
AMI = acute myocardial infarction; CCF = congestive cardiac failure; GIK = glucose–insulin–potassium; MIF = macrophage migration inhibitory
factor; NADPH = nicotinamide adenine dinucleotide phosphate (reduced); NF-κB = nuclear factor-κB; NO = nitric oxide; TNF = tumor necrosis
factor.
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Patients with acute myocardial infarction (AMI) exhibit raised
blood glucose concentrations [1–3]. In addition, a positive
association between hyperglycemia and mortality from AMI has
been reported [4], although the exact reason for this association
is not clear. Intensive treatment with insulin to lower plasma
glucose concentrations decreases overall mortality in patients
with diabetes mellitus who have AMI. In a prospective,
randomized, controlled study involving adults admitted to
surgical intensive care units and receiving mechanical
ventilation [5], intensive insulin treatment reduced mortality and
morbidity. Intensive insulin treatment reduced the number of
deaths from multiple organ failure with sepsis. Markers of
inflammation were found to be abnormal less frequently in the
intensive insulin treatment group. This suggests that
hyperglycemia is harmful, whereas insulin therapy is beneficial
not only in AMI but also in critical illness with or without
diabetes mellitus. It is likely that lack of insulin associated with
hyperglycemia causes a decrease in glycolytic substrate and an
increase in free fatty acids. This induces a reduction in
myocardial contractility, and promotes cardiac failure and
arrhythmias [6], leading to poor outcomes in such patients.

Hyperglycemia is proinflammatory whereas
insulin is anti-inflammatory
Capes and coworkers [7] showed that patients with stress
hyperglycemia but without diabetes mellitus at the time of AMI
are at increased risk for in-hospital mortality and congestive
heart failure or cardiogenic shock. Although the exact cause for
the poor prognosis is not clear, it was suggested that
hyperglycemia (an indirect reflection of relative insulin
deficiency) increases circulating free fatty acids, which are
toxic to myocardium and induce arrhythmias [6].
Hyperglycemia causes osmotic diuresis, and the resulting
volume depletion may further compromise myocardial function.

Both in animal models of diabetes and in patients with
diabetes mellitus, increased production of reactive oxygen
species and consequent lipid peroxidation were noted
[8–10]. Hyperglycemia increases the production of reactive
oxygen species inside cultured aortic endothelial cells [11].
Superoxide anion inactivates both endothelial nitric oxide
(NO) and prostacyclin produced by endothelial cells, which
are potent vasodilators and platelet antiaggregators [12,13].
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Abstract

Stress hyperglycemia and diabetes mellitus with myocardial infarction are associated with increased
risk for in-hospital mortality, congestive heart failure, or cardiogenic shock. Hyperglycemia triggers free
radical generation and suppresses endothelial nitric oxide generation, and thus initiates and
perpetuates inflammation. Conversely, insulin suppresses production of tumor necrosis factor-α and
free radicals, enhances endothelial nitric oxide generation, and improves myocardial function. It is
proposed that the balance between insulin and plasma glucose levels is critical to recovery and/or
complications that occur following acute myocardial infarction and in the critically ill. Adequate
attention should be given to maintaining euglycemia (plasma glucose ≤110 mg/dl) in order to reduce
infarct size and improve cardiac function while using a glucose–insulin–potassium cocktail.
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Thus, free radicals induce endothelial dysfunction.
Normalizing levels of mitochondrial reactive oxygen species
was reported to prevent glucose-induced activation of
protein kinase C, formation of advanced glycation end-
products, sorbitol accumulation, and nuclear factor-κB
(NF-κB) activation [10]. Glucose challenge stimulated
reactive oxygen species generation and levels of p47phox (a
key protein of the enzyme nicotinamide adenine dinucleotide
phosphate [reduced; NADPH] oxidase), whereas α-
tocopherol levels decreased significantly in
polymorphonuclear leukocytes and monocytes, even in normal
subjects [14]. High glucose concentrations induced
inflammatory events in rats, as evidenced by increased
leukocyte rolling, leukocyte adherence, leukocyte
transmigration through mesenteric venules associated with
attenuation of endothelial NO release, and increased
expression of P-selectin on endotheial surfaces [15]. Local
application of insulin attenuated these proinflammatory
effects. Insulin infusion inhibited reactive oxygen species
generation, p47phox and NF-κB in mononuclear cells, and
reduced soluble intercellular adhesion molecule-1, monocyte
chemoattractant protein-1 and plasminogen activator inhibitor-
1 production by increasing NO synthesis [16–20]. These
findings suggest that hyperglycemia has proinflammatory
whereas insulin exhibits anti-inflammatory actions.

The exact mechanism by which glucose stimulates
proinflammatory events is not clear, although indirect
evidence suggests that it does so possibly by stimulating
production of tumor necrosis factor (TNF)-α (a
proinflammatory cytokine). A diet with a high glycemic load
and hyperglycemia induced production of acute-phase
reactants [21,22]. In experimental animal models of diabetes,
the activity of NADPH-dependent oxidase and the levels of
NADPH oxidase protein subunits p22phox, p67phox and
p47phox were significantly increased [23], which accounted
for the increased superoxide production in addition to
decreased endothelial NO synthase activity. Similar to
glucose, TNF-α also enhances free radical generation by
augmenting polymorphonuclear leukocyte NADPH oxidase
activity, activates NF-κB, and increases intercellular adhesion
molecule-1 expression in endothelial cells [24]. This similarity
in the actions of glucose and TNF-α, and the ability of former
to enhance acute phase reactants suggests, but does not
prove, that glucose may enhance TNF-α production and
brings about its proinflammatory actions.

Tumor necrosis factor-αα and myocardium
TNF-α is secreted by adipose tissue, macrophages and
cardiac tissue, and plays roles in the pathogeneses of insulin
resistance, type 2 diabetes mellitus, inflammation, and septic
shock [13]. Release of TNF-α occurs early in the course of
AMI and reduces myocardial contractility in a dose-
dependent manner [25,26]. Using anti-TNF-α antibody can
reduce TNF-α-induced myocardial injury and dysfunction
[13,27]. Cardiac cachexia is believed to be due to an

increase in the circulating levels of TNF-α [28], and a direct
correlation between the clinical features of congestive
cardiac failure (CCF) and circulating levels of TNF have been
reported. Following cardiac transplantation TNF-α levels
decrease [13,25]. This suggests that TNF-α is an important
mediator in the pathogenesis of CCF. In addition, it causes
dysfunction and apoptosis of endothelial cells, and enhances
generation of free radicals (including superoxide anion),
which in turn quenches NO. Damage to endothelial cells
triggers procoagulant activity and fibrin deposition [29].
These events are detrimental to the patient in the long run.

In CCF there is increased mesenteric venous pressure,
which causes intestinal edema and increased bowel
permeability. This causes an increase in endotoxin absorption
from the gut. Increase in circulating levels of endotoxin
activates macrophages and other cells to produce TNF-α
[13]. In patients with CCF, CD14 concentrations (which are
indicative of endotoxin–cell interaction) are raised in relation
to the elevated levels of TNF-α and cachexia [30]. These
findings suggest that methods designed to reduce TNF-α
levels could be of significant benefit in inflammation,
septicemia, and CCF.

Tumor necrosis factor-αα and insulin
Both the American College of Cardiology and the American
Heart Association recommended that intravenous
glucose–insulin–potassium (GIK) be given to patients with
AMI, especially those who are poor candidates for
thrombolytic therapy and in whom the risk for bleeding is high
[31], because the GIK regimen was beneficial in treating AMI
[32–38]. It is generally believed that the GIK treatment
improves the integrity and function of myocardial cells once
glucose and potassium are transported in by insulin.
Previously, I suggested that the GIK regimen in general and
insulin in particular suppresses inflammation by inhibiting
production of TNF-α, macrophage migration inhibitory factor
(MIF) and superoxide anion, and by stimulating endothelial
NO synthesis [16,26].

Satomi and coworkers [39] showed that exogenous insulin
injection inhibited TNF-α production in a dose-related manner
in animals after lipopolysaccharide challenge. Addition of
insulin to cultures of peritoneal exudate cells from
Propionibacterium acnes primed mice blocked TNF-α
production, whereas in control animals it did not. Fraker and
colleagues [40] reported that reduced food intake,
decreased body weight gain, severe interstitial pneumonitis,
periportal inflammation in the liver, and increases in the
weights of the heart, lungs, kidney and spleen observed in
TNF-α-treated animals reverted to normal levels when insulin
was administered concurrently. The pneumonitis seen in
these TNF-α-treated animals is somewhat similar to the adult
respiratory distress syndrome that is seen in patients with
septicemia and septic shock, conditions in which
concentrations of interleukin-1, TNF-α, and MIF are elevated



[41,42]. In addition, insulin suppresses superoxide anion
generation [43] and enhances the production of endothelial
NO [44]. Thus, the ability of insulin to suppress TNF-α
production, which decreases myocardial contractility, could be
one mechanism by which the GIK regimen is beneficial in AMI.

Is it glucose or insulin that is critical to the
heart?
Although several studies suggested that GIK regimen
preserved systolic and diastolic function in ischemia and
reperfusion [45] and protects the myocardium in patients
undergoing open heart surgery [46,47], this is not without
controversy [48–51]. Why did some studies give positive
results whereas others failed to show a benefit from the GIK
regimen? On closer examination, it is clear that not all studies
were comparable to each other because the concentrations
of glucose and insulin used in those studies were not uniform
[45–51]. Studies in which higher concentrations of insulin
were used showed better results than did those studies that
employed a lesser dose. For instance, studies in which 33%
glucose with 120 units of insulin [46] or 30% glucose with
300 units of insulin [47] was used yielded positive results. In
contrast, the results reported by those studies that employed
a lower dose (Bruemmer-Smith and coworkers [49] used
500 ml of 5% dextrose with 100 units of insulin, and Rao and
colleagues [50] supplemented the cardioplegic solution with
10 units/l insulin) were less favorable. This is supported by
the observation that stress hyperglycemia or even mild
hyperglycemia with myocardial infarction is associated with
increased mortality [7] and that intensive insulin treatment to
maintain blood glucose levels between 80 and 110 mg/dl is
highly beneficial and reduces morbidity and mortality among
critically ill patients [5]. It is possible that the negative results
obtained with GIK [49–51] were due to the low dose of
insulin used; this invariably resulted in hyperglycemia, which
is detrimental to the myocardium.

It has been known for several years that continuous
intravenous infusion of insulin is superior to subcutaneous
administration in terms of glycemic control, especially in
patients with diabetes during the perioperative and
postoperative periods [52]. During both the infusion period
and the entire observation period (day of operation, and first
and second postoperative days), GIK regimen resulted in
lower blood glucose levels within the intended range of
90–180 mg/dl (5–10 mmol/l) as compared with conventional
subcutaneous insulin administration. Improved diabetic
control is believed to result in fewer wound infections and
better wound healing. However, this view may be too
simplistic. The beneficial effects of GIK regimen may extend
beyond control of hyperglycemia alone [16,17]. As
demonstrated recently [32,53], GIK infusion may salvage
myocardium, improve cardiac function, and decrease
mortality by an absolute 10%, provided that hyperglycemia is
prevented. There is reasonable evidence to suggest that this
beneficial effect may be independent of glucose [54–56].

These results are supplemented by those of a large trial
conducted in a heterogeneous group of 1548 critically ill
patients [5]. In that trial, intensive insulin therapy to avoid
hyperglycemia (blood glucose was maintained below
110 mg/dl) in predominantly nondiabetic patients led to a
decrease in morbidity and mortality as compared with less
intensively treated patients (blood glucose maintained
between 180 and 200 mg/dl). Those findings suggest that
maintaining blood glucose concentrations at 110 mg/dl or
less is critical in obtaining the benefits of insulin
administration. This is supported by the observation that
cardiac dysfunction induced by endotoxin administration was
not related to arterial blood glucose concentrations [57,58].
Furthermore, infusions of insulin reversed cardiac failure and
maintained normal performance in spite of wide ranges in
glucose concentrations (5–120 mg/dl), suggesting that
myocardial dysfunction is not precipitated or induced by the
hypoglycemia of endotoxin shock.

The ability of insulin to improve myocardial performance may
be related to its capacity to suppress TNF-α, MIF, and
superoxide anion generation [13,16,17,59]. Therapeutic
administration of high doses of insulin results in an
accumulation of myocardial glycogen stores and improvement
in glucose utilization. This leads to augmented myocardial
adenosine triphosphate provision and maintains cellular energy
charge during coronary ischemia, resulting in better tolerance
to ischemia and improved myocardial protection [60].

Conclusion
It is evident from the preceding discussion that
hyperglycemia is harmful whereas insulin treatment is
beneficial. Even mild hyperglycemia is associated with poor
neurologic outcome after brain injury and stroke [61], and
burns or surgery in humans [62,63]. Animal studies revealed
that hyperglycemia aggravates endotoxin shock and that
insulin treatment decreases mortality [64]. What are the
potential mechanisms by which insulin is able to bring about
its beneficial actions?

Apart from its ability to lower blood glucose and to inhibit
production of potentially dangerous proinflammatory
cytokines (i.e. TNF-α, MIF, and superoxide anion), insulin has
the following actions: it stimulates glucose uptake/glycolysis,
pyruvate dehydrogenase and energy production; it increases
muscle protein synthesis; it inhibits apoptosis and improves
repair of damaged tissues; it promotes ischemic
preconditioning and lessens ischemia/reperfusion damage
(for review [59]); and it exhibits anti-inflammatory actions
[16,17,65]. Because hyperglycemia induces apoptosis of
myocardial cells [66], strict control of blood glucose is
essential to preserve cardiac function both in diabetic and
nondiabetic persons with stress hyperglycemia.

The ability of insulin to enhance endothelial NO synthesis is
particularly significant when one considers its beneficial
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action in AMI, stroke, and critical illness [16,17,59]. Recent
studies [67–69] suggested that administration of L-arginine
(the precursor of NO) improves postischemic recovery of
endothelial and vascular smooth muscle functions after cold
cardioplegic arrest, and enhances cardioprotection and
postischemic functional recovery and reduces infarct size of
the myocardium. Hence, some of the beneficial actions of
insulin (and therefore those of the GIK regimen) in various
conditions could be attributable to an increase in endothelial
NO synthesis [16,44].

In summary, GIK regimen is useful in preserving the
myocardium in septicemia and septic shock, and in patients
with severe burn injury [16,17], provided that blood glucose
levels are maintained at 110 mg/dl or below by employing an
adequate insulin dose. Thus, insulin when present in
appropriate amounts preserves myocardial integrity and
function.
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