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Summary

The hereditary deficiency of 3-hydroxy–3-methylglu-
taryl (HMG) CoA lyase (HL; OMIM 246450 [http://
www3.ncbi.nlm.nih.gov:80/htbin-post/Omim/disp
mim?246450]) results in episodes of hypoketotic hy-
poglycemia and coma and is reported to be frequent and
clinically severe in Saudi Arabia. We found genetic di-
versity among nine Saudi HL-deficient probands: six
were homozygous for the missense mutation R41Q, and
two were homozygous for the frameshift mutation
F305fs(22). In 32 non-Saudi HL-deficient probands, we
found three R41Q alleles and also discovered four other
deleterious point mutations in codons 41 and 42: R41X,
D42E, D42G, and D42H. In purified mutant recombi-
nant HL, all four missense mutations in codons 41 and
42 cause a marked decrease in HL activity. We developed
a screening procedure for HL missense mutations that
yields residual activity at levels comparable to those ob-
tained using purified HL peptides. Codons 41 and 42
are important for normal HL catalysis and account for
a disproportionate 21 (26%) of 82 of mutant alleles in
our group of HL-deficient probands.

Received October 9, 1997; accepted for publication December 8,
1997; electronically published February 13, 1998.

Address for reprint requests: Dr. Grant A. Mitchell, Service de gé-
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Introduction

Hereditary deficiency of 3-hydroxy–3-methylglutaryl
(HMG) CoA lyase (HL; E.C. 4.1.3.4) (OMIM 246450
[http://www3.ncbi.nlm.nih.gov:80/htbin-post/Omim/
dispmim?246450]) causes up to 16% of inherited met-
abolic disease in Saudi Arabia (Ozand et al. 1992). Fur-
thermore, the clinical signs of HL deficiency, which in-
clude hypoketotic hypoglycemia, fatty liver, coma,
mental retardation, and a characteristic pattern of uri-
nary organic acids (Gibson et al. 1988), may be partic-
ularly severe in Saudi patients (Ozand et al. 1991). De-
fining the molecular basis of HL deficiency in Saudi
Arabia has potential significance for patient care, me-
tabolism, and population genetics.

HL is a mitochondrial and peroxisomal enzyme (Ash-
marina et al. 1994). In mitochondria, HL catalyzes the
last step of both leucine degradation and ketogenesis.
Its role in peroxisomes is unknown. We have cloned the
human HL cDNA (Mitchell et al. 1993) and gene (Wang
et al. 1996) and have reported two frameshift mutations
(Mitchell et al. 1993, 1995) and two large HL gene
deletions (Wang et al. 1996) in HL-deficient patients. A
splice-site mutation has also been reported (Buesa et al.
1996). The only missense mutation reported, to date, is
H233R. We expressed and purified mutant HL contain-
ing an arginine at residue 233 and used this to dem-
onstrate that H233 is essential for HL catalysis (Roberts
et al. 1996).

In this article, we report six new HL point mutations,
including two in Saudi patients, R41Q and F305fs(22).
We also adapt the bacterial expression system for rapid
screening of the activity of HL mutant proteins. In 32
non-Saudi patients, we found four other deleterious
point mutations clustered within a radius of 4 nt of
R41Q. This demonstrates genetic diversity among Saudi
HL-deficient patients and implicates HL residues 41 and
42 as important for normal catalytic function of HL.
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Table 1

Ethnic Origin, Previous Descriptions, and Mutations of the HL
Patients Studied

Patient Ethnic Origin Clinical Report Genotypea

HL3 Saudi Ozand et al.
(1991), patient
10

R41Q/R41Q

HL4 Saudi Ozand et al.
(1991), patient
7

R41Q/R41Q

HL5 Saudi Ozand et al.
(1991), patient
11

R41Q/R41Q

HL6 Saudi Ozand et al.
(1991), patient
8

R41Q/R41Q

HL33 Saudi ) R41Q/R41Q
HL37 Saudi ) R41Q/R41Q
HL41 Turkish ) R41Q/R41Q
HL36 Italian ) R41Q/?
HL8 Saudi Greene et al.

(1984)
F305fs(22)/F305fs(22)

HL9 Saudi Dasouki et al.
(1987)

F305fs(22)/F305fs(22)

HL25 English/German ) R41X/?
HL14 Cajun Black Gibson et al.

(1988), patient
1

D42H/?

HL26 Dutch ) D42G/D42G
HL13 Austrian Plöchl et al.

(1989, 1990,
1992)

D42E/D42E

HL7 Saudi ) ?/?

a A question mark (?) signifies an as-yet-uncharacterized mutant
allele(s).

Material and Methods

Patients

Patients described in this article are summarized in
table 1. In our group of 41 HL-deficient probands, 9
originate from Saudi Arabia. Affected siblings are ex-
cluded as probands. Extensive genealogical information
is not available, and we cannot formally exclude kinship
among some of the probands.

SSCP Detection of Mutations

We used flanking intronic primers (Wang et al. 1996)
to amplify exons 2–9 of the HL gene. Specifically, 50
mmol of each primer and 250 ng of genomic DNA were
added to a mixture containing a final concentration of
dNTPs, each 12.5 mM; 35S-dATP and 35S-dCTP (New
England Nuclear), each 12.5 mCi, and Taq polymerase,
2.5 U; Tris HCl (pH 8.4), 20 mM; KCl, 50 mM; MgCl2,
1.5 mM in a volume of 50 ml. Following a hot start, 25
amplification cycles were performed as follows: 947C,
15 s; 587C, 15 s; and 727C, 15 s, with a final 5-min
extension at 727C. Electrophoresis was performed under
each of three different conditions as described elsewhere
(Michaud et al. 1992).

Allele-Specific Oligonucleotide (ASO) Detection of
Mutations

HL exon 2 was amplified (Wang et al. 1996), and
samples were slot blotted and hybridized to radiolabeled
ASOs. Oligonucleotides were end labeled using a32P-
ATP as described by Sambrook et al. (1989), except that
spermidine HCl, 1 mM, and EDTA, 1 mM, were not
used in the kinase buffer. The hybridization buffer was
5 SSPE (1# SSPE is NaCl, 15 mM; NaH2PO4, 10 mM;
and EDTA, 1mM), 1% SDS, and 5# Denhardt’s so-
lution (1# Denhardt’s is Ficoll, BSA, and polyvinyl pyr-
rolidone, each 0.2 mg/ml). Following a 30-min prehy-
bridization, hybridization was performed for 3 h.
Washing was performed in 2# SSC (1# SSC is sodium
citrate, 1.5 mM, and NaCl, 15 mM) and 0.5% SDS,
once for 10 min. The oligonucleotides, their orienta-
tions, and their positions in the HL cDNA were as fol-
lows. The normal sequence oligonucleotide is 5′-
GGTCCCCGAGATGG-3′ (the R41 codon is
underlined), sense strand, hybridization temperature
357C; washing temperature 517C. The mutant oligon-
ucleotide is 5′-CCCCAAGATGGACTACA-3′ (the Q41
codon is underlined), sense strand, hybridization tem-
perature 457C; washing temperature 487C. For the D42E
mutation, the oligonucleotide was 5′-CGAGAGGGAC-
TACA-3′ (E42 underlined) sense strand, hybridation
temperature 407C; washing temperature 487C.

Cloning of Mutant HL Alleles

Our initial experiments were performed using the
pGEX-2T plasmid (Pharmacia) that expresses fusion
proteins with glutathione S-transferase. Into this vector
we cloned a BamHI-EcoRI fragment of the human HL
cDNA that contains the sequence of the mature HL pep-
tide. We introduced the 5′ BamHI site immediately up-
stream of the Thr 28 residue that is the first residue of
mature HL and used a 3′ cloning EcoRI site that was
present in the original vector. Mutant cDNAs from pa-
tients were prepared for cloning into this vector and
sequencing. Reverse transcription was performed from
patient fibroblast RNA by use of the primer 5′-
TTGATGTTCTTCTTGGT-3′, complementary to HL
cDNA residues 419–403. The normal and mutant fusion
proteins produced by this vector were unstable.

We, therefore, adopted an expression system in the
pTrc HL-C323S vector (Roberts et al. 1994). This vector
contains the coding sequence of the normal, mature HL
peptide plus 5′ Met and Gly codons that contain a NcoI
cloning site. Also the codon of the reactive Cys 323
residue has been mutated to a Ser codon. Purified re-
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Figure 1 SSCP detection of R41Q and F305fs(22). a, Exon 2. b, Exon 9. Patient numbers are shown above the lanes. Migration was
performed at 47C in the absence of glycerol. Horizontal lines indicate the normally migrating fragments, which contrast with the abnormal
migration in panel a of HL3–6 and in panel b of HL8 and HL9. C 5 normal control; nd 5 nondenatured fragment.

Table 2

Comparison of HL-Specific Activity in Crude Lysate Preparations
and in Purified Normal and Mutant HL Peptides

MUTATION

HL-SPECIFIC ACTIVITY IN

(mmol acetoacetate produced/min/mg protein)

Crude Supernatant Purified Protein

Normal 9.6 (100) 159.0 (100)
R41Q .06 (.6) .002 (.00125)
D42H .00 (0) !.001 (!.0006)
D42G .03 (.3) .012 (.0075)
D42E 1.14 (12.0) 7.0 (4.4)

NOTE.—Values in parentheses represent percentage of wild-type
values.

combinant C323S HL closely resembles wild-type HL
enzymatically but is more stable (Roberts et al. 1994).
We transfered the mutant sequences from the PGEX-2T
vectors by use of the above 3′ primer and the 5′ primer
5′-ATCCATGGGCACTTTACCAAAGCGG-3′ (residues
76–96, plus a 5′ NcoI site, underlined). Thirty cycles
were performed as follows: 947, 15 s; 577, 15 s; and 727,
15 s. The reaction products were digested with NcoI and
SstI and were used to replace the corresponding cassette
in the pTrcHL-C323S plasmid. The mutant cassette was
sequenced on each strand.

Bacterial Expression of Mutant HL, Enzyme Assays,
Western Blot Analysis, and Protein Purification

The following were performed as described elsewhere:
protein determination (Bradford 1976); HL assays in

crude lysates (Ashmarina et al. 1994) and in purified HL
(Kramer and Miziorko 1980); and HL expression (Rob-
erts et al. 1994). Lysate supernatants obtained following
centrifugation at 100,000 g for 60 min were resolved
by PAGE, and Western blotting was performed as de-
scribed by Ashmarina et al. (1994), by use of a rabbit
polyclonal anti-HL antibody. Recombinant HL was pu-
rified as described by Roberts et al. (1994).

Results and Discussion

In SSCP studies of patients HL3–9, we found two
different abnormalities in Saudi patients, one in exon 2
(fig. 1a; HL3–6), the other in exon 9 (fig. 1b; HL8 and
9).

The subtle migration abnormality of exon 2 was due
to a GrA transition at residue 122 that changes the
normal Arg 41 codon (CGA) to a Gln codon (CAA) and
is designated R41Q (fig. 1). In exon 9, we found a de-
letion of a TT dinucleotide in the F305 codon,
F305fs(22). We searched for R41Q in our set of 41 HL-
deficient probands by ASO analysis (fig. 2). As judged
by SSCP, direct sequencing, and ASO analysis, six of
nine Saudi patients were homozygous for R41Q, and
two were F305fs(22) homozygotes. Samples from the
parents of the affected patients were unavailable, so we
cannot formally confirm homozygosity in these patients,
as opposed to compound heterozygosity with a second
mutant allele not detectable by the procedures described
above. We tentatively classify these patients as homo-
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Figure 2 ASO screening. a, R41R, and b, R41Q, in 41 HL-
deficient probands. The positions of the array correspond to the fol-
lowing patients: 1C, HL3; 1D, HL4; 1E, HL5; 1F, HL6; 1G, HL7;
1H, HL8; 2A, HL9; 2E, HL13; 2F, HL14; 3H, HL25; 4A, HL26; 4H,
HL33; 5C, HL36; 5D, HL37; and 6C, HL41. 5E and 6G are normal
controls. 5F–H and 6H are blanks. 4B and 4D are, respectively, from
the previously reported patients HL26 and HL29, who have deletions
encompassing HL exon 2 (Wang et al. 1996).

Figure 3 R41 and D42 codons. Sequence of normal and mutant genomic DNA are shown. The mutated residues are shown in italics. A
compression artifact is present in the D42E sequence and is indicated with an asterisk (*), but the sequence was confirmed by sequencing the
opposite strand and by ASO hybridization (not shown).

zygotes (table 1). One patient, HL7, was normal on
SSCP analysis, and his causal mutation has not yet been
defined. Therefore, at least three mutant alleles cause
HL deficiency in Saudis.

One patient (HL41, Turkish) was a R41Q homozy-
gote; another (HL36, Italian) was a compound of R41Q
and another mutant allele (3 [4.7%] of 64 of non-Saudi
mutant alleles) (fig. 2). By SSCP analysis, F305fs(22)
was not detected in the non-Saudi probands (not
shown). We also examined amplified HL exon 2 frag-
ments from 86 normal controls of diverse ethnic origins.
None hybridized to the R41Q oligonucleotide, and all
hybridized to the normal (R41R) allele (not shown).

Interestingly, on ASO analysis, samples from HL13
and HL26 hybridized with neither the R41Q nor the
normal oligonucleotide (fig. 2). Furthermore, SSCP anal-
ysis of HL exon 2 from four non-Saudi probands (HL13,
-14, -25, and -26) showed abnormal migration, distinct
from that of R41Q (not shown). By direct sequencing,
all patients had mutations in codons 41 or 42: R41X
(HL25, heterozygous), D42E (HL13, homozygous),
D42H (HL14, heterozygous), and D42G (HL26, ho-
mozygous) (fig. 3; table 1). R41 and D42 are conserved
in HL from mouse (Wang et al. 1993), chicken (Mitchell
et al. 1993), Pseudomonas mevalonii (Anderson and
Rodwell 1989), and Rhodospirillum rubrum (Baltscheff-
sky et al. 1997), suggesting possible functional
significance.

We then performed bacterial expression of HL pep-
tides containing missense mutations at codons 41 and
42. Despite the presence of approximately normal
amounts of HL antigen (fig. 4), HL activity was mark-
edly reduced, both in the supernatants of cells expressing
each mutant tested and in the purified mutant HL pep-
tides (table 2). As a control for possible artifactual mu-
tations outside of the restriction cassette containing co-
dons 41 and 42, we replaced the mutant cassette with
one of normal sequence. In each case, normal levels of
HL activity were restored (data not shown).

We conclude that R41Q, D42E, D42G, and D42H
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Figure 4 Expression of normal and mutant HL cDNAs in bac-
teria. a, Coomassie blue–stained gel of bacterial lysates. b, Western
blot. Ten micrograms of protein were loaded in each lane. The position
of HL is indicated in each panel.

are causal in HL deficiency. Even D42E, which in view
of the similarity of the two residues involved is intuitively
expected to be mild, substantially reduces HL activity.
The two premature termination mutations described
here, R41X and F305fs(22), are predicted to generate
HL peptides that lack essential amino acid residues and
are also considered to be causal for HL deficiency.

Of note for diagnosis, our technique of bacterial ex-
pression of mutant HL cDNAs and assay of HL activity
in crude cell lysates proved in all cases to be a conser-
vative estimate of the extent to which HL activity was
reduced. The method cannot be used to test splicing
mutations or mutations in the mitochondrial leader.
Also, a small number of causal mutations may, in theory,
be more stable in bacteria than in mammalian cells and
give a falsely high estimate of the patients’ residual HL
activity. With these provisos, our method should be use-
ful for screening the enzymatic activity of HL missense
mutations in patients with HL deficiency, most of whom
have very low residual HL activity in fibroblasts. Our
method also yields large amounts of mutant HL peptide,
which can be purified for detailed enzymatic studies. We
have reported such studies for the H233R mutation
(Roberts et al. 1996), and similar work is underway for
mutations in codons 41 and 42.

Both known Saudi mutations are predicted to have

negligible enzymatic activity, which correlates with the
reported clinical severity of Saudi HL deficiency. The
D42E homozygote HL13, who has 4.4% residual activ-
ity in the purified recombinant HL peptide, presented
only at 1 year of age but previously had feeding diffi-
culties and at least one episode of hypoglycemic con-
vulsions (Plöchl et al. 1989, 1990, 1992), suggesting that
substantial HL activity is required for normal clinical
function during catabolic stress. It will be of particular
interest to determine the Km value for HMG-CoA of
mutant HL that contains D42E. HL13 also had the un-
usual findings of raised serum amylase values and a fam-
ily history of pancreatic carcinoma. It is too early to
draw conclusions from these observations, but we will
continue to correlate clinical phenotypes to genotypes
as mutation analysis proceeds.

Mutations in codons 41 and 42 account for x19
(29.2%) of 65 of mutant alleles in our group of HL-
deficient probands and 9 (14%) of 64 of the non-Saudi
mutant alleles. Although our sample size is small, it rep-
resents a substantial portion of known HL-deficient pa-
tients, and the finding of five different point mutations
within a 6-nt interval is notable. As shown in figure 3,
R41Q and R41ter are reciprocal mutations resulting
from transitions at a CpG dinucleotide. CpG dinucleo-
tides are known to mutate frequently (Cooper et al.
1995). We currently have no explanation for the ap-
parent clustering of mutations in codon 42.

R41Q occurs in HL-deficient patients of diverse ethnic
backgrounds, suggesting that this mutation may have
arisen independently more than once. We are searching
for polymorphic markers in and around the HL gene
with which to test this hypothesis. The genetic hetero-
geneity among Saudi HL-deficient patients is not un-
expected, in view of the size of the Saudi population (9
million) and the technically advanced detection of or-
ganic acidemias available in Saudi Arabia (Rashed et al.
1995, 1997). As more information becomes available
about the family structure of the R41Q probands, our
findings may prove useful for evaluating population sub-
groups in Saudi Arabia.
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