
Combining mapping and arraying: An approach to
candidate gene identification
M. L. Wayne*† and L. M. McIntyre‡

*Department of Zoology, P.O. Box 118525, University of Florida, Gainesville, FL 32611-8525; and ‡Computational Genomics, Department of Agronomy,
1150 Lilly Hall of Science, Purdue University, West Lafayette, IN 47905

Communicated by M. T. Clegg, University of California, Riverside, CA, September 9, 2002 (received for review January 6, 2002)

A combination of quantitative trait locus (QTL) mapping and
microarray analysis was developed and used to identify 34 candi-
date genes for ovariole number, a quantitative trait, in Drosophila
melanogaster. Ovariole number is related to evolutionary fitness,
which has been extensively studied, but for which few a priori
candidate genes exist. A set of recombinant inbred lines were
assayed for ovariole number, and QTL analyses for this trait
identified 5,286 positional candidate loci. Forty deletions spanning
the QTL were employed to further refine the map position of genes
contributing to variation in this trait between parental lines, with
six deficiencies showing significant effects and reducing the num-
ber of positional candidates to 548. Parental lines were then
assayed for expression differences by using Affymetrix microarray
technology, and ANOVA was used to identify differentially ex-
pressed genes in these deletions. Thirty-four genes were identified
that showed evidence for differential expression between the
parental lines, one of which was significant even after a conser-
vative Bonferroni correction. The list of potential candidates in-
cludes 5 genes for which previous annotations did not exist, and
therefore would have been unlikely choices for follow-up from
mapping studies alone. The use of microarray technology in this
context allows an efficient, objective, quantitative evaluation of
genes in the QTL and has the potential to reduce the overall effort
needed in identifying genes causally associated with quantitative
traits of interest.
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The candidate gene approach has proven extremely powerful
for studying the genetic architecture of complex traits.

However, for some traits of interest, a priori candidate genes
based on a biological model either do not exist or are so
numerous that individual follow-up is prohibitively expensive
(1). Quantitative trait locus (QTL) mapping is frequently used to
identify genomic regions associated with a phenotypic trait of
interest. Such regions are generally large, containing thousands
of putative genes. By definition, all genes in the QTL are
candidate loci for the trait. Fine mapping within the QTL can
reduce the number of candidate genes to the hundreds. Even
after fine mapping, however, one may be left with more candi-
dates than can feasibly be pursued, as validation procedures are
expensive and time-consuming, and can be applied to only a
handful of candidate loci. In the absence of a priori candidates,
selection of loci for validation must be based in part on a
combination of QTL mapping and fine mapping experiments,
and in part on biological intuition. There is a need for yet another
experimental step in the march from QTL to gene, to bridge the
gap between fine mapping, which yields hundreds of genes, and
validation studies, which can be applied to at most tens of genes.
Experimental techniques to systematically reduce the list of
putative loci, while controlling type I and type II error, would be
a welcome addition to the process of candidate gene identifica-
tion. Quantitative expression studies are one method that could
be used to bring the number of genes to be validated to a
reasonable size.

Recent work suggests that regulatory variation is important in
a variety of complex traits, in many organisms (1–3). Quantita-
tive expression studies, such as microarray technology, can reveal
regulatory variation in genes for complex traits, including traits
for which a priori candidates do not exist. Array analysis alone
would reveal interesting variation between lines of organisms,
but would not link the variation to a particular phenotype. By
combining QTL mapping and fine mapping with arraying, we can
identify positional candidate genes for a phenotype of interest
whose expression varies between parental lines. The goal of this
integrated approach is neither to create an exhaustive list of
candidates, as this technique will almost certainly result in type
II error, nor to definitively establish a causal link between a gene
and a phenotype. Rather, the goal is to identify a manageable
number of genes for follow-up by using an approach that enables
the investigator to successfully identify candidate loci associated
with the phenotype of interest, with defined probabilities of type
I and type II error.

Ovariole number is a trait in Drosophila melanogaster of
evolutionary significance, as it is related to female fecundity (4,
5), and it varies clinally with latitude (6). However, little is known
about the developmental genetics of ovarigenesis, so few a priori
candidate genes for the trait exist. Two large genomic regions
associated with ovariole number were identified by using QTL
analysis on a recombinant inbred mapping population derived
from two laboratory lines of D. melanogaster, Oregon-R and 2b
(7). However, these QTL encompass 5,286 genes as positional
candidate loci (Table 1, Fig. 1). Fine mapping of the QTL was
performed by using the deficiency mapping technique (8),
including 40 deficiencies covering 74% of the QTL (3,894 genes
as estimated by the Drosophila Genome Project). Six deficien-
cies containing a total of 548 genes varied significantly between
parental lines; 2,018 were eliminated (M.L.W., L. Jacobs, A.
Kuntz, and L.-Y. Shen, unpublished work). The combination of
QTL mapping and deficiency mapping reduced the size of the
regions, effectively reducing the number of putatively involved
genes from the whole genome (13,601 genes) to only 548 genes.

To identify a list of candidate loci that can be effectively
validated, we decided to focus on variation caused by regulatory
mutations, rather than structural mutations, both because of
efficiency of detection and because of renewed interest in the
role of regulatory variation in evolution. One means of assaying
variation in regulatory mutations is by looking for differences in
gene expression. Several techniques exist for assaying variation
in gene expression of many loci simultaneously. We used Affy-
metrix whole Drosophila genome microarray chips to screen for
variation in gene expression. We hypothesized that by examining
the regions identified by the sequential QTL�deficiency mapping
for variation in gene expression, we could identify a manageable
list of candidate loci.

Methods
Fine mapping of QTL was conducted by using the technique of
overlapping deficiencies (deletions) developed by Pasyukova et

Abbreviation: QTL, quantitative trait locus or loci.
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al. (8). In brief, the two parental lines’ performances when
heterozygous with the deficiency are compared with their per-
formances when heterozygous with a nonrecombining balancer
chromosome. The analysis consisted of a two-way factorial
ANOVA with main effects line (Oregon-R or 2b) and genotype
(deficiency or balancer): Yijk � � � �i � �j � (��)ij � �ijk where
Yijk is the ovariole number for individual k from line i and
genotype j. We are interested only in those cases where the
deficiency is allelic to a gene for ovariole number that differs
between the parental lines, i.e., in that subset of deficiencies
(��)ij � 0 where the significant difference is between the means
of the deficiency genotypes, rather than the balancer genotypes.
Forty deficiencies were evaluated covering �74% of the genes in
the QTL (M.L.W., L. Jacobs, A. Kuntz, and L.-Y. Shen, unpub-
lished work). Of these deficiencies, six showed a significant
line � genotype interaction in the correct direction, indicating
the presence of at least one gene of interest in the deficiency.

Often, the breakpoints of deficiencies are given as a range,
rather than a precise cytological position, or as a lettered band
position without specifying a numbered subdivision. In these
cases, the ‘‘broadest’’ deficiency was chosen. For example, for a
deficiency such as BL2612, the breakpoints are listed as 68C8–11
and 69B4–5; we included genes with cytological positions be-
tween 68C8 and 69B5. For a deficiency such as BL2992, the
breakpoints are listed as 71C and 71F. We included genes with
cytological positions anywhere within or between these lettered
bands.

Flies for mRNA extraction were maintained at conditions
identical to those of the phenotypic assay (7). Extraction was
performed on animals ranging from late-third-instar larvae to
48-h pupae, the informative stage for ovariole number (10),
which coincides with the ecdysone pulses at the larval�prepupal
transition and the prepupal�pupal transition. Individuals from
each genotype were pooled from 25 independent vials to elim-
inate between-vial variation. Each pooled sample was split into
three replicates, and RNA extractions, RT-PCRs, and labeling
reactions were performed independently for each replicate. The

six samples were then hybridized to Affymetrix Drosophila
genome chips.

The 14,010 features on the Affymetrix Drosophila genome
chip were grouped into four categories based on the results of the
QTL�deficiency mapping experiments: not in the QTL (10,148);
in the QTL but not covered in a deficiency (1,285); in at least one
deficiency that was not significant (2,283); or in a significant
deficiency (294). There were 254 genes in significant deficiencies
listed in the Drosophila genome that were not on the Affymetrix
Drosophila genome chip at the time of this experiment.

For each feature, which represents the combined expression
data from all relevant probe pairs on the chip, the ANOVA
model Yij � � � �i � �ij was fit, where Yij is the observed
expression for line (�) i, replicate j, and � is the overall mean
expression for the feature. � is an indicator variable for the
parental line [i � 1 (Oregon-R) or 0 (2b)] (11, 12). Negative
values were considered missing data (12), and features with two
or more missing values within a genotype were considered

Fig. 2. (Upper) The black arrow highlights the recombinational map position
of the candidate genes CG17327, yellow-f, and Su(fu). Red curves indicate the
value of the test statistic for the presence of QTL (7). Blue triangles indicate
cytological markers used in the QTL experiment; the purple star represents the
centromere. Horizontal bars are the deficiencies that were tested; gold bars
showed a significant interaction across parents and genotypes, whereas green
bars did not (M.L.W., L. Jacobs, A. Kuntz, and L.-Y. Shen, unpublished work).
Deficiencies are staggered in height for presentation purposes. (Lower) Venn
diagram showing systematic narrowing of list of candidate genes from all
genes in the genome (open circle), to genes mapped in the QTL (red circle), to
genes identified by deficiency mapping present on the array (gold circle), to
genes differentially expressed between the parental lines by Bonferroni cri-
teria (CG17327, black dot).

Table 1. Numbers and classifications of genes

Category

Estimated number
of genes from

genome project
Genes present

on array

Genes in QTL 5,286 3,841
Total genes in deficiencies 3,894 2,566
Genes in significant

deficiencies 548 306

Fig. 1. For each of the 294 genes under consideration, the mean expression of
the Oregon-R replicates is plotted on the x axis and the mean of the 2b replicates
is plotted on the y axis. Means were calculated after normalization.
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uninformative. For informative features, the P value for the test
of the null hypothesis �1 � �0 (i.e., mean expression not different
between Oregon-R and 2b) was calculated by using SAS (SAS
Institute, Cary, NC; 1988).

Results
Variation in mRNA abundance was evaluated by microarray
assay for the two parental lines (Fig. 2). Extraction of mRNA was
performed on animals at the informative stage for ovariole
number development (10). Three replicates of each genotype
were hybridized to Affymetrix Drosophila genome chips. The
complete results of the ANOVA are reported in Table 3, which
is published as supporting information on the PNAS web site,
www.pnas.org. The raw data (Affymetrix CEL files), from which
all results were generated, are also published in the supporting
information on the PNAS web site. For the 294 features in the
significant deficiencies that were present on the array, 56 were
uninformative, leaving 238 informative features.

In both QTL mapping and deficiency mapping techniques, the
type I and type II error rate is well understood. General statistical
theory indicates that type I and type II error are inversely related,
with the decrease in false positives (type I) being associated with the
increase in false negatives (type II), and vice versa (13). By using
an ANOVA approach to the analysis of the expression data, where

the interplay between type I and type II error has been well studied,
we were able to examine two different strategies for creating a list
of genes for future validation.

One strategy is to attempt to reduce the occurrence of type I
error as much as possible, at the expense of increasing type II
error. Using the Bonferroni correction ensures that the type I
error (false positives) for the entire experiment is less than or
equal to the nominal � chosen. Of the 238 informative features,
one feature, 149813�at, was determined to have significantly
different expression between the parental lines when the
ANOVA approach (11, 12) was used with a Bonferroni corrected
significance level of 2.1 � 10�4 (0.05�248) (Fig. 2). However, the
Bonferroni correction is overly conservative when hypothesis
tests are correlated (14–16), and thus the actual � is likely to be
substantially less than the nominal � in this case.

Alternatively, an arbitrary a priori significance level of 0.01 for
each test can be used. A significance level of 0.01 will increase
the type I error rate to the point of almost certainly identifying
some false positives. However, it will also reduce the number of
false negatives. For our data, there are 21 features identified in
the significant deficiencies when an arbitrary significance level of
0.01 is used. These features occur in the deficiencies BL3007,
BL2612, BL2352, BL3009 Sam, and BL669. Interestingly, two of
the features identified (149844�f�at and 151038�at) occur inde-

Table 2. List of positional candidate genes based on sequential QTL�deficiency mapping and microarray

Category Feature P value Annotation
Cytological

position
Bloomington

deficiency

Bonferroni

P � 0.01

149813�at 0.0000268 CG17327 87D9 BL3007

152300�at 0.003189 CG18593 68E4 BL2612
148633�at 0.003232 CG10861 68F5 BL2612
142283�at 0.008525 Neurexin 68F5 BL2612
153324�at 0.00236 Su(fused) 87C8 BL3007
149796�at 0.004569 CG14394 87C8 BL3007
152571�at 0.001876 CG7966 87D11 BL3007
149815�at 0.005197 CG11668 87D11 BL3007
152200�at 0.008558 rosy 87D11 BL3007
142349�at 0.001085 yellow-f 87D9 BL3007
154631�at 0.003146 CG7472 87D9 BL3007
149812�at 0.009465 CG7488 87D9 BL3007
149844�f�at 0.008709 Actin 87E 87E11 BL3007, BL3009S
151038�at 0.007555 CG11686 87E4 BL3007, BL3009S
153409�at 0.005996 B52 87F7 BL3009S
151110�at 0.000884 CG11500 99B3 BL669
153339�at 0.007618 CG7920 99D4 BL2352
153625�at 0.005115 Sry-beta 99D5 BL2352
154838�at 0.006865 Axn 99D5 BL2352
150871�at 0.005577 CG15526 99D6 BL2352
153139�at 0.007402 CG7950 99D6 BL2352

Flanking regions added, P � 0.01 143646�at 0.004389 Pbprp1 69B2 BL2612, Df(3L)iro2
148655�at 0.004427 CG14124 69B2 BL2612, Df(3L)iro2
142239�at 0.001602 CG10424 75F6 NA
151832�at 0.00104 CG8782 76C1 NA
149755�at 0.009581 CG10091 87B12 BL3007, BL3003
149769�at 0.005017 CG17227 87B14 BL3007, BL3003
149748�at 0.001902 CG18158 87B9 BL3007, BL3003
149782�at 0.0000585 CG6489 87C1 BL3007, BL3003
151036�f�at 0.006876 CG5834 87C1 BL3007, BL3003
153150�at 0.000632 CG11899 99A5 BL4305, BL669
150841�at 0.008503 CG1973 99C2 NA
152879�at 0.00288 CG7802 99C5 NA
152769�at 0.000198 CG7814 99C7 NA

Category refers to which statistical procedure was used. Feature is the Affymetrix name for the feature on the chip. P values were
determined by ANOVA as described in Methods. Bloomington deficiency refers to the deficiencies that contain the feature, or NA if the
feature lies outside any deficiencies screened.
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pendently in two deficiencies, both of which were identified by
the deficiency mapping technique. These additional 21 features
are summarized in Table 2 and are hereafter referred to as the
second-tier list.

Another potential source of error is the precision in deter-
mining the deficiency breakpoints, as some investigators are
better cytologists than others. Again considering our second
approach, that of reducing type II error at the cost of increasing
type I error, we might wish to consider the flanking regions of
the six significant deficiencies. Flanking regions were defined
as one lettered subdivision away from the reported breakpoints.
If we consider features with a significance level of 0.01 in the
flanking regions, we identify 13 additional features for a total of
34 features (Table 2), which are hereafter referred to as the
third-tier list. Conversely, the deficiencies can be reduced in size
by one lettered subdivision, leaving nine features (142283�at,
148633�at, 142349�at, 149812�at, 149813�at, 149815�at,
152200�at, 152571�at, and 154631�at; Table 2).

Discussion
By combining array technology with mapping techniques, we
were able to identify candidate genes for intensive follow-up
studies for ovariole number in D. melanogaster. While ovariole
number is a quantitative trait of evolutionary interest, its devel-
opmental genetics is poorly understood, such that there are few
a priori candidate genes for the trait. For the locus identified by
using Bonferroni criteria, CG17327, there is effectively no
annotation. Thus, if a traditional candidate gene approach in the
absence of gene expression data had been used, this locus would
not have been tagged for further consideration. Querying with
PSI BLAST (www.ncbi.nlm.nih.gov�blast) revealed that the pro-
tein sequence of CG17327 displays significant homology to two
genes: E2IG2 protein from Homo sapiens (accession no.
NM�016565; 40% amino acid identity and E value 1.0 � 10�4),
and a hypothetical protein from Schizosaccharomyces pombe
(accession no. T41376; 40% identity and E value 3.0 � 10�4).
The developmental stage of the flies that is relevant to ovariole
number determination coincides with the ecdysone pulses at the
larval�prepupal transition and the prepupal�pupal transition
(17), suggesting that proteins involved in ovariole number might
be part of the ecdysone regulatory cascade. Interestingly, the
human protein was identified in a screen for novel targets of the
steroid hormone estrogen. Ecdysone, an insect hormone, is
chemically similar to mammalian steroid hormones. The homol-
ogy between the Drosophila and Homo proteins may suggest a
similar regulatory mechanism.

Second- and third-tier lists of candidates (21 and 13 genes,
respectively) were also constructed, using a type I error rate of
0.01 per test. Two members of the second-tier list stand out as

particularly good candidates: 142349�at (yellow-f, P � 0.001) and
153324�at [Suppressor of fused, Su(fu), P � 0.002]. yellow-f is a
member of the yellow gene family in D. melanogaster (18, 19) and
has significant homology to the royal jelly family of proteins (18).
Royal jelly is fed to hymenopteran larva(e) destined to become
the queen(s), and is thought to be responsible for the attainment
of full reproductive potential, which frequently includes an
increase in ovariole number (20, 21). Su(fu) affects ovary
formation, is a member of the hedgehog signaling pathway, and
interacts genetically with fused, a gene that affects ovariole
number (9).

To confirm the role of any of the genes described above in
ovariole number determination, validation studies such as Taq-
Man, RNA interference (RNAi), transformation, and�or cor-
relation between mRNA expression in natural populations and
variation in ovariole number are essential. Because of the labor
and expense of such studies, only a small number of candidate
genes may be studied so intensively. By adding a quantitative
evaluation step after completing a fine mapping study, an
investigator can more objectively determine type I and type II
error rates entering into the validation process. Type I and type
II error may also be influenced by data quantification software
(i.e., dChip, Probe Profiler) and other transformations of the raw
data [Cui, X., Kerr, M. K. & Churchill, G. A. (2002) ‘‘Data
transformations for cDNA microarray data’’ at www.jax.org�
research�churchill�]. Thus, in addition to the inclusion threshold
chosen, issues surrounding data quantification and transforma-
tion are important for investigators to actively address, partic-
ularly given the lack of consensus as to the best analytical tools
and the rapid evolution of array software and statistics. Taking
these and more traditional experimental design questions into
consideration, nominal type I or type II error rates for gene
expression data can be adjusted to allow for the individual
investigator’s time and resources available for validation studies.

The construction of a manageable list of candidates is essential
for direct assessment of causation between the candidate genes
and the phenotype of interest. The combination of QTL�
deficiency mapping and quantitative microarray analysis yields
candidate genes where none existed before, a necessary first step
for functional analysis of the genotype–phenotype relationship.
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