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Abstract
Background: High-density microarray technology is increasingly applied to study gene expression
levels on a large scale. Microarray experiments rely on several critical steps that may introduce
error and uncertainty in analyses. These steps include mRNA sample extraction, amplification and
labeling, hybridization, and scanning. In some cases this may be manifested as systematic spatial
variation on the surface of microarray in which expression measurements within an individual array
may vary as a function of geographic position on the array surface.

Results: We hypothesized that an index of the degree of spatiality of gene expression
measurements associated with their physical geographic locations on an array could indicate the
summary of the physical reliability of the microarray. We introduced a novel way to formulate this
index using a statistical analysis tool. Our approach regressed gene expression intensity
measurements on a polynomial response surface of the microarray's Cartesian coordinates. We
demonstrated this method using a fixed model and presented results from real and simulated
datasets.

Conclusion: We demonstrated the potential of such a quantitative metric for assessing the
reliability of individual arrays. Moreover, we showed that this procedure can be incorporated into
laboratory practice as a means to set quality control specifications and as a tool to determine
whether an array has sufficient quality to be retained in terms of spatial correlation of gene
expression measurements.

Background
Gene expression microarrays are a powerful tool used in
molecular biology and genetics for understanding gene
expression change in biological processes under normal
and pathological conditions [1]. Intensity measurements
of gene expression are associated with significant varia-

tions as a result of the complex and multi-stage processing
involved in microarray experiments. Beyond the variabil-
ity that may be introduced during the fabrication of arrays
as a result of print substrate quality and printing pin
anomalies, several processing steps – mRNA sample
extraction, amplification and labeling, hybridization, and
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scanning – may introduce substantial variation in meas-
urements [2]. Although several studies have characterized
the potential impact of these latter sources of variation on
measurements of gene expression [2-4], methods for
assessing the physical measurement quality of individual
microarrays are not widely available. If technical repli-
cates for a biological case are available, the degree of con-
cordance between technical replicates can be used as an
index of reliability [5]. However, when only one technical
replicate is available per biological case, this information
cannot be generated. Even in situations where two techni-
cal replicates are available, at least one of the replicates
must have adequate quality, preferably based on objective
rather than subjective evidence, to be used to determine
the degree of concordance between the two technical rep-
licates. Therefore, it is important to seek an alternative
objective metric by which we can judge the quality of indi-
vidual microarrays.

Ideally, all intensity measurements should be randomly
expressed without any systematic or spatial patterns across
an array. In other words, the geographic location of each
gene expression measurement on an array should not be
related to its intensity level. The intensity level of the same
gene should be constant no matter where the gene locates
on the array, meaning that geographic locations do not
determine intensity levels. However, this assumption is
not always true. For example, we assume that all arrays are
produced through routine microarray procedures accord-
ing to the manufacturing protocols or widely accepted
academic protocols. Some measurement artifacts may cre-
ate patterns of hybridization that depend on the geo-
graphic positions of these artifacts on arrays. An example
would be the case of an imbalanced (uneven) hybridiza-
tion across an array. An array may have a smudgy high
background signal or "strain" on certain geographic
regions, creating a pattern of hybridization dependent on
geographic position. Another extreme example would be
the case of physical scratches caused by coverslip removal
or finger imprints on an array. In the absence of such arti-
facts, gene expression levels should show no unusual spa-
tial pattern or bias across the microarray's surface other
than systematic patterns due to the array design in the
manufacturing of chip. Thus, if we compute an index for
an array by which a geographic position on the specific
microarray's surface predicts its intensity level of gene
expression, then this index may provide information
about the summary of physical reliability of an individual
array based on spatial correlation.

To create such an index, it is necessary to clarify the mean-
ing of independence between two variables. Herein, we
define that two variables are geographically independent if
knowing the value of one variable provides no informa-
tion about the location of the other variable, and vice

versa. We define the geography index as a quantitative
measure of the degree of geographical independence
between intensity measurements and their geographic
locations on an array. Presumably, higher geography
index values indicate no significant spatial correlation
between intensity measurements and their physical loca-
tions on an array. Arrays with higher geography index val-
ues are considered to be more reliable. Moreover, if two
replicate arrays have high, constant geography index val-
ues, then the two arrays are considered physically repro-
ducible in terms of spatial correlation. Therefore, in this
study we examine the spatial correlation between gene
expression levels and their geographic locations on an
array. We propose a statistical approach by regressing
measurements on a third degree of the polynomial
response surface model of the microarray's Cartesian
coordinates to calculate a geography index. To illustrate
the utility of geography index and evaluate its validity, we
first conducted tests with a series of real arrays from sev-
eral microarray experiments and with a set of simulated
arrays. Second, we compared two different microarray
platforms – spotted cDNA arrays and Affymetrix chips – to
evaluate whether this method could be applied generally
for microarray technology. From a practical point of view,
this metric allows investigators to determine the quality of
individual arrays. Further studies will be needed with
larger sets of microarray data to develop benchmark qual-
ity values for this geography index so that threshold values
can be set to determine whether an array has sufficient
quality to be retained for further downstream analysis
such as identification of differentially expressed genes.

Results
Assessing the reliability of measurements using the 
geography index
Twenty five Affymetrix™ arrays of experiment A were used
to evaluate the utility of geography index, which served as
a predictor of the physical quality of arrays. For the assess-
ment of reliability of arrays, the global geography index
(GEODEX) for individual chips was calculated by fitting
all intensity measurements (perfect match [PM], mis-
match [MM], and PM-MM difference intensities) to
model (1). Results are summarized in Table 1. The distri-
bution of GEODEX (black circles) of all chips is depicted
in Figure 1(a). The degrees of GEODEX[1] were almost
constant, except for Chip 12, which appeared to have
more spatial correlation than others. It was evident that
Chip 12 possessed a systematic pattern or irregular behav-
ior dependent on geographic locations across the array.
For this reason, we visually inspected each individual chip
and found that Chip 12 had been damaged by careless
handing during the scanning procedure and contained a
small artifact across the array (see Figure 2). This result
demonstrated that the proposed metric was capable of
pinpointing chips that contained artifacts on arrays. How-
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ever, it was possible that the bias of the small artifact
might not influence the overall spatial variation. As a
result, the relative amount of variance due to the artifact
was underweighed. Hence, we studied the spatial variabil-
ity of arrays while taking blocks into account as a regressor
of block-dependent variance. We calculated robust GEO-
DEX of individual chips using model (2). The results
showed that the regressor (block) increased the overall
spatial correlation and reduced the degree of GEODEX[2]

(see Figure 1(a)). Chip 12 still displayed the lowest geog-
raphy index.

For the sensitivity of block size on results of model (2), we
compared results from three different block sizes: 1204 ×
1204 features per block (NB = 9), 602 × 602 features per
block (NB = 36), and 301 × 301 features per block (NB =
144), where NB is the total number of blocks per chip. As
shown in Table 1, GEODEX for all the three different sizes
appeared to have the same trend, and GEODEX became
smaller as the number of defining blocks per chip
increased. Hence it is possible to make fine distinctions
between more reliable chips and less reliable chips when
a chip is defined with a larger number of blocks. However,
more work is needed to define appropriate block sizes.

For most measurements, two technical measurement rep-
licates per biological case should be highly correlated. On
the other hand, outliers or problematic blocks distort var-
iances. Most outliers are likely to be due to measurement
errors and, therefore, tend to cause not only low reliability
but also poor quality of arrays. Those outliers can be
detected by noting whether the observed intensity value is
within the possible range of values. Relative to this point,
we studied the distribution of blockwise GEODEX to
identify blocks that displayed significant deviation rela-
tive to other blocks. Those highly deviant blocks could be
outliers and strongly influence the spatial correlation.
Blockwise GEODEXBij for each block Bij (j = 1, 2, ..., 36) on
each slide i was calculated using model (3). Block effects
varied from chip to chip, and each chip had outliers (see
Figure 3(a)). Blocks 1, 6, 31, and 36 on the four corners of
the arrays tended to have the lowest GEODEXBi values,
indicating that these blocks were more likely outliers and
caused the edge effects (see Figure 3(b)). This may not be
unusual in microarray experiments because of unstable
conditions of hybridization around the boundaries of
slides. Moreover, there was a strong trend that the non-
edge blocks (i.e., blocks 8–11, 14–17, 20–23, and 26–29)
had higher blockwise GEODEX values and smaller block-
wise GEODEX variance for all the arrays. This finding sug-
gested that the measurements in those non-edge blocks
had less spatial correlation between the intensity levels
and their locations on the arrays and were less affected by
the spatial effects. This implied that a certain amount of
edge effects would be an impediment to assessing the
quality of measurements. In this case, local normalization
of measurements for spatial effects, such as local normal-
ization based on loess nonparametric regression, may be
helpful to relieve issues related to edge effects [12,13].

To reduce the effects of outliers on overall spatial variance,
we trimmed the distribution of measurements by remov-
ing a small number of blocks that had high spatial corre-
lation. We used the trimmed measurements to recalculate

Distributions of geography index (GEODEX) values of indi-vidual chips of experiment AFigure 1
Distributions of geography index (GEODEX) values 
of individual chips of experiment A. a. Black circles and 
white upper triangles represent GEODEX computed by 
model (1) and model (2), respectively. Black rectangles and 
white diamonds represent GEODEX computed by model 
(2), using measurements in the log scale on base 2 and 
trimmed measurements after removing four blocks on the 
corners, respectively. b. For comparisons between different 
measures of gene expression, black circles, white circles, and 
black upper triangles represent GEODEX of difference (PM-
MM) measurements of pairs of the perfect match (PM) and 
mismatch (MM) probes, of PM-only measurements, and of 
MM-only measurements, respectively. GEODEX were com-
puted by model (2) (NB = 36). X-axis indicates a chip identifi-
cation number and Y-axis indicates the degree of GEODEX.
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a global geography index, GEODEX[2]
adj, using model (2).

We compared GEODEX[2] obtained using the entire array
including all the measurements with GEODEX[2]

adj
obtained using the trimmed array that discarded blocks
having lower blockwise GEODEX (see Figure 1(a)). When
we discarded edge blocks 1, 6, 31, and 36 (i.e., those that
had high spatial correlations), the magnitude of GEO-
DEX[2]

adj improved. This result led to two findings: 1) the
measurements around the edges exaggerated the overall

spatial correlation and 2) the outliers deflated the magni-
tude of GEODEX. Therefore, investigators interested in
unraveling the spatial effects of outliers are well advised to
perform an additional analysis to evaluate whether results
change when highly deviant blocks or outliers are
excluded from the study. Note, however, that it is unwise
to exclude such outliers when the interest is in cross com-
parisons between arrays for the purpose of a chip's quality
check.

Image of Affymetrix chip 12 of experiment AFigure 2
Image of Affymetrix chip 12 of experiment A. The bottom area that was damaged by technical mistakes during scanning 
on the right corner of chip 12 is shown enlarged.
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Assessing the validity of the geography index as a predictor 
of reproducibility
Figure 4 depicts scatter plots of the coefficient of variation
(CV) and GEODEX and scatter plots of the degree of inter-
chip discrepancy of all pairs containing technical repli-
cates against pairwise GEODEX calculated by equations
(4) and (5), respectively. Dataset A showed that most
chips formed a cluster of low CV and high GEODEX (Fig-
ure 4(a)) and a cluster of low inter-chip discrepancy and
high pairwise GEODEX (see Figure 4(b)); both clusters
entailed high correlation between the technical replicates
and implied high reproducibility of the arrays in a broad
sense. However, the magnitude of inter-chip discrepancy
was not sufficient to render the degree of spatial concord-
ance and/or discordance between two technical replicates.
Hence, it was hard to provide convincing evidence that
GEODEX could predict the spatial concordance between
two technical replicates to assess reproducibility with
respect to the spatiality feature of measurements on

arrays. There may be a feasible explanation for this find-
ing. If the spatial effects between two technical replicates
were sufficiently different to discriminate the two arrays,
GEODEX would predict reproducibility between the two
technical replicates. In contrast, if there was no marginal
variation of spatial effects between the technical replicates
(i.e., no significant inter-chip discrepancy), it would be
difficult for GEODEX to predict the reproducibility
between the two replicates. Thus this approach may not
be capable of assessing the reproducibility between tech-
nical replicates for the same biological sample in the
absence of substantial spatial effects on the arrays.

Alternatively, we conducted a simulation study to explore
the validity of GEODEX as a predictor of reproducibility
of arrays based on spatial concordance. We randomly
took a chip from experiment A as a "sample" array and
added systematic noise only to block 15 located in the
middle of array. Systematic bias was simulated under

Table 1: Descriptive statistics of measurements of individual chips in experiment A and summaries of resulting GEODEX. Five chips 
(9, 12, 14, 15, and 23) in boldface below consistently have the lowest GEODEX irrespective of the number of blocks.

1Chip ID 2Mean 3SD 4CV 5GEODEX[1] 6GEODEX[2]

NB = 9 NB = 36 NB = 144

1 298.24 562.15 188.48 0.9948 0.9932 0.9901 0.9863
2 306.96 588.32 191.65 0.9962 0.9950 0.9927 0.9896
3 387.64 799.63 206.27 0.9934 0.9920 0.9890 0.9853
4 309.45 581.16 187.79 0.9951 0.9935 0.9906 0.9868
5 398.48 847.48 212.67 0.9943 0.9929 0.9901 0.9867
6 364.01 822.76 226.02 0.9943 0.9925 0.9892 0.9853
7 403.05 866.67 215.02 0.9925 0.9907 0.9873 0.9831
8 302.11 854.81 282.94 0.9965 0.9957 0.9944 0.9922
9 372.76 818.37 219.54 0.9907 0.9886 0.9847 0.9797
10 482.55 961.08 199.16 0.9932 0.9916 0.9885 0.9847
11 290.04 563.84 194.39 0.9948 0.9934 0.9905 0.9869
12 288.50 687.20 238.19 0.9685 0.9668 0.9624 0.9570
13 343.23 663.09 193.18 0.9941 0.9929 0.9902 0.9868
14 290.12 610.07 210.27 0.9903 0.9887 0.9856 0.9814
15 236.84 482.26 203.61 0.9892 0.9876 0.9843 0.9799
16 261.13 833.62 319.22 0.9976 0.9969 0.9958 0.9940
17 501.95 1014.49 202.10 0.9909 0.9893 0.9863 0.9824
18 309.42 624.82 201.93 0.9938 0.9923 0.9893 0.9856
19 261.58 473.18 180.88 0.9938 0.9926 0.9898 0.9861
20 328.96 668.14 203.10 0.9962 0.9946 0.9917 0.9879
21 281.70 543.55 192.95 0.9952 0.9939 0.9914 0.9881
22 356.03 692.10 194.39 0.9953 0.9939 0.9912 0.9878
23 367.10 840.50 228.95 0.9901 0.9883 0.9849 0.9804
24 395.99 776.34 196.05 0.9959 0.9948 0.9922 0.9891
25 293.60 617.81 210.42 0.9943 0.9930 0.9903 0.9867

1. Chip ID is the identification number of chip.
2. MEAN is the average of intensity measurements of gene expression for each chip.
3. SD is the standard deviation of intensity measurements of gene expression for each chip.
4. CV is the coefficient of variation of intensity measurements of gene expression for each chip.
5. GEODEX[1] is a geography index calculated by model (1).
6. GEODEX[2] is a geography index calculated by model (2) (NB = the number of defining blocks per chip).
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eight different scenarios: 1) added systematic bias from a
standard normal distribution (e.g., k - N(0, 1)), in which
the randomness across the array was not affected by artifi-
cial bias; 2) decreasing the intensity values by subtracting
a constant (e.g., k - 100); 3) increasing the intensity values
by multiplying by 2 (e.g., k *2); 4) multiplying by 10 (e.g.,
k *10); 5) multiplying by 100 (e.g., k *100); 6) multiply-
ing by the standard deviation (SD) of the measurements
on the sample chip (e.g., k *SD); 7) multiplying by two
SDs (e.g., k * 2 SD); and 8) multiplying by three SDs (e.g.,
k * 3 SD). We hypothesized situations in which the back-
ground hybridization signal should be uniform across the
array; however, small artifacts, such as smudges or
scratches or imbalanced hybridization, changed the gene
expression levels on block 15. We created eight simulated
technical replicates plus the sample array with identical

measurements except for those on block 15, maintaining
the randomness property of the arrays. Introducing bias
on block 15 inflated the overall variances of the individual
chips even though the first two cases had very little influ-
ence on the overall variances and were less informative
than the other cases. However, block 15 was the only
source of between-chip variance and leveled the degree of
inter-chip discrepancy between the sample array and
other simulated arrays. We were interested in examining
what would happen to the relationship between the inter-
chip discrepancy and pairwise GEODEX of the eight pairs
of the two replicates. We calculated GEODEX[1] and GEO-
DEX[2] for the simulated chips using models (1) and (2),
respectively. Table 2 summarizes the results. The relation-
ship between GEODEX[2] and the CV of the intensity
measurements is depicted in Figure 4(c). In the presence
of spatial effects by block 15, GEODEX and CV had a neg-
ative relationship, indicating that the degree of geographic
independence increased as CV decreased. Note that the
spatial variation dependent on the intensity measure-
ments of the geographic locations was proportional to the
overall variance of the measurements on the arrays. The
excessive spatial correlation reflected more measurement
error of the measurements on the arrays and thus induced
less reliability of the arrays. A scatter plot of the degree of
inter-chip discrepancy of the eight pairs of the sample
chip and every simulated replicate against pairwise GEO-
DEX is depicted in Figure 4(d). As would be expected, the
increase in pairwise GEODEX was opposite to the
decrease in the inter-chip discrepancy. This simulation
study affirmed the validity of the hypothesis that GEO-
DEX is capable of predicting the reproducibility of meas-
urements when there is enough inter-chip spatial variance
between two replicates. From comparisons of GEODEX[1]

with GEODEX[2], we found that GEODEX[2] was affected
by variation from a small cluster of extremely expressed
genes or a small artifact, and the bias of the small artifact
on block 15 exaggerated the overall spatial correlation.
Therefore, model (2) is more effective for estimating spa-
tial correlation than model (1) in situations in which
block-to-block differences across an array are significant.

The findings from experiment A were commonly observed
when the total six chips (two biological replicates by three
technical replicates) of experiment B were analyzed using
model (2): chip 3 of biological sample 2 had the lowest
GEODEX, suggesting that this chip had a higher spatial
correlation between the intensity levels and their loca-
tions on the array than others (Figure 5(a)); and the spa-
tial concordance between technical replicates within a
biological case was higher than that between technical
replicates across biological cases (data not shown).

Despite the limitations of GEODEX as a predictor of
reproducibility of technical replicates in general, GEO-

Distributions of blockwise GEODEXFigure 3
Distributions of blockwise GEODEX. a. A boxplot of 25 
chips: Each box shows the distribution of blockwise GEO-
DEX for 36 blocks per chip (i.e., NB = 36). The X-axis indi-
cates a chip identification number. b. A boxplot of 36 blocks: 
Each box shows the distribution of blockwise GEODEX for 
25 chips per block. The X-axis indicates a block identification 
number within the chip. Crosses represent outliers.

a. A Boxplot of 25 Chips

Chip ID

1 3 5 7 9 11 13 15 17 19 21 23 25

B
lo

c
k

w
is

e
 G

E
O

D
E

X

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

b. A Boxplot of 36 Blocks

Block ID within chip

1 6 11 16 21 26 31 36

B
lo

c
k
w

is
e
 G

E
O

D
E

X

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Page 6 of 15
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:35 http://www.biomedcentral.com/1471-2105/7/35

Page 7 of 15
(page number not for citation purposes)

Assessing the validity of geography indexFigure 4
Assessing the validity of geography index. Scatter plot a (c) shows the relationship between GEODEX and the coefficient 
of variation (CV) of measurements for experiment A (a simulation study). Scatter plot b (d) presents the relationship between 
pairwise GEODEX computed by equation (5) and the degree of inter-chip discrepancy computed by equation (4) for every pair 
of technical replicates for biological samples in experiment A (for every pair of the sample array and simulated replicates for a 
simulation study). GEODEX was computed by model (2).
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DEX could be used to assess the reproducibility depend-
ing on spatial patterns. We supposed the two most
interesting cases: 1) one technical replicate (hereafter
referred to as shifted) had all its expression measurements
shifted by 10 x-units relative to the other technical repli-
cate (referred to as non-shifted); the x-axis coordinates for
the shifted were changed by 10 units and the y-axis coor-
dinates were unchanged and 2) one technical replicate
had all its expression measurements shifted by both 10 x-
units and 10 y-units relative to the other technical repli-
cate; both the x-axis and y-axis coordinates for the shifted
were changed by 10 units. In these cases, the Pearson cor-
relations between the two replicates (non-shifted and
shifted) were less than .33 (data not shown), suggesting
that the replicates had a low correlation due to inconsist-
ency between corresponding measurements. However,
the two replicates had the exactly same GEODEX value,
indicating that the two replicates were reproducible in
terms of their spatial correlations. Hence GEODEX can be
used to assess reproducibility of technical replicates for
such particular cases in which one replicate is shifted ver-
tically or horizontally systematically during printing or
scanning as illustrated above.

Effects on results of the violation of assumptions
We examined whether the violation of assumptions
within the models influenced the analyses. Because the
standard deviation (SD) of measurements of gene expres-
sion was proportional to the mean value (see Table 1),
dataset A was log-transformed to normalize the distribu-
tion with residual errors that had the same variance for all
measurements. Then we recalculated GEODEX using
model (2) and compared GEODEX[2] of the untreated
data with GEODEX[2]

log2 of the log-transformed data (see
Figure 1(a)). GEODEX[2]

log2 was smaller than GEODEX[2],
suggesting that the log-transformation provided a better
fitting polynomial model with a larger R2 that implied
small error or variability in the prediction of spatial corre-
lation. In contrast, the untreated data had a poor fitting
polynomial model in which R2 was smaller than that of
the log-transformed data. Thus, this provided a less accu-
rate estimation of spatial variation of measurements asso-
ciated with their geographic locations on an array.

The use of appropriate transformations may make the
proposed method more plausible [14]. However, the two
distributions of GEODEX of the two data treatments had
similar patterns in general. After log-transformation the
only significant difference was that a range of GEODEX
values varied and discriminated from each other more
remotely. Therefore, without a loss of significance, we
chose to retain data in the original scale for the sake of
simplicity. Nevertheless, it is noteworthy that the pro-
posed metric for assessing the geographic independence
of measurements on geographic locations was not

affected exclusively by the distributions of measurements.
Therefore, the proposed approach perhaps can relax distri-
butional assumptions.

Comparison between different measures of gene 
expression
For Affymetrix chips we calculated GEODEX with PM-
only and MM-only intensities using model (2). Scatter
plots showing the distributions of GEODEX for PM-only
and MM-only intensity measures are depicted in Figure
1(b). The results of these analyses confirmed that the
intensity levels of chip 12 showed less geographic inde-
pendence from the geographic locations on the chip.
However, the geographic independence appeared to differ
depending on which gene expression measure was used.
GEODEX[2] of PM-MM and PM-only measurements were
close to being parallel. In contrast, GEODEX[2] of MM-
only measurements differed from the others. Overall,
some interesting findings were observed: 1) It was obvi-
ous that the MM-only measurements depended more
heavily on their geographic positions on the arrays than
did the other measurements. This finding was not surpris-
ing because of the additive signals on every 25th MM
probe that appeared regularly across array-enhanced sys-
tematic patterns on the array surface. 2) For most chips,
GEODEX[2] for the three measures were parallel and very
close to each other, suggesting that the MM-only measure-
ments detected not only a non-specific binding signal but
also a transcript signal (at least partially), as did the PM-
only measurements. Also noted was that the PM-MM dif-
ference measurements included noise. 3) As one would
expect, the PM-only measurements, which did not
account for non-specific binding, appeared to have less
spatial correlation, suggesting that PM-only is perhaps a
more adequate expression measure especially when MM-
only has significant spatial effects [15].

Comparison between different microarray platforms
Experiment C was originally conducted to perform cross
comparisons of two different platforms, cDNA spotted
arrays and Affymetrix oligonucleotide arrays. In this
experiment, two samples of mRNA were labeled with two
different fluorophores (Cy5 and Cy3) and co-hybridized
onto a glass slide on which PCR products generated from
15,000 thousand clones were immobilized at array posi-
tions. Ratios (Cy5/Cy3) of two dye intensities were then
calculated. Cy5-only, Cy3-only, and Cy5/Cy3 measures
were compared to assess the measurement reliability of
arrays. As shown in Figure 5(b), there was a difference
between the two platforms: GEODEX of the cDNA arrays
was smaller than that of the Affymetrix oligonucleotide
arrays, indicating that the Affymetrix oligonucleotide
arrays used in this study had less spatial correlation or
bias. This seems reasonable because Affymetrix oligonu-
cleotide arrays have random manufacturing systems of
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ordering features across an array comparing to cDNA
spotted arrays placing spots functionally across an array
with 32 different printing pins. In addition, it is important
to consider different measures of gene expression level.
We found that there was no significant difference in dye-
dependent spatial bias between two dyes (Figure 5(b)).
However, the results showed that taking the ratio of two
dye intensities could increase or reduce spatial bias even
though the ratio measurements reduced variation in
measurements within an array and variance between tech-
nical replicates. Therefore, when the ratios of two dye
intensities are considered for gene expression analysis, a
normalization procedure taking into account spatial vari-
ance of expression measurements would be an alternative
strategy for removing systematic variations in microarray
experiments [12,13].

Discussion
We have developed a metric for evaluating the physical
reliability of individual arrays in terms of a degree of spa-
tial correlation among expression measurements. The
proposed GEODEX metric was designed to estimate a
degree of the geographical independence between gene
expression measurements and their geographic locations
on an array. This provided an equivalent measure of spa-
tiality-based physical reliability of an array. Through the
analyses of multiple real datasets, we found that GEODEX
was useful and valid for assessing the quality of individual
chips in terms of spatial correlation. Specifically, 1) GEO-
DEX could be used to check the quality of an individual
chip in which there are multiple biological replicates
available but no technical replicates per biological case. In
particular, it could identify seriously damaged chips or
chips with small artifacts leading to poor array quality.
Because the array detected in experiment A was so obvi-
ously at fault, one could argue that inspecting the arrays
visually was at least as effective as using GEODEX. Hence,

we will investigate how sensitive the method is to small
artifacts that are not visually identified but still lead to
poor chip quality in future studies. 2) In the presence of
sufficient spatial effects on arrays, GEODEX predicted spa-
tial concordance between technical replicates that could
be used as a predictor of the reproducibility of technical
replicates. 3) If global GEODEX indicated that some kind
of spatial artifacts were on arrays, blockwise GEODEX
could lead to suspect locations. Also, edge effects and
other systematic biases were detected by conducting anal-
ysis of blockwise GEODEX. 4) This method was easy to
implement in software with a standard statistical analysis
tool. Hence, it is readily accessible to laboratory scientists.
Therefore, GEODEX offering a good prediction of physical
array reliability in terms of spatial correlation can be
installed in laboratories as a quality control monitor to
allow investigators to determine whether arrays have ade-
quate quality to be retained as part of a larger data set.

Regarding issues of model choice in analysis, we chose an
intermediate cubic polynomial response surface model as
a compromise between oversimplifying and overspecify-
ing variables (e.g., to avoid under-parameterizing or over-
parameterizing the models) to introduce a novel idea for
how to proceed with this proposed approach. However,
our approach is not restricted to a particular model and is
flexible enough to incorporate into models any necessary
data-specific regressors that would provide a best approx-
imation of GEODEX. One can also develop other func-
tional models that establish a relationship between
measurements and their geographic locations on an array.
To enhance the practical utility of this method, develop-
ment of more extensive prescription-type procedures
searching for best models will be undertaken in future
studies.

Table 2: Descriptive statistics and resulting GEODEX of a simulation study.

1Chip ID 2MEAN 3SD 4CV 5GEODEX[1] 6GEODEX[2]

Sample 298.2445 562.1518 1.88 0.99493965 0.99015619
Scenario 1 298.245 562.1518 1.88 0.9949455 0.99015956
Scenario 2 295.4852 562.2858 1.90 0.99422959 0.98896773
Scenario 3 305.9073 574.8667 1.87 0.99588081 0.9852998
Scenario 4 367.2101 934.5144 2.54 0.97747889 0.8120757
Scenario 5 1056.8657 7701.3605 7.28 0.95547486 0.67372248
Scenario 6 4609.2052 43392.8549 9.41 0.95409713 0.66822548
Scenario 7 8927.8288 86801.9967 9.72 0.95396446 0.66776258
Scenario 8 13246.4524 130212.341 9.82 0.95392095 0.66761398

1. Chip ID is the identification number of simulated chip.
2. MEAN is the average of intensity measurements of gene expression for each chip.
3. SD is the standard deviation of intensity measurement of gene expression for each chip.
4. CV is the coefficient of variation of intensity measurements of gene expression for each chip.
5. GEODEX[1] is a geography index calculated by model (1).
6. GEODEX[2] is a geography index calculated by model (2) (NB = 36).
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To calculate GEODEX, we have focused on a number of
robust models between local approaches (e.g., blockwise
GEODEX) and global approaches (e.g., global GEODEX).
These ranged from highly local approaches that regressed
measurements to neighboring models to completely glo-
bal approaches that regressed them to across-all-over
models. It appeared that a regressor-dependent model,
such as model (2), reasonably predicted a chip's quality.
On the other hand, local approaches tended to be more
effective when spatiality varied across blocks. For exam-
ple, a block-by-block analysis could not only detect out-
liers but could also explore the nature of irregular patterns
in the neighborhood of outliers, such as edge effects. In
contrast, when local GEODEX across blocks did not
change dramatically, global approaches were sensitive

enough to assess a summary of the physical reliability of
arrays.

Developing benchmark GEODEX threshold values for
discriminating between good- and poor-quality arrays for
different platforms and manufacturers will require appli-
cation of the metric against much larger and more diverse
data sets than those used in this study. The narrow range
of GEODEX across all arrays and chips used in this feasi-
bility study suggests that in general all of these arrays were
of good quality. A larger, more complex and diverse qual-
ity set of array data would provide a test for such bench-
marks. However, in practice, a threshold that determines
whether a chip should be retained or discarded very likely
varies from laboratory to laboratory because of many fac-
tors such as different batches, technicians, chip types, pro-
duction methods, and experiments. Hence it is difficult to
judge whether a specific benchmark for one experiment
can be transferred to another experiment. The proposed
metric would be interpreted relative to other chips
obtained from a single experiment in a given laboratory.
However, there are some uses of the GEODEX that are not
related to using a threshold for discarding chips. For
example, one may wish to assess trends in the quality of
chips being produced in a facility. In such cases, the judg-
ment of chip quality is based on the empirical distribution
of all GEODEX values for chips from a single experiment
and/or across multiple experiments. Alternatively one
might want to use the index to assess the level of training
and development of a student or technician. The GEO-
DEX metric does not appear to be able to distinguish
between variability due to positional effects created dur-
ing fabrication of chip or array versus those effects that
arise during labeling and hybridization and, therefore, the
validity of the global claims of superiority of one platform
or another in cross-platform comparison.

Normalization is the process of removing biases due to
technical variation. However, some results show that
biases still remain in the data after normalization even
normalization adjustments account for local spatial varia-
tion [7,12,13]. Smyth and Speed [16] indeed noted that
poor spot qualities could contribute to biases. Thus they
suggested that a regression-based normalization method
might be improved by incorporating quality weights for
individual spots. GEODEX can be used as a quality assess-
ment procedure for spots and chips before normalization
to identify the spatial position of less reliable spots on the
slide so that a quality weight is assigned according to a
degree of spot quality. Gene expression data adjusted by a
combination of GEODEX and normalization can be used
for downstream analysis such as differential gene expres-
sion, and their resulting estimates are expected to be more
precise because of a reduction of biases in data.

Distributions of GEODEX of individual chips of experiments B and CFigure 5
Distributions of GEODEX of individual chips of 
experiments B and C. a. Each shape stands for each bio-
logical sample: circles for biological sample 1 and triangles for 
biological sample 2. b. For a comparison between different 
microarray platforms, circles and triangles represent Affyme-
trix oligonucleotide arrays (chips 1–3) and cDNA arrays 
(chips 4–6), respectively, and orange, green, and red repre-
sent Cy5/Cy3, Cy3-only, and Cy5-only measures, respec-
tively. GEODEX was computed by model (2).
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Conclusion
Assessment of the physical quality of individual chips is
important for gene expression studies to obtain reliable
analysis results of differential expression. We discussed
the potential of a quantitative metric that could summa-
rize the physical reliability of individual arrays based on
spatial correlations among gene expression measure-
ments. We also illustrated the possibility of incorporating
this procedure into laboratory practices as a means to set
quality control specifications and as a tool to determine
whether an array has sufficient quality to be retained.

Methods
Measurement experiments
The animal experiments were used in protocols approved
by the University of Alabama at Birmingham Institutional
Animal Care and Use Committee and the Yale University
Institutional Animal Care and Use Committee.

Experiment A
CNGI experiment
CNGI stands for the Center for Nutrient-Gene Interaction
in cancer prevention funded by National Cancer Institute
as part of a research program organized by Nutritional Sci-
ence Group of the Division of Cancer Prevention. The cen-
tral aim of this research is to test whether components in
one's diet establish risk for breast, and possibly prostate,
cancer later in adult life. Experiment A included samples
taken from eight 21-day-old Sprague Dawley CD female
rats (Harlan, Indianapolis, IN) exposed to genistein (a soy
isoflavone) via their mother's milk. The mothers were fed
AIN-76A diet (Harlan-Teklad, Indianapolis, IN) contain-
ing 200 mg genistein/kg diet. Young rats were sacrificed at
day 21 and the 4th mammary glands were extracted and
flash-frozen in liquid nitrogen within 3 min of ex-san-
guination. Samples were frozen at -70°C for approxi-
mately 90 days. The extraneous fat was removed by
dissection, samples were processed in Trizol RNA extrac-
tion buffer (Invitrogen Co., Carlsbad, CA), and total RNA
was generated using Affymetrix RNA extraction and labe-
ling kits (Affymetix Inc., Santa Clara, CA). The RNA sam-
ples were run on Affymetrix GeneChip arrays. The RNA
samples were split in half. The first half was labeled and
run on a RAE 230A chip and the other half was labeled,
split, and run across two RAE 230A chips. Later in the
analysis we treated all three subsamples as technical repli-
cates even though they were labeled in two separate reac-
tions. Affymetrix arrays were run in the genomics core
facility of the Heflin Center for Human Genetics at the
University of Alabama at Birmingham. Images were
scanned (2500 scanner; Hewlett-Packard Development
Co., Houston, TX) and *.Cel files were generated by MAS
5.0 [6] and used for analyses. During the scanning proc-
ess, one of the technical replicates (chip 12) for biological
sample 4 was found upon visual inspection of the

scanned image to have a hair in the path of the scanner.
The hair was removed and the chip rescanned within a few
minutes. Nonetheless, we included the damaged chip
image for analysis in this study. As a result, dataset A con-
sisted of a total of 25 chips (8 biological samples by 3
technical replicates plus the damaged technical replicate
for biological sample 4). Each chip contained 362,404
features on the array in the (x, y) coordinate system of size
602 × 602 features.

Affymetrix GeneChip arrays use 25-bp oligonucleotides to
probe gene expression. Each gene or mRNA is represented
by a probe set of 11–20 probe pairs of these oligonucle-
otides [6]. Each probe pair is composed of a PM probe and
an MM probe created by changing the middle (13th) base
of PM with the intent of measuring non-specific binding.
The default for Affymetrix analysis software uses a meas-
ure of the difference in signal intensity between the PM
and MM of probe pairs for each array. However, a few
studies have suggested that the differences of PM-MM that
intend to correct for non-specific binding are not always
appropriate expression measurements [7-10]. Therefore,
we demonstrated the performance of the proposed
method for three types of measurements: intensity differ-
ence (PM-MM), PM-only intensity, and MM-only inten-
sity. Each array used in this study contained 175,477
features for PM-only and MM-only measurements.

Experiment B
This experiment used a polycystic kidney disease knock-
out mouse model to compare gene expression in cystic
kidneys from 8-week-old congenic Pkd2-/-/pCAGGS-PKD2

mice and control kidneys from Pkd2+/+/pCAGGS-PKD2 litter-
mates. All mice used here were congenic (i.e., they were
genetically identical except for different alleles at the Pkd2
locus) eliminating confounding effects of the genetic
background. Kidneys from Pkd2-/-/pCAGGS-PKD2 mice and
Pkd2+/+/pCAGGS-PKD2 controls were dissected 3–4 days post-
natally. The tissues were homogenized in TRIzol reagent
(Life Technologies) and RNA was extracted according to
the manufacturer's protocol. The RNA was then purified
using an RNeasy Mini kit (Qiagen Inc.) The total RNA
samples from control and cystic kidneys were separately
pooled and run on 3 Affymetrix GeneChip arrays per
pooled RNA sample. After hybridization, images of the
arrays were scanned by an Agilent GeneArray scanner
(Agilent Technologies Co., Palo Alto, CA) and *.Cel files
were generated by MAS 5.0 and used in this study. These
Affymetrix arrays were run in the Affymetrix GeneChip
Resource of the W.M. Keck Biotechnology Laboratory at
Yale University. Dataset B contained a total of six chips for
two pooled biological cases with three technical repli-
cates. Each chip contained 409,600 features on the array
in the (x, y) coordinate system of size 640 × 640 features.
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Experiment C
This experiment used RNA samples collected from Mus
musculus (C57Bl/6) mouse kidneys that had either under-
gone sham operation (control) or 25 min of ischemia
(clamping of the renal artery) followed by 24 hours of
reperfusion. The mice used in this experiment were anes-
thetized with 100 mg/kg ketamine and 10 mg/kg xylazine
injected intraperitoneally and a midline incision was
made for both sham and experimental animals. For bilat-
eral ischemia/reperfusion (I/R), the left and right renal
pedicles were clamped for 25 min using a vascular clamp
(Fine Science Tools Inc., Foster City, CA). The sham-oper-
ated control mice were treated in the same way except that
the renal pedicles were not clamped. The abdomen was
covered with gauze moistened in phosphate buffered
saline, and the mice were maintained at 37°C using a
warming pad. At specified times the clamp was removed.
At 12 hours post I/R, the mice were sacrificed and their
kidneys were collected and homogenized in RNA-Stat
(Tel-test Inc., Friendswood, TX). The total RNA samples
from six control and ischemic kidneys were separately
pooled and run on two different array platforms, a
NIA15K cDNA spotted array and an Affymetrix oligonu-
cleotide array. Images of the cDNA arrays were created on
an Axon GenePix 4000A scanner and spot intensity data
were obtained using GenePix Pro 3.0 software (Axon
Instruments, Inc., Union City, CA); Affymetrix GeneChip
images were generated and quantitated by MAS 5.0. These
arrays were run in the Microarray Resource and the
Affymetrix Resource of the W.M. Keck Biotechnology Lab-
oratory at Yale University, respectively. Dataset C con-
tained a total of six arrays with three technical replicates
for each platform. Each Affymetrix chip contained
409,600 features on the array in the (x, y) coordinate sys-
tem of size 640 × 640 features. Each cDNA spotted array
was composed of 32 sectors on the slide, and each sector
contained 552 features in the (x, y) coordinate system of
size 23 × 24 features.

Data preprocessing
Note that all datasets in these analyses were raw intensity
measurements without treatment before analysis. Raw
measurements were used because 1) data treatments, such
as background subtraction or adjustment, would change
the original behavior of measurements that interfered
with the purpose of the proposed metric for assessing a
chip quality and 2) the metric of untreated measurements
was more valid when comparing reliability between arrays
of the same type or cross platforms. Therefore, any treat-
ment or adjustment of data was deemed inappropriate.
Concerning measures of gene expression for Affymetrix
chips, the literature has converged on using other meas-
ures, such as RMA [8] and dChip [9]. Those measures pro-
vide model-based summaries of gene expression for
probe-level data rather than raw intensities, and future

work will evaluate the performance of the presented
method using model-based summary measurements of
gene expression. However, estimation of spatial correla-
tion at the raw-intensity level was our main goal and thus
we considered the raw intensity value for each probe (i.e.,
feature) from a *.Cel file as a measurement unit and used
it for analysis. Each *.Cel file provides a Cartesian coordi-
nate for each feature. Similarly for spotted arrays we used
raw fluorescent channel intensity for each spot without
any manipulation of data.

Statistical methods
Herein, we derive an approach that regresses intensity
measurements on a third degree of polynomial response
surface [11] of their microarray's Cartesian coordinates to
calculate GEODEX as an indicator of the overall measure-
ment reliability.

Methods for calculating a geography index
Primary model
For a given array, define x = X-axis microarray's Cartesian
coordinate and y = Y-axis microarray's Cartesian coordi-
nate. A third-degree polynomial response surface is
defined by

k = x + y + x2 + xy + y2 + x3 + x2y + xy2 + y3 + xy3 + x2y2 + x3y
+ x2y3 + x3y2 + x3y3,  (1)

where k is the raw intensity value of gene expression at (x,
y). By raw intensity values we mean the intensity value for
each probe (feature) from a *.Cel file output. Both PM
and MM probes are considered for Affymetric GeneChip
probe level data. Details of primary model selection,
including goodness-of-fit of models and selection of
influential factors on estimation, are given in subsequent
sections.

We fit model (1) to all intensity measurements from an
array to calculate the coefficient of determination, R2,
ranged between 0 and 1, that represents the spatial varia-
tion in intensity measurements explained by the surface.
If the array appears to have a random pattern, R2 should
be small (i.e., close to zero) because of the lack of fitness
of the polynomial surface.

We define the value of 1-R2 as the "geography index" that
is a summary of array reliability based on spatial correla-
tion and is denoted by GEODEX. We expect a higher value
of 1-R2 in agreement with the degree of geographic inde-
pendence of intensity measurements based on their geo-
graphic locations on the surface of array. A higher value
implies less spatial correlation between the intensity
measurements and their physical locations on an array,
meaning that the array is more reliable. R2 was obtained
by generalized regression models using the PROC GLM
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procedure implemented in SAS (SAS version 9.0; SAS,
Cary, NC).

Goodness-of-fit of models
A polynomial surface is most suitable for assessing spatial
variation of measurements in high dimensions [11]. An
important issue in fitting polynomial models is the speci-
fication of the degree of polynomials. Obviously, the
higher the polynomial degree, the better the fit of the
model; however, models that include minimal parame-
ters (i.e., coefficients of predictors in a model) are pre-
ferred. Herein, we consider only three representative
polynomial models – linear, quadratic, and cubic curves,
which include the products of variables and the powers of
each variable. For instance, model (1) is a cubic polyno-
mial response surface model with two coordinate indices,
x and y. To exhibit the variant of goodness of fit by differ-
ent models, we performed a step-forward variable selec-
tion procedure starting from a quadratic model using
dataset A. All individual variables in the quadratic model
were significant (i.e., p-values of F-test < 0.05). Hence, we
extended our analysis to a cubic model. All variables in
the cubic model were significant for most of the chips,
and few variables were not significant for a few chips.
Although the few variables were not individually signifi-
cant, the full model itself was significant for all 25 arrays.
For a cross comparison between chips, we needed a single
fixed model that best fitted all 25 arrays to get relative
GEODEX values across all chips, and thus we decided to
retain all variables in the model. Furthermore, extended
analyses with a quartic model did not result in substantial
differences between the cubic model and the quartic
model in terms of significant overlapping variables. Some
of the parameter variables in the quartic model were insig-
nificant. Using this forward-selection variable-searching
procedure, we chose an intermediate (cubic) polynomial
response model as our primary model (1) to calculate
GEODEX. However, the power of variables needs not be
restricted to three in a model to incorporate our proposed
approach. We will elaborate in more detail regarding
searching for optimal models [11] attempting to provide
more prescription-type methods for non-statistical inves-
tigators.

Factors influencing the estimation of a geography index
Another concern in regression analysis would be finding
key regressors for the measurements. Therefore, defining
key factors that influence spatial variations is of great
importance for estimating reliable GEODEX. We explored
factors potentially responsible for spatial variations.

Block effects
Although global GEODEX estimated by model (1)
assesses the physical reliability of each array, redundant
variation by relatively small artifacts on an array may be

neglected; however, this could be a vital factor that
enhances overall spatial variation. Therefore, we intro-
duced blocks (e.g., print-tip sectors) into model (1) as a
potential regressor of block-dependent variability. This
regressor restrains the contribution of within-blocks vari-
ation and exaggerates the contribution of between-blocks
variation. To engage it in model (1), we first need to
divide a whole microarray slide systematically into block
units. For this study, each Affymetix™ chip was systemati-
cally divided into NB evenly spaced blocks that were sec-
tored from left to right and top to bottom. These started
from the top left corner when the manufacturing systems
did not provide outputs of automatically assigned blocks
or sectors. In two-color spotted microarray systems, mul-
tiple spots are simultaneously printed as a unit per print-
tip on array glasses (i.e., hundred spots per print-tip). In
this case there may be variation between print-tips. In fact,
Yang et al. [12] noted that the standard deviation of inten-
sity between print-tips could be large and increase the
overall variation. In practice, print-tip units can be
defined as blocks in analysis or users can define blocks
based on their own judgment. In this study we used NB =
32 defined by print-tips. Analysis of variance can be used
to determine whether there is evidence of significant
block effects. To further elaborate this proposed approach,
we hypothesize that there is significant evidence of block
effects: blocks show different patterns associated with
their geographic locations on an array and thus affect
between-blocks variance. In particular, one would expect
that inconsistency of blocks on the edges of arrays was
substantial as a result of unstable hybridization around
the edges of arrays. For these reasons, we declare blocks to
be an inflational factor and include them in model (1) to
reflect block-dependent variability. The block-dependent
polynomial response surface is designed as follows:

k = x + y + x2 + xy + y2 + x3 + x2y + xy2 + y3 + xy3 + x2y2 + x3y
+ x2y3 + x3y2 + x3y3 + Blockk,  (2)

where Blockk is a block indicator variable (i.e., Blockk = 1,
..., NB, where NB = the number of defining blocks per chip)
and is treated as a random variable. This model with an
additional covariate performs robust local fits. In particu-
lar, it will be affected by small artifacts or a small geo-
graphic cluster of differentially expressed genes shown
only in certain blocks, which are most likely outliers.

Blockwise geography index
A block-by-block analysis of individual chips can be used
to classify sources of bias and to locate suspect regions of
artifacts by detecting deviant blocks. To assess discrepancy
among blocks, we computed a blockwise GEODEX per
block. These local indices assist in the location of neigh-
bors where small artifacts or unusual behaviors occur.
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For a given jth block (print-tip or sector) Bij of array i, a
local GEODEX can be calculated by regressing measure-
ments within block Bij on the model

 = x + y + x2 + xy + y2 + x3 + x2y + xy2 + y3 + xy3 + x2y2 +

x3y + x2y3 + x3y2 + x3y3,  (3)

where  is the intensity level of gene expression at (x, y)

within block Bij. This blockwise index, GEODEXBij, repre-

sents the degree of block reliability of block Bij of chip i.

Assessing the validity of geography index as a predictor of 
reproducibility of arrays
Assuming that GEODEX values are correlated with inter-
chip discrepancy, we use GEODEX as a measure of the
lack of concordance for a pair of arrays. To assess the val-
idation of this hypothesis, we calculate two references:
one that provides the degree of similarity between two
technical replicates (inter-chip discrepancy metric) and
another that provides a summary of spatial correlation of
two technical replicates (pairwise GEODEX). We suggest a
convenient way of quantifying them for two technical rep-
licates being compared. Briefly, consider two replicates,
chip i and chip j, from the same biological specimen. A
metric of inter-chip discrepancy between these two chips
is the average relative deviation between two measure-
ment replicates and explains the magnitude of discrep-
ancy between these two chips. This metric can be
calculated by

where Kil denotes the intensity value for the l th gene of
chip i and m is the total number of features (spots) on
chip i. Similarly, an average pairwise geography index can
be given by

where GEODEXi is the global GEODEX of chip i. Note that
GEODEXi in equation (5) can be altered by functional sta-
tistics of blockwise GEODEX (GEODEXBi) on chip i. For
example, maximum/minimum blockwise GEODEX
(max(GEODEXBi)/min(GEODEXBi)) can replace GEO-
DEXi. The qth percentile of blockwise GEODEX values
(Qq(GEODEXBi)) can also replace GEODEXi. Then we can
draw a scatter plot with Gij on the X-axis and dij on Y-axis,
showing the relationship between the concordance of
measurement replicates and the average spatial correla-

tion. Presumably, lower inter-chip discrepancy implies
high reproducibility of technical replicates and high pair-
wise GEODEX implies high reliability of technical repli-
cates on average; thus, pairwise GEODEX is negatively
associated with inter-chip discrepancy. On the basis of
this inter-relationship, pairwise GEODEX can be used as a
predictor of the reproducibility of arrays in microarray
experiments.
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