Skip to main content
Gut logoLink to Gut
. 1992 Jan;33(1):21–25. doi: 10.1136/gut.33.1.21

Role of intracellular Ca2+ and the calmodulin messenger system in pepsinogen secretion from isolated rabbit gastric mucosa.

T Miyamoto 1, M Itoh 1, Y Noguchi 1, K Yokochi 1
PMCID: PMC1373859  PMID: 1531470

Abstract

Both carbachol (10(-4)-10(-3) mol/l) and cholecystokinin octapeptide (CCK-8) (10(-8)-10(-6) mol/l) significantly stimulated the release of pepsinogen from rabbit gastric mucosa maintained in organ culture (213-216% and 143-261% of control, respectively, p less than 0.05-0.01). The secretion was not affected by removing Ca2+ from the culture medium with ethylene glycol tetra-acetic acid. Verapamil failed to inhibit the secretion of pepsinogen induced by the drugs in ordinary culture medium containing Ca2+. In contrast, nicorandil (10(-6)-10(-4) mol/l) attenuated the release of pepsinogen by the drugs in a dose dependent manner, regardless of the presence or absence of Ca2+ in the culture medium. W-7 (10(-6)-10(-4) mol/l) and W-5 (10(-5) and 10(-4), or 10(-6) mol/l) reduced significantly the secretion of pepsinogen induced by carbachol (53-71% and 63-81% of control, respectively, p less than 0.05-0.01) and that by CCK-8 (49-67% and 66-76% of control, respectively, p less than 0.01) in the Ca2+ containing medium. However, W-7 did not show significant inhibition of cyclic adenosine monophosphate (cAMP) and forskolin induced pepsinogen secretion. These findings indicate that the calmodulin messenger branch that is activated by a rise of intracellular Ca2+ mobilised in cytosol from its intracellular, but not extracellular, source plays a critical role in pepsinogen secretion induced by carbachol and CCK-8. It seems likely that an increase in cAMP in cytosol does not provoke any calmodulin mediated pepsinogen secretion.

Full text

PDF
21

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano M., Suzuki Y., Hidaka H. Effects of various calmodulin antagonists on contraction of rabbit aortic strips. J Pharmacol Exp Ther. 1982 Jan;220(1):191–196. [PubMed] [Google Scholar]
  2. Ballantyne G. H., Zdon M. J., Schafer D. E., Fratesi G. R., Roberts J. R., Tyshkov M., Modlin I. M. Evidence for dual modulation of pepsinogen secretion using isoproterenol, carbachol, CCK-8, forskolin, 8 bromo-cAMP, and A23187 probes. Ann Surg. 1986 Nov;204(5):559–565. doi: 10.1097/00000658-198611000-00009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
  4. Chew C. S. Cholecystokinin, carbachol, gastrin, histamine, and forskolin increase [Ca2+]i in gastric glands. Am J Physiol. 1986 Jun;250(6 Pt 1):G814–G823. doi: 10.1152/ajpgi.1986.250.6.G814. [DOI] [PubMed] [Google Scholar]
  5. Gorelick F. S., Cohn J. A., Freedman S. D., Delahunt N. G., Gershoni J. M., Jamieson J. D. Calmodulin-stimulated protein kinase activity from rat pancreas. J Cell Biol. 1983 Oct;97(4):1294–1298. doi: 10.1083/jcb.97.4.1294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haiech J., Klee C. B., Demaille J. G. Effects of cations on affinity of calmodulin for calcium: ordered binding of calcium ions allows the specific activation of calmodulin-stimulated enzymes. Biochemistry. 1981 Jun 23;20(13):3890–3897. doi: 10.1021/bi00516a035. [DOI] [PubMed] [Google Scholar]
  7. Henquin J. C., Schmeer W., Meissner H. P. Forskolin, an activator of adenylate cyclase, increases CA2+-dependent electrical activity induced by glucose in mouse pancreatic B cells. Endocrinology. 1983 Jun;112(6):2218–2220. doi: 10.1210/endo-112-6-2218. [DOI] [PubMed] [Google Scholar]
  8. Hester R. K. Effects of 2-nicotinamidoethyl nitrate on agonist-sensitive Ca++ release and Ca++ entry in rabbit aorta. J Pharmacol Exp Ther. 1985 Apr;233(1):100–111. [PubMed] [Google Scholar]
  9. Imai S., Kitagawa T. A comparison of the differential effects of nitroglycerin, nifedipine and papaverine on contractures induced in vascular and intestinal smooth muscle by potassium and lanthanum. Jpn J Pharmacol. 1981 Apr;31(2):193–199. doi: 10.1254/jjp.31.193. [DOI] [PubMed] [Google Scholar]
  10. Ito M., Noguchi Y., Yokochi K., Kishimoto T., Tomomatsu T., Katsumi K., Takeuchi T. Effects of betazole hydrochloride and cyclic AMP on the pepsinogen secretion by rabbit gastric mucosa in organ culture. Digestion. 1982;23(3):169–173. doi: 10.1159/000198724. [DOI] [PubMed] [Google Scholar]
  11. Koelz H. R., Hersey S. J., Sachs G., Chew C. S. Pepsinogen release from isolated gastric glands. Am J Physiol. 1982 Sep;243(3):G218–G225. doi: 10.1152/ajpgi.1982.243.3.G218. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Modlin I. M., Fratesi G. R., Schafer D. E., Zdon M. J., Ballantyne G. H., Tyshkov M. Paradoxical effect of trifluoperazine, a calmodulin antagonist, on pepsinogen secretion. J Surg Res. 1986 Jun;40(6):624–631. doi: 10.1016/0022-4804(86)90107-1. [DOI] [PubMed] [Google Scholar]
  14. Morimoto S., Koh E., Fukuo K., Imanaka S., Hironaka T., Shiraishi T., Yamamoto H., Itoh K., Onishi T., Kumahara Y. Effect of nicorandil on the cytosolic free calcium concentration and microsomal (Ca2+ + Mg2+)-ATPase activity of vascular smooth muscle cells. J Cardiovasc Pharmacol. 1987;10 (Suppl 8):S31–S37. [PubMed] [Google Scholar]
  15. Muallem S., Fimmel C. J., Pandol S. J., Sachs G. Regulation of free cytosolic Ca2+ in the peptic and parietal cells of the rabbit gastric gland. J Biol Chem. 1986 Feb 25;261(6):2660–2667. [PubMed] [Google Scholar]
  16. Nabata H., Sakai K. Effects of a new antianginal agent, nicorandil, on normoxic and anoxic contractions in isolated miniature pig coronary arteries exposed to 5-hydroxytryptamine and norepinephrine: comparison with nitroglycerin and diltiazem. Eur J Pharmacol. 1983 Dec 9;96(1-2):37–44. doi: 10.1016/0014-2999(83)90526-5. [DOI] [PubMed] [Google Scholar]
  17. Noguchi Y., Ito M., Katsumi K., Yokoyama Y., Yasue N., Miyamoto T., Joh T., Takeuchi T. Effects of cyclic nucleotides, betazole hydrochloride and acetylcholine on pepsinogen secretion from isolated rabbit gastric mucosa. Gastroenterol Jpn. 1986 Apr;21(2):129–134. doi: 10.1007/BF02774830. [DOI] [PubMed] [Google Scholar]
  18. Rasmussen H., Barrett P. Q. Calcium messenger system: an integrated view. Physiol Rev. 1984 Jul;64(3):938–984. doi: 10.1152/physrev.1984.64.3.938. [DOI] [PubMed] [Google Scholar]
  19. Raufman J. P., Cosowsky L. Interaction between the calcium and adenylate cyclase messenger systems in dispersed chief cells from guinea pig stomach. Possible cellular mechanism for potentiation of pepsinogen secretion. J Biol Chem. 1987 May 5;262(13):5957–5962. [PubMed] [Google Scholar]
  20. Seamon K. B., Daly J. W. Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res. 1981;7(4):201–224. [PubMed] [Google Scholar]
  21. Soll A. H. Potentiating interactions of gastric stimulants on [14 C] aminopyrine accumulation by isolated canine parietal cells. Gastroenterology. 1982 Jul;83(1 Pt 2):216–223. [PubMed] [Google Scholar]
  22. Tsunoda Y. The cholecystokinin-induced Ca2+ shuttle from the inositol trisphosphate-sensitive and ATP-dependent pool, and initial pepsinogen release connected with cytoskeleton of the chief cell. Biochim Biophys Acta. 1987 Jul 10;901(1):35–51. doi: 10.1016/0005-2736(87)90254-9. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES