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Effective therapeutic vaccines contain two primary constituents, antigen and adjuvant. Adjuvants

consisting of microbial pattern molecules play a central role in vaccination. Successful vaccine requires

efficient induction of antibody (Ab), type I interferons (IFN), cytokines/chemokines, cytotoxic T

lymphocytes (CTL) and/or NK cells. Toll-like receptors (TLRs) in myeloid dendritic cells (mDC)

essentially act as adjuvant receptors and sustain the molecular basis of adjuvant activity. Current con-

sensus is that TLRs and their adapters introduce signals to preferentially induce IFN-a/b, chemokines

and proinflammatory cytokines, and mature mDC to augment antigen presentation. Although most of

these data were obtained with mice, the results are presumed to be adaptable to humans. Whenever

TLR pathway is activated in mDC, NK and/or CTL activation is promoted. For induction of antigen-

specific CTL toward phagocytosed material, cross-priming must be induced in mDC, which is also

sustained by TLR signaling in mDC. Since the TLR responses vary with different adjuvants, mDC func-

tions are skewed depending on adjuvant-specific direction of mDC maturation. It appears that the direc-

ted maturation of mDC largely relies on selection of appropriate sets of TLRs and their adapter signaling

pathways. Synthetic chimera molecules consisting of TLR agonists and target antigens are found to be

effective in induction of CTL to eliminate target cells in vivo. Here, we review the role of human

TLRs and adapters in a variety of host immune responses. We will also describe the relevance of

adjuvants in the manipulation of receptors and adapters in vaccine therapy.
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Adjuvants as ligands for TLRs

Microbial pattern molecules with a high potential for host

immune activation have been classified into adjuvant. Adjuv-

ant activity has been found in a variety of infectious microbes

and endogenous material of host origin. Freund’s complete

adjuvant (FCA) consisting of dead mycobacteria conjugated

with mineral oil augments vaccine response, i.e. antibody

(Ab) production, CTL induction and NK activation (1,2).

Without the adjuvant, usually only a poor immune response

is observed upon vaccination. Thus, the adjuvant has been an

essential factor for provoking strong host immune responses.

It has been elucidated that myeloid dendritic cells (mDCs), a

representative cell population of antigen-presenting cells, and

plasmacytoid dendritic cells (pDCs), formerly called type I

interferon (IFN)-producing cells, are the targets for most of

the adjuvants (3). In this context, Janeway and Medzhitov (4)

suggested that dendritic cells (DCs) express two sorts of

receptors, antigen (Ag) uptake receptors for Ag-presentation

by MHC and receptors for microbial pattern molecules, that

are receptors for adjuvants. Both Ags and adjuvant pattern

molecules are derived from microbes and differentially act
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on mDCs to efficiently induce many effectors secondary to

lymphocyte activation.

The molecular basis of the adjuvant function was poorly

delineated until adjuvant receptors were identified. The most

common question in this regard is ‘what is the receptor for

adjuvant pattern molecules?’ In 1997, Medzhitov et al. (5)

characterized a human homolog of drosophila Toll (described

by J. A. Hoffmann in 1996) (6), later named TLR4. They first

predicted its function to be the augmentation of immune

response (4,5). Currently, TLR is identified as a family of

receptors consisting of >10 protein members both in humans

and mice. In recent years, evidence has been accumulating

that either each TLR dimer or a combination of TLRs serves

as a receptor complex for the recognition of a specific micro-

bial pattern molecule (3,7). The recognition is then fol-

lowed by TLR-specific signaling and corresponding cellular

immune response (Table 1). Thus, the TLR family of proteins

serves as signaling receptors crucial for augmenting immune

response. It is notable that most of the TLR proteins reside in

DCs. Although some TLRs are present on T, B, NK cells and

epithelial cells and recent studies suggest the importance of

TLR on these cells for primary antiviral response (8), their

functions remain largely unknown. The possible immune

responses and effectors induced by mDC are discussed below.

Role of TLRS in DCs

mDCs are central to T/B cell activation (9,10). They facilitate

production of Abs through the induction of differentiation of

B lymphocytes. T lymphocytes are differentiated by matured

mDCs into T helper I (Th1), Th2 and CTL. mDCs catch up

antigens, alter the functions and migrate to draining lymph-

nodes (Fig. 1). When antigen and adjuvancy coincidently

stimulate mDC maturity, antigenic peptide presentation on

MHC is augmented. Upregulation of co-stimulatory and

MHCmolecules, expression of chemokine receptors, presenta-

tion of antigens, secretion of cytokines and chemokines are

accelerated by adjuvants in mDC (7,9,10). TLRs on mDCs

are involved in these pivotal events leading to lymphocyte

activation (Fig. 1). Regulatory T cell (Treg) function is sup-

pressed by IL-6, which is produced by mDC in response to

TLR activation (11). NK and NKT cells are activated in

response to TLR-mediated mDC maturation (12). Memory

cell formation may be imparted by mDC depending on its

maturation properties, which are competent to lymphocyte

Table 1. Human TLRs and their adapters

huTLR Amino
acids

mAb Adapters Ligands DC
subsets

Modes

TLR1 786 TLR1.136 M-1/M-2 triacyl BLP M NF-kB

TLR2 784 TLR2.45 M-1/M-2 PGN, BLP M NF-kB

TLR3 904 TLR3.7 T-1 (M-1) dsRNA M NF-kB/IRF-3

TLR4 839 HTA125 M-1/M-2 LPS, Taxol M NF-kB/IRF-3

RSV-F

TLR5 858 — M-1 flagellin M NF-kB

TLR6 796 TLR6.127 M-1/M-2 diacyl BLP M NF-kB

TLR7 1049 TLR7.360 M-1 ssRNA P NF-kB/IRF-7

TLR8 1059 TLR8.90 M-1? ssRNA M NF-kB/IRF-7

TLR9 1032 — M-1 CpG DNA P NF-kB/IRF-7

M-1, MyD88; M-2, Mal/TIRAP; T-1, TICAM-1/TRIF; T-2, TICAM-2/
TRAM. TLR1, TLR6 and TLR10 are members of the TLR2 subfamily and
together with TLR2 recognize different sets of microbial pattern molecules
and support activation of TLR2. Mice do not have TLR8, but possess a protein
which resembles TLR7 in its structure and function. Further, their distribution
is also different. Functional modes of each adapter were identified as ‘M’ and
‘T’ types. M, MyD88-dependent pathway; T, TICAM-1-dependent pathway.
In DCs subsets, M is myeloid DCs while P is plasmacytoid DCs. ‘Modes’
represent transcription factors activated by each TLR.

Figure 1. Role of human TLRs in mDC maturation followed by activation of various lymphocytes. Immature dendritic cells (mDC) residing in local tissue

phagocytose exogenous antigen (Ag) and pattern molecule (namely adjuant) and initiate the maturation process. During maturation mDC induce IFNs, cytokines

and chemokines, allow the upregulation of co-stimulators, NK-activating ligands (ULBP, MIC, etc) and MHC, and activate a variety of lymphocytes. These

maturation events are largely dependent on adjuvant properties. Also, adjuvant may participate in switching on of some unknown mechanisms which are essential

in induction of CD8þ CTL by mDCs.
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proliferation, and be established in conjunction with TLR sig-

naling in mDCs. Exogenously-added antigens that are not

expected to gain access to the cytoplasm of mDCs are presen-

ted on MHC class I molecules by a process called cross-

priming. TLR signaling also promotes cross-priming in

mDC, which potently induces MHC class I-restricted CTL

against phagocytosed antigens (13). This TLR-driven cross-

priming will be discussed more in the later sections. Simultan-

eous stimulation of DC by microbial patterns and antigens

induces robust immune activation. It is notable that DC sub-

sets have distinct receptor-expression profiles which enable

them to respond to specific types of pathogens (7,14). In addi-

tion, mDCs express pattern-recognition receptors other than

TLRs inside the cells (15). Furthermore, there are a number

of microbe-specific phagocytic receptors in mDC, which

include lectins, Ig superfamily and complement receptors.

Functional assignment of TLRs and these intracellular and

phagocytic receptors in mDC are important to depict the DC

pattern recognition system. Elucidation of the kind of TLRs

and their combinations that are mainly responsible for each

immune response is to be further resolved.

The distribution of TLR expression in
DC subsets

TLR1, 2, 4, 5 and 6 are members of a TLR subfamily which

recognizes microbial constituents that are absent in human

cells (Table 1). These TLR subfamily members reside on the

cell surface. Human mDCs, but not pDCs express these TLR

subfamily members (14). Human mDCs also express TLR3

and TLR8 while pDCs express TLR7 and TLR9. These four

TLRs preferentially recognize microbe-specific modifications

of nucleotide sequences and are localized in certain endo-

somes inside the cells (14,16). Unlike mouse mDCs, human

mDCs do not express TLR9. Current consensus is that TLR3,

7, 8 and 9 are proteins of TLR subfamily participating in the

recognition of nucleic acid derivatives of viruses and bacteria

(Table 1). In mice, mDCs express functional TLR3 and

TLR9 inside the cell, while TLR8 remains dysfunctional

(16). Mouse pDC expresses TLR7 and TLR9 similar to human.

These differences between mouse and human DC subsets may

preclude us from simple extrapolation of mouse TLR func-

tions in mouse DCs to the human system. Typical human

pDC phenotype is CD11C�/CD4þ with BDCA4þ, while that

of mouse pDC is CD11Cþ/CD11B�/GR�1þ/B220 (16).

Thus, mouse and human also differ in the pDC phenotype.

Since we mainly focus on antigen-presenting ability of mDC

in the context with TLR adjuvancy, the pDC story (see other

references) is largely omitted in this review.

Functions of the adapters

So far, four adaptors, MyD88, Mal/TIRAP, TICAM-1 (TRIF)

and TICAM-2 (TRAM), have been identified in human and

mouse cells (17–19). These adapters exclusively contain the

TIR domain (Fig. 3). We have investigated the functions of

adapters and found that stimulation of mDC with individual

pattern molecules is largely transduced by different sets of

adapters resulting in distinct outputs. TLR subfamily

expressed on cell surface mainly engages in NF-kB activation

through the adapter molecule MyD88 (17) (Fig. 2). TLR4 is

the only exception in that it activates both NF-kB and IRF-3.

In contrast, the nucleic acid-recognizing TLRs, TLR3, 7 and

9 activate the IFN promoter (Fig. 2). The properties of

these adapters related to the activation of mDC (i.e. antigen-

presenting cell) may be summarized as follows: MyD88 is

engaged in the activation of NF-kB and p38 MAPK (17), but

has no ability to induce type 1 IFN in mDCs. An alternatively

spliced form of MyD88 may regulate the MyD88 adapter

activity. Mal/TIRAP bridges the TIR domain of TLR2/4 and

MyD88 (18,19). Mal/TIRAP itself exhibits weak NF-kB
activation activity. The Mal/TIRAP function may be

modulated by proteolysis.

TICAM-1 preferentially activates the IFN-b promoter via

dimerization of IRF-3 in mDC (20), which explains part of

the ‘MyD88-independent’ pathway. TICAM-1 has ability to

activate NF-kB also. The TICAM-1-mediated NF-kB activa-

tion is supported by RIP1 which binds the C-terminus of

TICAM-1 (21). However, TICAM-1-dependent IRF-3 activa-

tion is made by the NAP1/TBK1/IKKe complex (22) that

binds to the N-terminus of TICAM-1. Particularly if it

is of viral, TICAM-1 may be susceptible to proteases (23).

TICAM-2 bridges the TIR domain of TLR4 and TICAM-1

(18,19). Its ability to activate IRF-3 in the absence of

TICAM-1 is minimal, if any. Its acylation permits the mole-

cule to anchor on the inner leaflet of membrane. Hence, the

two effective adaptors, MyD88 and TICAM-1, and two brid-

ging adaptors, Mal/TIRAP and TICAM-2 exist in DCs (Fig. 3).

TLR3 activates IRF-3 and IFN-b promoter through the

adapter TICAM-1, whereas TLR7 and 9 activate IRF-7 and

IFN-a promoter via MyD88 (24). The distribution of these

TLRs is different: TLR3, TLR8 and surface-expressed TLRs

reside in antigen-presenting mDCs while TLR7 and 9 are

in pDCs in human (Table 2). Thus, the TLR3, TLR8 and

surface-expressed TLRs such as TLR2, 4 and 5 are mainly

involved in the modulation of antigen-presentation in mDC

(Fig. 3).

The functional profile of TLR2 and TLR5 includes

activation of NF-kB (17) but not induction IFN-b, which

matches the functional properties of the adapters they select.

Table 2. Distribution and subcellular localization of human TLRs in DC

DC subsets Monoclonal Abs against

TLR1 TLR2 TLR6 TLR4 TLR5 TLR3 TLR7 TLR8 TLR9

Monocyte-
derived

þ þþ þ þ þ (þþ) � (þþ) �

Plasmacytoid � � � � � � (þþ) � (þþ)

(þþ) TLRs with nucleotide-recognition properties (TLR3, 7, 8. 9) reside in
endosomes.
þ TLRs (TLR1, 2, 4, 5, 6) are expressed on cell surface to recognize microbial
patterns.
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dsRNA-mediated TLR3 activation predominantly induces

IFN-b, reflecting the function of the adapter TICAM-1

(18,19). LPS-TLR4 complex activates both NF-kB and the

IFN-b promoter, consistent with the fact that TLR4 recruits

both MyD88 and TICAM-1 in an indirect manner. Thus, sets

of adapters selected by each TLR appear to be crucial for

relevant adjuvant function.

Manipulation of TLR system for
adjuvant vaccine therapy

Functions of antigen-presenting mDC can be controlled at

three points in the TLR cascade. Property of the adjuvant

is the first to regulate TLR-mediated maturation of mDC.

Secondly, modulation of TLR activity occurs by the addition

Figure 2. Association between human TLRs and adaptors determine each TLR-specific signaling pathway. Topology of the adaptor proteins in the TIR domains of

TLR2, TLR3 and TLR4 is shown in the schema. The complex consisting of each TIR and adaptors delivers TLR signaling to activate NF-kB and the IFN-b
promoter (IRF-3). In pDC, activation of TLR7 or 9 happens to activate IRF-7 in a MyD88-dependent way followed by induction of IFN-a. Representative
ligands of TLRs are shown on the top.

Figure 3. TLR adapters and possible signals induced in human DCs. MyD88 and TICAM-1 are functional adapters that activate both NF-kB and type I IFN pro-

moters. Important downstream molecules currently identified are shown in the figure. Plasmacytoid DC (pDC) predominantly expresses TLR7 and TLR9 which

recognize nucleotide derivatives. MyD88 activates IRF-7 in pDCs. Activation of different pathways is elicited in mDC.
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of soluble forms of TLRs or TLR-blocking molecules. Finally,

TLR signaling can be positively regulated by the adapters or

negatively regulated by their inhibitors. Recent finding sug-

gests that there are small synthetic molecules that block

TLR-adapter interaction (25). More information about TLR

agonists in association with adjuvants was recently published

(26). Examples for the second and third control steps are as

follows.

Alternatively spliced forms of TLR2, TLR4 and probably

TLR3 appear to serve as dominant-negatives to block the

relevant TLR activation in response to their ligands (27–29).

Reports on this type of TLR regulation were published in

human and mouse TLRs (27–29). Fish has a gene encoding a

soluble TLR5, which acts as an amplifier of the flagellin-

mediated membrane TLR5 signaling that induces acute phase

cytokines as well as soluble TLR5 (30). Although human

has no gene for soluble TLR5, the amplification of flagellin

signal by soluble TLR5 may be conserved. Fish soluble

TLR5 can physiologically bind flagellin and augment the

functions of human membrane TLR5 in response to flagellin.

The results may offer an adjuvant positively regulating

flagellin response in human mDCs (31). Lipopolysaccharide-

binding protein or soluble CD14 may upregulate LPS-

mediated TLR4 activation (32). It is likely that yet to be

identified catch-up receptors for pattern molecules function

as TLR modulators. Antagonists of TLRs either binding to

the LRR or TIR domains of each TLR will be applicable for

patients with inflammation or autoimmune status to block off

TLR activity.

In the human kidney cell line HEK293 cells, overexpressed

adapters enhance activation of corresponding pathways lead-

ing to the promoter activation even in the absence of adju-

vant (22). Similarly, overexpressd dominant-negative forms

of adapters effectively block the downstream signaling of

adapters (22). In mDCs, adapter function can be positively

regulated by the transfection of correspondingly associated

adapters.

Cross-priming induced by TLR stimuli in MDC

TLRs and other receptors in mDC increase antigen-presenting

ability by maturing mDC. However, the molecular mechanism

whereby the TLRs and adaptors are potentially involved in

antigen-presentation by mDC has not yet been characterized.

Cross-priming is an essential functional feature for vaccines

to induce CTL from CD8 T cells. Here, we mention a crucial

function of TLR, cross-priming, in terms of TLR2/4 and

TLR3. Although human TLR8 in mDC may participate in

cross-priming, it remains unestablished. Effective CTL induc-

tion is observed secondary to TLR2/4 and MyD88-dependent

mDC maturation if appropriate exogenous Ag is simultan-

eously supplemented in a study that used gene-knockout

mice (33). Acylated devivatives of muramyl dipeptide (MDP)

of BCG-cell wall skeleton (CWS) acts as TLR2/4 agonist to

selectively activate the MyD88 pathway (34). Cytokines

and chemokines are effectively induced in mDCs by combined

activation of TLR2/4 by BCG-CWS leading to cross-priming-

competent mDC followed by CTL induction (33). The CTL

induction by BCG-CWS-primed mDCs does not occur in

MyD88-knockout mice and mDCs from them exerted almost

no ability to proliferate CD8 T cells in vitro. Thus, it appears

that there is a TLR-signal pathway which engages MyD88 to

induce cross-priming in mDC. The outline of this pathway is

shown in Fig. 4 and more precisely in Fig. 5. Some unknown

molecules involved in this pathway may participate in cross-

priming of exogenously-added antigen in mDC.

dsRNA is a TLR3 agonist that activates TLR3-TICAM-1

pathway (35). The outline of this pathway is shown in Fig. 4

and with molecular interaction in Fig. 5. TLR3 signaling is

also important in eliciting cross-priming leading to induction

of MHC class I presentation and CTL induction in response

to exogenously-added antigens (36). In light of this observa-

tion, multiple TLR pathways must be involved in cross-

priming in mDCs. These events may be generalized for most

human infections and cancers where mDCs sense TLR agon-

ists and antigens from target cells. Taken together, to induce

systemic activation of CTL, supplementation of TLR agonists

or adapters to the vaccine adjuvant appears effective, particu-

larly if pathogens lack agonistic activity to TLR2/4 or TLR3.

Vaccine adjuvant activity of
TLR for NK activation

NK can be activated by type 1 IFNs and/or instructive

cytokines, IL-12, IL-23 and IL-18 (Fig. 1) (12). TLR3 engages

in NK activation via TICAM-1-mediated signaling in mDCs

(2). Thus, NK can be activated by mDCs that are pretreated

with TLR3 agonist such as dsRNA. This means that mDC

turns an activator for NK if appropriate TLR agonists are pro-

vided (Fig. 4). In light of this, it appears that supplementing

vaccine adjuvant with TLR3 to induce systemic activation

of NK appears to be effective in patients with cancer or

infectious diseases.

If one can supplement the adjuvant cocktail sufficiently

to activate both CTL and NK, it would be possible to eliminate

both MHC-positive and -negative target cells. Although such a

scenario is largely extended from the mouse studies, the same

mechanism of induction of antiviral immunity appears to be

the case in humans according to in vitro studies using human

mDC (7,8,14). Viral infection often induces promotion or

suppression of DCmaturation. Supplement of TLR2/4 agonists

to viral dsRNA may relieve the maturation stages of DCs.

MyD88 is the adapter shared by receptors for IL-1b, IL-18
and most members of the TLR family (17). In mDCs, the tran-

scription factor NF-kB is activated in the MyD88 pathway

(17). MyD88 may support events other than those responsible

for innate immune responses and the danger signal induced

by tumors (37,38) or virus-invaded tissue in effecter lympho-

cytes (39,40). In pDCs, the MyD88 pathway also activates

IRF-7 which is followed by robust production of IFN-a (41).

Type I IFN directly enhances the expression of IL-18 R
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Figure 4. The two distinct TLR pathways of myeloid DCs. NK and CTL are induced as effecter cells for killing of targets secondary to activation of TLRs in mDCs

(left panel). Myeloid DCs express TLR2, TLR3 and TLR4, and mature in response to BCG-CWS (TLR2/4 agonist) or dsRNA (TLR3 agonist). In general, TLR2/4

preferentially activates NF-kB via MyD88. TLR3 induces type 1 interferon (IFN). Both CTL and NK are then activated as indicated. In activation of CTL by mDC,

exogenously-added antigen must be presented on MHC class I while the antigen are usually mounts on class II. This, named cross-priming, actually occurs if TLR

signaling simultaneously enters (right panel). Either MyD88 or TICAM-1-mediated signal can induce cross-priming. Although the exact mechanism remains

unknown, many factors are expected to be involved in switch on of cross-priming.

Figure 5. The two signaling pathways of TLR in myeloid DCs. MyD88-dependent pathway are indicated to the left and TICAM-1 pathway are shown to the right

in blue. Many signaling molecules are involved in the two pathways leading to different outputs. NK and CTL are generated by the resultant mDC activation. In

particular, cross-priming must occur in mDC to induce CTL, the molecular mechanism of which are largely unknown.
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components (AcPL), IL-1R-related protein (IL-1Rrp) and

MyD88 in NK and T cells (39). This is reminiscent of the

properties of the danger signal in the suppression of tumor

cell progression or viral proliferation (42). It is reasonable to

hypothesize that most danger signals suggest an enhanced

effect of vaccine and activation of adapters. TICAM-1, another

effective adapter, also induces activation of IFN-b and NF-kB
in mDCs (18,19). It does not appear to function in pDCs for

IFN-a induction. TICAM-1 may be an important vaccine

potentiator targeting mDCs. Further studies are needed to

clarify the discerning properties of the two main adapters in

terms of enhancers for vaccine effect.

Application of TLR response for
immune therapy

The development of safe and efficient vaccines for cancer

and infectious diseases remains a major goal in global public

health (43). There are prophylactic and therapeutic vaccines

both of which require two primary constituents, antigen and

adjuvant. Adjuvant may determine the direction of mDC lead-

ing to maturation for CTL induction and/or NK activation for

cellular immune response and Ab production for humoral

immune response. NK activation is a therapeutic feature,

while CTL and Ab induction is useful for both preventive

and therapeutic purpose.

Adjuvant includes a variety of components consisting

of mineral oils, bacterial extracts, viruses and suspensions

of aluminum hydroxide metals. Artificial components were

chemically synthesized with reference to microbial origin,

which were also effective as adjuvants (26,44). In vitro and

animal studies are in progress concerning these materials.

Application of these adjuvants to immune therapies, however,

has not yet clinically explored. This is because augmented

immune response by adjuvants may exacerbate subclinical

autoimmune diseases. In addition, fever and erosion at the

local injected lesion induced by nature of adjuvants some-

times perturb periodical adjuvant administration in patients

(45). Thus, the numbers of adjuvants that are approved and

effective in humans still remain limited.

In the field of immune therapy for cancer, Rosenberg et al.

(46) summarized their elaborate studies on peptide vaccine

therapy for cancer. Only 2.6% of the patients with this therapy

accomplish remission (complete or incomplete). In contrast,

BCG or its component cell wall skeleton has been admin-

istered as adjuvant to patients with colon or lung cancer

(47,48). About 10% of the patient obtained partial remission

and 5 year survival (45,47). The results indicated that there is

no doubt that the sensing of ‘danger’ by the immune system

through recognition of microbial patterns by TLRs and other

receptors has begun to explain the largely empirical field of

vaccine adjuvant biology. It has also spawned a more objec-

tive search and development of compounds with immune

stimulating activity (49). Our perspective is that combination

of peptide and adjuvant would be more effective than either

alone for immune therapy for cancer.

In this context, we have investigated the differential

functional properties of each adjuvant in vitro human mDC

and in vivo mouse studies (40). We particularly focused on

microbial pattern molecules and TLR signal modifiers. We

have examined the use of chimera proteins composed of

small lipopeptides (TLR2 stimulants MALP-2 and Pam 3)

and tumor antigens and found that their potencies to elicit

immune response are greater than those of either alone or

unfused mixture. It has been reported that fused proteins

consisting of TLR agonists and targeted antigens exerts anti-

pathogenic CTL response in vivo in animal studies (50,51).

Thus, we have speculated that fusion molecules consisting of

TLR agonists and tumor antigens would be more effective

for immune therapy for cancer.

TLRs are undoubtedly important in recognition of ‘danger’

molecules generated from self or infectious materials (53).

TLRs are representative adjuvant receptors with sufficient

knowledge on molecular manipulation and control of their

signaling pathways. This is why we summarized this here.

Yet, whether any of the numerous alternative and complement-

ary medicines that claim immune activity contain TLR agon-

ists and promote anti-pathogen immunity or autoimmunity

remains to be established. Further future work on not only

TLRs but also other adjuvant receptors will be needed to offer

each of the adjuvants with differential properties for clinical

use.
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