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Summary

Linkage analysis with genetic markers has been suc-
cessful in the localization of genes for many monogenic
human diseases. In studies of complex diseases, however,
tests that rely on linkage disequilibrium (the simulta-
neous presence of linkage and association) are often
more powerful than those that rely on linkage alone.
This advantage is illustrated by the transmission/dise-
quilibrium test (TDT). The TDT requires data (marker
genotypes) for affected individuals and their parents; for
some diseases, however, data from parents may be dif-
ficult or impossible to obtain. In this article, we describe
a method, called the “sib TDT” (or “S-TDT”), that
overcomes this problem by use of marker data from
unaffected sibs instead of from parents, thus allowing
application of the principle of the TDT to sibships with-
out parental data. In a single collection of families, there
might be some that can be analyzed only by the TDT
and others that are suitable for analysis by the S-TDT.
We show how all the data may be used jointly in one
overall TDT-type procedure that tests for linkage in the
presence of association. These extensions of the TDT
will be valuable for the study of diseases of late onset,
such as non–insulin-dependent diabetes, cardiovascular
diseases, and other diseases associated with aging.

Introduction

The transmission/disequilibrium test (TDT) was intro-
duced as a method for identification of markers closely
linked to genes that contribute to disease susceptibility
(Spielman et al. 1993); if sufficiently closely linked, these
markers are likely to be in linkage disequilibrium with
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the disease-susceptibility genes. (We use a narrow defi-
nition of the term “linkage disequilibrium,” meaning the
presence of both linkage and association, although past
usage of this term has not always included linkage.) Pro-
vided that association is present, the TDT often has more
power than conventional linkage tests, but, since it uses
within-family comparisons only, it is not affected by as-
pects of population structure that can lead to associa-
tions in the absence of linkage (Ewens and Spielman
1995). The TDT is particularly suited to the testing of
markers that may be at or very closely linked to genes
that influence the risk for a complex disease (Lander and
Kruglyak 1995; Risch and Merikangas 1995).

The TDT uses data from families in which marker
genotypes are known for the father, the mother, and the
affected offspring, but only parents who are heterozy-
gous for marker alleles are considered. Since the TDT
tests for unequal transmission of alleles from the parents
to affected offspring, it cannot be performed if genotypic
data for the parents are not available.

When diseases with onset in adulthood or in old age
are studied, it may be impossible to obtain genotypes
for markers in the parents of the affected offspring. This
difficulty has limited the applicability of the TDT. In this
article, we describe an alternative test that is analogous
to the original TDT. Instead of using marker data from
affected offspring and their parents, this method com-
pares the marker genotypes in affected and unaffected
offspring. For this reason, we call this new method the
“sib TDT,” or “S-TDT.” The S-TDT does not recon-
struct parental genotypes and does not depend on esti-
mates of allele frequencies.

In some studies there will be families for which pa-
rental genotypes are available, other families for which
genotypes of unaffected sibs are available but those of
the parents are not, and still others for which both kinds
of data are available. We will show how data from these
three types of families can be combined into one overall
test.

Methods

The data consist of marker genotypes for sibships that
meet two requirements: (1) there must be at least one
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Table 1

Genotypes for a Locus with Alleles M1, M2, and M3, in Three
Fabricated Sibships

SIBSHIP AND

SIB STATUS

NO. OF SIBS WITH GENOTYPE

M1 ALLELES IN

“AFFECTED” SIBS,
BY CHANCEa

M1M1 M1M2 M2M2 M1M3 Mean Variance

1 (7 sibs):
Affected 2 1 ) )

3.8571 .4082Unaffected ) 2 ) 2
2 (5 sibs):

Affected ) 1 ) )
.6000 .2400Unaffected ) 1 2 1

3 (4 sibs):
Affected 1 ) ) )

.7500 .6875Unaffected ) 1 2 )
a The mean and variance of the number of M1 alleles among “af-

fected” sibs were calculated by use of the terms summed in equations
(1) and (2) (see text).

Table 2

Total Number of Alleles in Affected and Unaffected
Members of Sibships in Table 1

SIB STATUS

NO. OF ALLELES

M1 M2 M3 Total

Affected 8 2 0 10
Unaffected 7 12 3 22

affected and one unaffected member in the sibship; and
(2) the members of the sibship must not all have the
same genotype (a sibship with one affected and one un-
affected member, with different marker genotypes—that
is, the “minimal” sibship [see Discussion]—meets these
requirements). The initial units of observation are the
marker genotypes of the offspring for each family, as in
table 1.

In essence, the S-TDT determines whether the marker
allele frequencies among affected offspring differ signif-
icantly from the frequencies among their unaffected sibs.
Disease association without linkage will not result in
such differences; unless linkage is also present (including
in the case in which the marker itself is responsible), the
frequencies will be the same in the affected and the un-
affected sibs, apart from random-sampling effects. Thus,
the null hypothesis is that the disease and the marker
are not linked.

The Permutation Procedure

To compare marker allele frequencies in affected and
unaffected offspring, it would be natural to accumulate
allele totals over families, with results like those in table
2. For data of this type, the customary method of testing
for departures from the null hypothesis would be by x2

analysis. However, a x2 used with these aggregated data
is not valid, because of nonindependence of the obser-
vations on sibs from the same family. To provide a valid
test, we adopted a within-family Monte Carlo permu-
tation procedure, performed by a computer program.
Consider a family with a affected and u unaffected sibs,
each with a known marker genotype. To determine what
differences between affected and unaffected sibs would
be produced by chance, we permute the observed gen-
otypes within sibships as follows. Ignoring actual af-
fected status, we choose a of the a 1 u sibs at random
and assign them to the “affected” category; the remain-
der are assigned to the “unaffected” category (the al-
location is of genotypes, not alleles, since permutation
of individual alleles could result in the creation of gen-
otypes not seen in the sibship.) Because the permutation
is carried out within families, potential problems re-
sulting from population structure are eliminated, as is
true of the original TDT. For one “replicate,” the ran-
domization is performed for within-family data, and
then the resulting numbers of alleles in affected and un-
affected sibs are totaled over the families. The procedure
gives a simulation result in the same form as that used
in table 2. This procedure is repeated a large number of
times (replicates), and, after each replicate, a table anal-
ogous to table 2 is constructed. These randomly gen-
erated replicates provide the “null” distribution for a
test of linkage.

To simplify the discussion, we first consider the case

either in which there are only two marker alleles, M1

and M2, or in which one marker (e.g., M1) is of particular
interest and all other marker alleles are grouped as M2.
The case of three or more markers is discussed later (see
Discussion).

The number of M1 alleles among the individuals ran-
domly chosen as “affected” is used to test for linkage.
The P value is assigned by noting the proportion of
replicates in which this number is equal to, or more
extreme than, the observed value in the actual data. The
level of statistical significance is given by this “empirical”
P value.

The z Score Procedure

With a sufficiently large number of replicates, the per-
mutation procedure will provide precise P values. The
properties of the procedure can be illustrated more easily
by use of a statistical analytical method that, with a large
sample, is essentially identical to the computer simula-
tion for permutation testing.

In the sibship described above, with a affected and u
unaffected sibs, the total number of sibs is .t 5 a 1 u
Suppose that in this sibship the number of sibs who are
of genotype M1M1 is r and the number of sibs who are
of genotype M1M2 is s, where M2 represents all alleles
other than M1. In the permutation procedure, the
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number of M1 alleles among “affected” sibs has mean
and variance(2r 1 s)a/t au[4r(t 2 r 2 s) 1 s(t 2

, under the null hypothesis of no linkage2s)]/[t (t 2 1)]
between disease and marker. These formulas are derived
from the hypergeometric distribution; the derivation is
given in Appendix A.

The overall mean A and variance V of the number of
M1 alleles among “affected” sibs, when totaled over all
families in the data, are given by simple summation:

A 5 O (2r 1 s)a/t (1)

and

2
V 5 O au[4r(t 2 r 2 s) 1 s(t 2 s)]/[t (t 2 1)] , (2)

where, in both cases, summation is over all families in
the sample.

For example, in the three sibships of table 1, sum-
mation of the means and variances for allele M1 gave
the totals and (see AppendixA 5 5.2071 V 5 1.3357
A). By using the usual method, we calculated a z score
for allele M1, from A, V, and the total observed number
(Y) of M1 alleles among affected sibs in the actual data
set: . From the z score, an approximateÎz 5 (Y 2 A)/ V
P value can be calculated, by use of a normal distribution
approximation. It is customary to make a continuity
correction, and the P value is then calculated from

2 ½)/ . For allele M1 in the data given′ Îz 5 (FY 2 AF V
in table 1, this expression yielded .′z 5 1.9839

The calculations described above can be performed
easily if the data are entered into a spreadsheet program
(a program in Excel is available from R.S.S.). Thus, the
z score approach, which is a highly accurate approxi-
mation, is a simple and attractive alternative to the per-
mutation procedure and eliminates the need for com-
puter simulation. As we show below, the z score method
also makes it easy to combine results from the TDT and
the S-TDT.

Combining the TDT and the S-TDT into an Overall
Test

We now show how the TDT and the S-TDT proce-
dures can be combined. Of course, for each family, the
genotype of at least one affected offspring must be avail-
able. The data for other family members define three
groups of families: (i) genotypes are available for both
parents but not for unaffected sibs; (ii) genotypes are
available for unaffected sibs but not for both parents;
and (iii) genotypes are available for both parents and
for unaffected sibs.

Group (iii) families meet the requirements for both the
TDT and the S-TDT. We expect that, in sufficiently large
samples, the TDT is at least as powerful as the S-TDT,
for cases in which either test could be used (see Appendix

B). We therefore combine families in group (iii) with
those in group (i) and ignore the unaffected sibs in the
families in group (iii), thus treating the combined group
exactly as in the original TDT. Henceforth, group (i)
refers to this combined group. As above, we first con-
sider the case of only two marker alleles, M1 and M2,
and describe extension to the case of more than two
marker alleles in the Discussion section.

The appropriate test for families in group (i) is the
TDT, which is usually performed with a (McNemar test)
x2 statistic. However, for our present purposes, it is more
convenient (and equivalent) to use as the test statistic
the number (X) of transmissions of allele M1 from the
n M1M2 parents in this group to their affected children.
When marker and disease are unlinked, X has a binomial
distribution with mean n/2 and variance n/4.

The S-TDT procedure is appropriate for families in
group (ii). As described in the discussion following equa-
tions (1) and (2), the test statistic is the number (Y) of
M1 alleles among affected sibs. When marker and disease
are unlinked, Y has a distribution with mean A and
variance V, given in equations (1) and (2).

When data are available from both group (i) and
group (ii), the natural test statistic is W, the sum of X
and Y. Under the null hypothesis that disease and marker
are unlinked, W has mean Acomb and variance Vcomb, given
by

A 5 n/2 1 A (3)comb

and

V 5 n/4 1 V , (4)comb

respectively. The test of significance is now performed
with a z statistic, calculated from the formula

Îz 5 (W 2 A )/ V . (5)comb comb

The null hypothesis that disease and marker are un-
linked is rejected if z departs significantly from zero, as
judged by standard z tables (as with the S-TDT proce-
dure, a correction for continuity should be made).

Results

We applied the S-TDT and the combined procedure
to several sets of data that were analyzed previously by
use of the TDT.

Data from Genetic Analysis Workshop 9 (GAW9)

First, we analyzed the data of GAW9 (Hodge 1995).
In GAW9, computer-simulated genotype data were gen-
erated for 200 nuclear families, for a large number of
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Table 3

Total Number of M7 Alleles of Marker D5G23 in
Affected and Unaffected Members of Sibships
Informative for the S-TDT, among 200 GAW9
Families

SIB STATUS

NO. OF ALLELES

M7 Other Total

Affected 161 161 322

Unaffected
230 486 716

Total 391 647 1,038

NOTE.—For the number of M7 alleles in the ob-
served number of affected sibs, mean , andA 5 124.3
variance . See text for details.V 5 30.99

Table 4

Total Number of Class 1 and Other Alleles of the
Insulin Gene 5′ VNTR in Affected and Unaffected
Members of IDDM Sibships Informative for the S-TDT

SIB STATUS

NO. OF ALLELES

Class 1 Other Total

Affected 151 43 194

Unaffected
122 62 184

Total 273 105 378

NOTE.—For the number of class 1 alleles in the ob-
served number of affected sibs, mean , andA 5 140.67
variance . See text for details.V 5 12.45

multiallelic marker loci, and the families were ascer-
tained on the basis of (simulated) disease. Strong asso-
ciations (no recombination) were introduced between
the disease and allele M8 of marker D1G31 and allele
M7 of marker D5G23 (the two marker loci are un-
linked). We and other participants in GAW9 analyzed
the data, using the conventional TDT; for comparison
with the present analysis of the S-TDT, our results
(McGinnis et al. 1995), which are representative, are
quoted here. The TDT x2 for allele M8 of D1G31 was
31.25, and that for allele M7 of D5G23 was 58.07. Both
of these results are clearly highly significant, even allow-
ing for testing of multiple alleles. Thus the TDT accu-
rately identified the two markers that were associated
and linked with disease.

To assess the S-TDT procedure, we used the same
simulated sibships used by GAW9; however, we ignored
the genotypes of the parents but included the genotypes
of the unaffected sibs. We performed the S-TDT for three
marker loci: the two linked sites (D1G31 and D5G23,
discussed above) and one marker (D5G21) not associ-
ated with disease. We give detailed results for only one
of the linked markers, D5G23.

The total numbers of alleles observed in the affected
and unaffected sibs in the 200 simulated sibships are
shown in table 3. Genotypes were permuted within sib-
ships, as described in Methods. The excess of allele M7
in affected sibs was greater than that seen in any of the
50,000 random permutations generated for the S-TDT;
this gives an empirical one-sided P value of !.00002.
The corresponding z′ score was 6.50 ( ),211P ≈ 4 # 10
obtained by comparison of the observed number of M7
alleles among affected sibs with the expected number of
M7 alleles, calculated as 124.3 by use of equation (1).
The results for D1G31 were similar; allele M8 was iden-
tified correctly by permutation. Furthermore, the marker
that was not in linkage disequilibrium (D5G21) did not
yield significant results; for the six alleles at this locus,
the smallest P value was .17. (Since our goal in this
article is to illustrate the method, we have not corrected

for testing of multiple alleles. The testing of multiple
marker alleles is discussed below.)

The remarkable statistical power demonstrated above
is due partly to the fact that the GAW9 data were sim-
ulated for the testing of very large genetic effects detected
at the two disease loci and partly to the large sample
size. Family studies of the size of the GAW9 study, with
200 sibships and many unaffected sibs, often will not
be available, and for a smaller number of sibships there
is a corresponding loss of power. However, we found
that, for the GAW9 data, highly significant evidence for
linkage was always obtained by use of various sets of
50 families randomly chosen from the 200 in the data
set (results not shown).

The Insulin Gene 5′ VNTR

We also tested the permutation procedure with data
for a real disease. For this purpose, we used data on
insulin-dependent diabetes mellitus (IDDM) and on the
variation at the VNTR marker adjacent to the insulin
gene; these data were analyzed elsewhere by use of the
conventional TDT (Spielman et al. 1993). The VNTR
shows linkage with IDDM, and, in many case-control
studies, the smallest of the three classes (class 1) of alleles
detectable by Southern blotting has been shown to be
associated with IDDM (Bell et al. 1984; Cox and Spiel-
man 1989; Julier et al. 1991). Following the common
practice used in previous analyses, we grouped class 2
and class 3 together as “other.” In the conventional TDT
analysis, the class 1 allele was transmitted 78 times, and
other alleles were transmitted 46 times ( )2x 5 8.26
(Spielman et al. 1993); the normal approximation to the
binomial gives , with (one-sided′z 5 2.78 P 5 .0027
test, because only an excess of the class 1 allele was of
interest).

For the S-TDT, we used the same families analyzed
previously by the TDT; there were data for 76 sibships
with at least one affected and one unaffected member,
and, of these, only 45 had marker-genotype differences
among the sibs. The S-TDT procedure was performed
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for these 45 sibships. The numbers of alleles observed
in affected and unaffected sibs are given in table 4.

For these data, the one-sided empirical P value from
the permutation procedure was .647/250, 000 5 .0026
Using the parallel z score approach, we calculated, by
use of equations (1) and (2), the mean A and variance
V of the number of class 1 alleles among “affected” sibs
as 140.67 and 12.45, respectively. The z′ score, obtained
when these values were used with the observed total 151,
was 2.79 ( , one-sided test); the agreement withP 5 .0026
the P value from the permutation procedure illustrates
the accuracy of the z score method.

In this example, the z′ score for the S-TDT appears to
agree almost exactly with that obtained from the con-
ventional TDT ( , ). However, such′z 5 2.78 P 5 .0027
close agreement should not be expected in general, since
the two tests do not use the same data.

Combining the S-TDT and the TDT

Among the families typed for the VNTR, there were
many that were not suitable for the S-TDT, either be-
cause all offspring were affected or because all had the
same marker genotype. In eight of these families, how-
ever, one or both parents were heterozygous for the
marker, so that the original TDT was applicable. We
illustrate the calculations for the combined TDT by add-
ing the data from these families to those from the 45
families considered in the previous section.

There were 21 transmissions from heterozygous par-
ents to affected offspring: 14 transmissions were of the
class 1 allele. From the properties of binomial distri-
bution, the mean and variance for the TDT component
are and , respectively. Com-21/2 5 10.5 21/4 5 5.25
bining these values with the mean and variance given
above for the S-TDT component, we calculated

(equation [3]) and (equa-A 5 151.17 V 5 17.70comb comb

tion [4]). The observed total number of class 1 alleles
among affected offspring (TDT and S-TDT results com-
bined) is . Use of equa-X 1 Y 5 14 1 151 5 165 5 W
tion (5), with a continuity correction, leads to ′z 5

and (one-sided test). In this case, the z3.17 P 5 .0008
score was increased, and the result illustrates the poten-
tial increase in power achieved by the combination of
data from the TDT and the S-TDT. However, this con-
clusion is not necessarily a general one, and, in practice,
z scores resulting from the combined TDT may be larger
or smaller than those obtained from either component
alone.

Discussion

The S-TDT extends the concept of the original TDT
to sibships for which the parents’ genotypes are un-
known. We now compare the properties of the TDT with

those of the S-TDT and of the combined procedure de-
scribed above. For simplicity, we continue to consider
only the case of two marker alleles, M1 and M2.

Validity of the S-TDT as a Test of Association

The S-TDT has been proposed above as a test of link-
age between marker and disease; this also was the pri-
mary intended use for the TDT. However, the TDT is
known to be valid also as a test of association, provided
the data are entirely from simplex families (one affected
offspring; one or both parents may be heterozygous for
the marker). We now find the analogous requirement for
the S-TDT to be valid as a test of association.

To do this, we consider the smallest sibships that can
give data for the S-TDT. This “minimal” configuration
for the S-TDT consists of exactly one affected and one
unaffected sib, with different marker genotypes. In the
S-TDT procedure, if there is no association between dis-
ease and marker, the two possible genotypic assignments
for the affected and the unaffected sib are equally likely
in these sibships. Since this property is what is simulated
by the S-TDT permutation procedure, the S-TDT is valid
as a test of association for families of this type. Thus,
for the S-TDT to be valid as a test of association, a
sufficient requirement is that the sibships all be of the
minimal configuration.

For sibships that do not have the minimal configu-
ration, the S-TDT is not valid as a test of association;
for these configurations, it cannot be assumed, even in
the absence of association, that sibs with the same ge-
notype are no more likely than sibs of different geno-
types to be concordant for disease status. Thus, the only
sibships that provide a valid test of association are those
with the minimal configuration.

Requirements for Identity of the TDT and S-TDT

The minimal configuration for the TDT is a special
case of the simplex family; in addition to having exactly
one affected offspring, the family must have only one
parent heterozygous for the marker. Consider a sample
in which all families have one heterozygous (M1M2) par-
ent, one homozygous (e.g., M2M2) parent, one affected
offspring, and one unaffected offspring. For the TDT
we ignore the genotypic data from the unaffected off-
spring, whereas for the S-TDT we do not have the gen-
otypic data from the parents. Thus, when viewed from
the perspective of the TDT, these families are of the
minimal TDT configuration, and, when viewed from the
perspective of the S-TDT, they are of the minimal S-TDT
configuration.

Thus, the data from families of this type can be an-
alyzed by use of either the TDT or the S-TDT. The testing
procedure is the same in both cases: the test statistic is
the number of occurrences of M1 in the affected sibs,
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Table 5

Power of the S-TDT and the TDT, for Sibships with One M1M2 Parent, One M2M2 Parent,
One Affected Sib, and 2, 3, or 4 Unaffected Sibs

Ta

POWER OF THE S-TDT, FOR FAMILIES WITH

POWER OF

THE TDT

3 Sibs 4 Sibs 5 Sibs

(2,1) (1,2) (3,1) (2,2) (1,3) (4,1) (3,2) (2,3) (1,4)

.500 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050

.525 .233 .247 .194 .259 .230 .185 .248 .258 .213 .259

.550 .573 .617 .502 .639 .568 .443 .612 .636 .522 .639

.575 .867 .900 .799 .915 .862 .721 .896 .913 .819 .915

.600 .980 .989 .952 .992 .979 .917 .988 .991 .963 .992

NOTE.—The number of M1M2 and M2M2 sibs in each sibship is given in parentheses. The
type I error rate is 5%. Sample size is families.F 5 400

a The probability that an M1M2 parent transmitted the M1 allele to an affected offspring.

and, in both cases, this number has a binomial distri-
bution with parameters of ½ and F (the number of fam-
ilies in the data), when disease and marker are unlinked.
Thus, for data from only families of this type, the TDT
and the S-TDT have identical properties, even though
they are, in general, different procedures. In particular,
for data of this type, both procedures are valid as tests
of association, and they also have the same properties,
and when used as tests of linkage with these data, the
TDT and the S-TDT have identical properties, including
the same power and significance levels. (We discuss an-
other case of identity in the next section, in connection
with table 5.)

A second property common to the TDT and the S-
TDT concerns data from pedigrees that contain several
sibships—for example, sets of cousins in two sibships or
a set of sibs and their aunts and/or uncles. In these ped-
igrees, the TDT is valid as a test of linkage but not as
a test of association, when based on data from all het-
erozygous parents and their offspring (Spielman and
Ewens 1996). The corresponding results for the S-TDT
are data, from separate sibships, that also can be com-
bined to give a test that is valid for linkage but not for
association.

Power: Comparison with the TDT

We noted above that some families may meet the re-
quirements for both the TDT and the S-TDT. For these
families, the procedure with more statistical power
should be used. We now investigate the relative power
of the TDT and the S-TDT.

Families in which both parents are homozygous for
the marker may not be used in the TDT or in the S-
TDT. For families in which both parents are heterozy-
gous, we expect the TDT to be more powerful than the
S-TDT, since, in the TDT, each affected offspring con-
tributes information on two transmissions. Thus, the
most interesting comparison of power is for families in
which one parent is heterozygous and one is homozy-

gous. We therefore consider only this case. For the pur-
pose of exposition, we assume a uniform sample: in
every family, the mating type is , s num-M M # M M1 2 2 2

ber of sibs are M1M2, and are M2M2.t 2 s
In the first example, we assumed the presence of one

affected sib in every family. Table 5 gives the power for
the TDT and the S-TDT, for various marker genotype
configurations for the sibs (construction of table 5 is
described in Appendix B.)

Two main conclusions can be drawn from this table
and from the calculations in Appendix B. First, for the
family structure considered, the S-TDT is generally less
powerful than the TDT, although the difference in power
is often small. Second, Appendix B shows that, when
there are equal numbers of M1M2 and M2M2 sibs in each
family (table 5 shows the case of two of each genotype),
the TDT and the S-TDT procedures are identical and
thus have the same power. The more dissimilar these
two numbers are, the less powerful the S-TDT is, relative
to the TDT.

For one case in table 5 (the “[2,2]” case of the S-
TDT), the results of the TDT and the S-TDT were iden-
tical; this fact led us to ask whether this identity occurs
in the S-TDT whenever there are equal numbers of
M1M2 and M2M2 sibs. We considered the case in which,
for every family, the mating type is (asM M # M M1 2 2 2

used above) but in which there are two affected sibs.
Power calculations for this case of equal numbers of
M1M2 and M2M2 sibs, derived by a method similar to
that described above, are given in table 6 (we assumed

, to give the same number of affected offspringF 5 200
as in table 5). In this case we found that the TDT and
the S-TDT do not have equal power; the TDT has mar-
ginally more power than the S-TDT, for all the cases
considered. This may be confirmed generally by use of
calculations analogous to those given in Appendix B.

These calculations concern only a small proportion of
all possible family configurations and are intended to
cover only situations in which a simple and direct com-
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Table 6

Power of the S-TDT and the TDT, for Sibships
with One M1M2 Parent, One M2M2 Parent,
and Two Affected Sibs

Ta

POWER OF THE S-TDT,
FOR FAMILIES WITH

POWER OF

THE TDT4 Sibs 6 Sibs 8 Sibs

.500 .050 .050 .050 .050

.525 .204 .226 .236 .259

.550 .497 .559 .583 .638

.575 .795 .854 .875 .915

.600 .952 .976 .982 .992

NOTE.—In each family, there are equal num-
bers of M1M2 and M2M2 sibs. The type I error
rate is 5%. Sample size is families.F 5 200

a The probability that an M1M2 parent trans-
mitted the M1 allele to an affected sib.

Table 7

Approximate Significance Points of zmax, the z Score Largest in
Absolute Value

k

zmax, (AND BONFERRONI APPROXIMATION),
FOR TYPE I ERROR OF

5% 1% .1% .01%

2 1.96 (1.96) 2.58 (2.58) 3.29 (3.29) 3.89 (3.89)
3 2.34 (2.39) 2.91 (2.93) 3.56 (3.58) 4.15 (4.15)
4 2.47 (2.50) .02 (3.02) 3.65 (3.65) 4.25 (4.25)
5 2.55 (2.58) 3.08 (3.09) 3.71 (3.72) 4.26 (4.26)
10 2.80 (2.81) 3.29 (3.29) 3.89 (3.89) 4.42 (4.42)

parison can be made between the powers of the TDT
and the S-TDT procedures. For all cases reported in
tables 5 and 6, the power of the S-TDT was less than
or equal to that of the TDT. It appears that, for suffi-
ciently large sample sizes, the TDT is always more pow-
erful than the S-TDT. For this reason, we recommend
use of the TDT for those families that can be analyzed
by either method.

Bias with Missing Parents

Curtis and Sham (1995) have shown that a bias can
arise in the TDT if the genotype for one parent is missing,
even though it is clear which marker allele the available
(heterozygous) parent transmitted to an affected child;
in these cases, the data should not be used for the TDT.
For families of this type there might be marker infor-
mation on unaffected sibs. If so, these families can be
included in group (ii), since there is no corresponding
bias in the S-TDT.

Multiple Alleles and Multiple Loci

For the theory described above, we focused on one
marker allele, M1. In several applications this is natural:
for the insulin gene VNTR example discussed above,

there was prior interest in the class 1 allele. If there are
more than two alleles at the marker locus but if no allele
is of special interest, a more complex procedure is
necessary.

Before discussing multiple alleles in the S-TDT and
the combined test, we summarize the corresponding pro-
cedures already developed for the TDT. Two broad ap-
proaches have been proposed. In the first (Schaid 1996),
all alleles other than M1 are grouped as “non-M1,” and
a conventional two-allele TDT is then performed. If
there are k marker alleles, this procedure is repeated for
each of the other alleles, so that a total of k TDTk 2 1
x2 statistics are calculated. The test statistic is maxTDT,
the largest of the k TDT values calculated. In a previous
study (Ewens and Spielman, 1997) we gave a table of
significance points for maxTDT.

For the present discussion it is more convenient (and
equivalent) to use a “zmax” statistic instead of maxTDT.
We calculated the numbers of alleles trans-M , ..., M1 k

mitted from heterozygous parents to their affected off-
spring and determined the corresponding z scores by
comparison with the number of times each is observed
with its permutation expected value. In contrast with the
case in which one allele (M1) was of interest a priori, no
allele is of special interest in this case. Thus, we adopted
a two-sided procedure and chose the quantity zmax, the
z score that is largest in absolute value, as the test sta-
tistic. Approximate significance points for this statistic
were found by simulation and are given in table 7; sig-
nificance points found from the Bonferroni correction
for multiple testing are given in parentheses (table 7
shows that, for practical purposes, the Bonferroni values
are very accurate and provide a slightly conservative
test).

The TDT zmax approach for the testing of multiple
alleles generalizes naturally for the S-TDT and for the
combined test. For the S-TDT, a z score was calculated
for each of the k alleles, as described in Methods, and
the largest absolute z score was chosen as the zmax score.
Similarly, for the combined test, k different z scores were
computed from equation (5), and the largest absolute z
score was chosen as the zmax score. The significance of
the zmax was determined by reference to table 7.

A second approach is a simultaneous, or joint, test of
all k marker alleles. For the TDT, this was done with a
x2 statistic with df (Schaid 1996; Spielman andk 2 1
Ewens 1996) or with a logistic regression model (Duffy
1995; Harley et al. 1995; Sham and Curtis 1995).

For the S-TDT and the combined test, there are two
drawbacks to the approach of testing multiple alleles
jointly. First, a significant effect for one (or several)
marker alleles might be obscured by the presence of
many other alleles with little or no association (Spielman
and Ewens 1996); this drawback also applies to the TDT.
Second, it is not apparent how to combine the TDT and
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the S-TDT procedures when alleles are tested jointly. For
these reasons we recommend the zmax approach. Ulti-
mately, however, the best approach will also depend on
the extent to which one marker allele is associated with
the disease more strongly than any of the other marker
alleles.

The above discussion concerns the adjustment for
multiple testing when more than two alleles occur at the
marker locus. A further correction for multiple testing
is needed if multiple marker loci are tested (Lander and
Kruglyak 1995). As in the case of the TDT (Ewens and
Spielman, 1997), a Bonferroni correction should be used
for this situation.

Conclusion

Recent studies (Risch and Merikangas 1996) have em-
phasized the importance of linkage-disequilibrium anal-
ysis as a means of localization of genes for complex
diseases. The TDT has proved to be a powerful test for
this purpose. However, the TDT relies on data from
parental genotypes. In practice, one or both parents may
be unavailable for study, and this is especially likely for
diseases of adult or late onset. In this category are nu-
merous complex diseases in which a genetic contribution
is suspected: diabetes; cardiovascular diseases, including
hypertension and stroke; adult psychiatric diseases; and
other diseases specifically associated with aging, espe-
cially Alzheimer disease and Parkinson disease. In dis-
eases such as these, limitations on the TDT imposed by
lack of data from parents are circumvented by the pro-
cedures for the S-TDT and the combined TDT, presented
in this article.
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Appendix A

Let x be the number of M1M1 sibs and y the number
of M1M2 sibs who are classified as “affected,” under the
random permutation within a sibship. Then, given the
totals r, s, a, u, and t, as defined in the text, x may be
regarded as an entry in a contingency table with2 # 2
marginal totals a, u, r, and and therefore has at 2 r

hypergeometric distribution with mean and variancera/t
. Similarly, y has a hypergeometric2r(t 2 r)au/[t (t 2 1)]

distribution with mean and variancesa/t s(t 2
. Furthermore, the covariance of x and y2s)au/[t (t 2 1)]

is . The number of M1 alleles among the22rsau/[t (t 2 1)]
“affected” sibs, under random permutation, is ,2x 1 y
and by standard statistical formulas this number has
mean , leading to the value2(mean of x) 1 (meanof y)

, given in equation (1). The variance of(2r 1 s)a/t
is , and, by use of2x 1 y 4Var(x) 1 Var(y) 1 4Cov(x, y)

the above formulas, this leads to the variance formula
given in equation (2). These formulas give the means
and variances for sibships 1, 2, and 3 in table 1.

Appendix B

For a simple example of the power comparison of the
TDT and the S-TDT, it is convenient to assume that all
families in the data are of the same type. Specifically, we
assume that each family has t sibs, one of whom is af-
fected, that each family has one heterozygous M1M2 par-
ent and one homozygous M2M2 parent, and that in each
family s sibs are M1M2 and sibs are M2M2. Fort 2 s
these families the power comparison of the TDT and
the S-TDT can be made through a single parameter, T,
the probability that the heterozygous parent in each fam-
ily transmitted the M1 allele to the affected sib. We as-
sume that the TDT and the S-TDT are both performed
as (one-sided) tests for an excess (T 1 ½) of transmissions
of the M1 allele to affected offspring.

We denote the number of families by F. The TDT
statistic is X, the number of transmissions of M1 from
the F M1M2 parents to the F affected offspring. When
marker and disease are unlinked, X has a binomial dis-
tribution with mean F/2 and variance F/4. By use of a
normal distribution approximation and a 5% type I er-
ror, the hypothesis of no linkage is rejected when

Î( )X x F/2 1 1.645 F/4 . (B1)

Suppose now that disease and marker are linked and
that the probability that an M1M2 parent transmitted
the M1 allele to an affected child is T, which is no longer
necessarily ½. In this case, X has a binomial (F, T) dis-
tribution, and the power of the test is the probability
that the inequality (B1) occurs when X has this distri-
bution. A z transformation shows that this is the prob-
ability that a standard normal random variable exceeds
the value

1 Î Î Î( ) ( )2 T F/ T 1 2 T 1 1.645/ 4T 1 2 T . (B2)( )2

The S-TDT procedure takes the values s and ast 2 s
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given. In this procedure, the test statistic is the number
Y of M1 alleles, among the affected sibs, that are nec-
essarily transmitted from the heterozygous parents.
When disease and marker are unlinked, it follows from
equations (1) and (2) and from the genotypic compo-
sition assumed above that the mean of and theY 5 sF/t
variance of . We therefore reject the hy-2Y 5 s(t 2 s)F/t
pothesis of no linkage when

2Î ( )Y x sF/t 1 1.645 s t 2 s F/t . (B3)

Suppose now that disease and marker are linked and
that the probability that an M1M2 parent transmitted
the M1 allele to an affected child is T (as above). To
calculate the power of this test, we must make an as-
sumption about the probability that an M1M2 parent
transmitted the M1 allele to an unaffected sib. We assume
here that this probability is ½, independently for each
unaffected sib and independent of the allele transmitted
to the affected sib. (The exact value depends on pene-
trance and thus generally is unknown. For genes that
make a small contribution to the disease, the value ½

will provide a sufficiently close approximation.) Under
this assumption, the mean and variance of Y are

sFT/[Ts 1 (1 2 T)(t 2 s)] (B4)

and

2s(t 2 s)FT(1 2 T)/[Ts 1 (1 2 T)(t-s)] , (B5)

respectively. The power of the test is the probability that
the inequality (B3) occurs, given that Y has a normal
distribution, with mean and variance as in equations
(B4) and (B5). This is the probability that a standard
normal random variable exceeds the value

1 1ÎÎ Î( ) [ ( )]s t 2 s 2 T F/ t T 1 2 T( )2 2

Î( ) ( ) ( )11.645 Ts 1 1 2 T t 2 s /t T 1 2 T . (B6)[ ]

When F, the number of families in the sample, is large,
the leading term in equations (B2) and (B6) is the first
term. This term is negative, and, since it is always true
that X ½t (because a geometric mean is al-Îs (t 2 s)
ways less than or equal to the corresponding arithmetic
mean), the leading term in equation (B2) is more negative
than the leading term in equation (B6). This implies that
the probability from equation (B2) exceeds that from
equation (B6), for a sufficiently large sample size. Thus
the power of the TDT exceeds that of the S-TDT. For
example, if , , , and , then theT 5 .6 F 5 400 t 5 5 s 5 3
probabilities from equations (B2) and (B6) are .992 and

.988, respectively; these values are found in the last row
of table 5.

Note that when (equal numbers of M1M2s 5 t 2 s
and M2M2 sibs in the family), expressions (B2) and (B6)
are equal, so that for this case the TDT and the S-TDT
have equal power. This is demonstrated by the “2,2”
column in table 5.
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