analysis of HIV-1 mRNA expression. RT±PCR analysis
of uncleaved HIV-1 mRNA was carried out using HIV-1 env-speci®c
primers with concomitant ampli®cation of G3PDH. Total RNA was extrac-
ted from COS cells transfected with E2-ss- or dsRNAs ®rst, followed by
pNL4-3. The relative amounts of HIV-1 transcripts were determined by
RT±PCR, as described in Materials and Methods. PCR primers were used
to amplify a 529 bp (7072±7600) fragment in HIV-1 transcripts. Lane 1,
negative control (no template added); lane 2, relative amount of transcripts
in cells transfected with E2-dsRNA; lane 3, relative amount of transcripts in
cells transfected with E2-ssRNA; lane 4, relative amount of transcripts in
positive control cells transfected with pNL4-3 proviral DNA. The G3PDH
RT±PCR was run in parallel to normalize the levels of mRNA in the
samples.

Figure 5. Effects of ssRNA (ss), asRNA (as) or dsRNA (ds) in HIV-1
infected HeLa-CD4+ cells. Two micrograms of liposomally encapsulated
E2-ss-, as- or dsRNAs were transfected in HIV-1NL4-3-infected HeLa-CD4+

cells (MOI 0.5). At 7 days post-infection, p24 antigen production was
detected by the HIV-1 p24 CLEIA assay (con, positive control cells infected
with HIV-1NL4-3). The plotted data were averaged from three independent
experiments and the bars represent 6 SD.
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self-regulating mechanism of gene expression (15,35,36).
However, the mechanisms of the RNAi process in mammalian
cells remain unresolved.

In this report, we have shown that dsRNA can be
successfully used as a new anti-HIV-1 agent in HIV-1-
infected cells. In the case of COS cells co-transfected with
both the HIV-1 pNL4-3 proviral DNA and dsRNA, the dsRNA
was a more potent inhibitor than the single-stranded asRNA in
promoting the inhibition of HIV-1 replication. We also
demonstrated that dsRNA signi®cantly suppressed HIV-1
infection in HeLa-CD4+ cells and PBMCs for a relatively long
period of time. Thus, we suggest that this longer dsRNA-
mediated speci®c interference in HIV-1-infected cells may
provide a new strategy for anti-HIV-1 gene therapy.
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