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In mixtures of cetyltrimethylammonium bromide (CTAB) and so-
dium perfluorooctanoate (FC7) in aqueous solution, novel bilayer
cylinders with hemispherical end caps and open, flat discs coexist
with spherical unilamellar vesicles, apparently at equilibrium. Such
equilibrium among bilayer cylinders, spheres, and discs is only
possible for systems with a spontaneous curvature, Ro, and a
positive Gaussian curvature modulus, �� . We have measured the
size distributions of the spherical vesicles, cylinders, and discs by
using cryo-electron microscopy; a simple analysis of this length
distribution allows us to independently determine that the mean
curvature modulus, � � 5 � 1 kBT and �� � 2 � 1 kBT. This is one of
the few situations in which Ro, �, and �� can be determined from the
same experiment. From a similar analysis of the disk size distribu-
tion, we find that the edges of the discs are likely stabilized by
excess CTAB. The fraction of discs, spherical vesicles, and cylinders
depends on the CTAB�FC7 mole ratio: increasing CTAB favors discs,
while decreasing CTAB favors cylinders. This control over aggre-
gate shape with surfactant concentration may be useful for the
design of templates for polymerization, mesoporous silicates, etc.

cryogenic transmission electron microscopy � surfactants � vesicles

The starting point for the description of bilayer organization
in solution is the harmonic approximation to the bending

free energy (1):

FB � �dA�1
2

�� 1
R1

�
1

R2
�

2
Ro
�2

� ��� 1
R1R2

��. [1]

R1 and R2 are the principle radii of curvature of the structures,
Ro is the spontaneous radius of curvature, � and �� are the mean
and Gaussian curvature elastic constants, respectively, and A is
the area of the bilayer membrane. The harmonic approximation
is appropriate when the membrane thickness (1–3) [here �3 nm
(4)] and the Debye length for ionic surfactants (2, 5, 6) [also
�1–3 nm (4)] are small compared with R1 and R2 (�20–30 nm,
see Fig. 1). The differences of the bending free energy, FB, of
different aggregate geometries can often be of the order of kBT,
leading to the possibility of multiple structures in equilibrium.

The two elastic constants, � and �� , play very different roles in
determining bilayer organization. The magnitude of � reflects
the energy needed to bend the bilayer away from its spontaneous
radius of curvature, Ro. For � � kBT, thermal fluctuations give
rise to significant curvature fluctuations, which lead to a net
repulsive interaction between bilayers at short distances. This
steric repulsion can stabilize unilamellar vesicles over multila-
mellar liposomes (3, 4, 7, 8). Larger values of � (�kBT),
combined with a spontaneous curvature that picks out a partic-
ular vesicle radius, lead to unilamellar vesicles as the curvature
variations inherent to multilamellar structures are energetically
prohibited (3, 4, 9). A spontaneous bilayer curvature (1�Ro � 0)
is only possible when nonideal surfactant mixing causes the
interior and exterior monolayers of the vesicle bilayer to have
different compositions or environments (3, 10, 11).

�� influences only the topology (and hence the number) of the
structures formed (3, 4, 12). The Gauss–Bonnet theorem states
that the integral of the Gaussian curvature over a given structure
only depends on the genus of the structure (3, 13, 14). Hence,
the magnitude of �� has little effect at equilibrium as long as
curvature fluctuations take place at constant topology or con-
stant vesicle number. However, transformations between discs
and closed spheres or between multiple spheres and cylinders are
influenced by �� .

Although Eq. 1 has become the accepted description of bilayer
organization, there are relatively few measurements of � and
almost no measurements of �� for sub-�m surfactant bilayer
vesicles (see refs. 12 and 15 for review). There are no general
methods for determining these elastic constants; moreover,
many of the methods in the literature probe � and �� at length
scales much larger than those relevant to sub-�m vesicles
(15–19). �� is especially difficult to measure as it influences
topological transformations between structures such as the
number and genus of objects [such as the distribution of material
between vesicles (3, 12), the size and distribution of various
defect structures (18, 19), or the transition between lamellar and
L3 phases (13, 14)] and does not influence the more readily
measured fluctuations of the structure (12, 13, 15). A key
requirement to the understanding and possible control of sur-
factant structural organization is developing both experimental
and theoretical tools to relate Ro, �, and �� to surfactant
molecular structure and solution conditions (9, 12, 15, 20). Here
we show that the coexistence of cylindrical and spherical vesicles
with nearly monodisperse radii allow us to extract values of Ro,
�, and �� from the size distributions measured by cryo-
transmission electron microscopy (cryo-TEM).

Samples were prepared by first mixing stock solutions of either
cetyltrimethylammonium bromide (CTAB, Aldrich) or sodium
perfluorooctanoate (FC7, PCR Research Chemicals, Gainesville,
FL) with water to the desired surfactant weight fractions. The stock
solutions were then combined in the appropriate amounts, and we
allowed several weeks for equilibration. The vesicular structures
only form on the FC7-rich side at concentrations between �1 wt %
and 4 wt % total surfactant and for mixing ratios greater than �70
wt % FC7. Although it is possible to prepare metastable vesicles by
shearing lamellar phases (21, 22), there is no indication of either a
bulk lamellar phase at the concentrations of interest here, nor that
shear has influenced the formation or size distribution of the
structures shown. Small angle neutron scattering (minimal to zero
shear) and cryo-TEM imaging (significant shear to prepare thin
film samples) show identical characteristic structure dimensions (4).
Various zero shear sample preparation methods including dialysis,
isothermal counterdiffusion of two micellar dispersions, and in situ
surfactant synthesis have shown that catanionic vesicles including
the mixtures of interest here form independently of the method of
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Fig. 1. Cryo-TEM images of 2 wt % total surfactant CTAB�FC7 mixtures at different CTAB�FC7 ratios. Discs (discs appear as narrow dark lines in the images),
cylinders, and spheres are present in each image. The size distribution of discs, spheres, and cylinders did not change with the CTAB�FC7 ratio, only the relative
numbers of each structure. (Top) At CTAB�FC7 ratios of 25:75, unilamellar spherical vesicles coexist with open discs and there are very few cylinders. The spherical
vesicles were monodisperse with a mean radius of 25 � 2.9 nm, and the discs were also quite monodisperse with a mean radius of 35 � 4 nm. (Middle) At a
CTAB�FC7 ratio of 20:80, the mean size of the spherical vesicles were essentially unchanged with a mean radius of 23 � 2.7 nm, but a significant population of
cylindrical vesicles with hemispherical end caps was observed, along with fewer discs. The cylinders had a mean radius of 24 � 2 nm and a length of 136 � 36
nm. The mean size of the discs was also unchanged with changes in composition; the mean disk radius was 33 � 6 nm. (Bottom) At a CTAB�FC7 ratio of 15:85,
the fraction of cylindrical vesicles increased and the fraction of discs decreased. The overall size distribution of the vesicles and cylinders does not change with
composition over the range studied.
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sample preparation (23). Similar catanionic vesicles recover their
size distribution after sonication or heat treatment, confirming that
the size distribution is an equilibrium feature of the dispersions (23).

To prepare samples for cryo-TEM, a thin (�1 �m) layer of the
surfactant-water mixture was spread on a lacey carbon grid (Ted
Pella, Inc., Redding, CA) in a temperature-controlled chamber
(24) saturated with the solution of interest. The grid was plunged
into a mixture of liquid ethane and liquid propane cooled by
liquid nitrogen (25). The frozen samples are transferred to a
GATAN (Pleasanton, CA) cold stage and imaged directly at 100
kV by using a JEOL 100CXII. Bright-field, phase-contrast TEM
micrographs were recorded by using standard low-dose proce-
dures on either film or with a GATAN charge-coupled device
camera. Hundreds of individual aggregates were measured to
determine the size distributions reported here as mean and
standard deviations. Samples for electron microscopy were made
over the course of several weeks to ensure that neither the
structures nor the size distributions were changing with time.

Fig. 1 shows the variety of structures observed after months of
equilibration in mixtures of CTAB and FC7 at 2 total wt %
surfactant in water at CTAB�FC7 ratios of 25:75 (Fig. 1 Top),
20:80 (Fig. 1 Middle), and 15:85 (Fig. 1 Bottom) (4, 25). Mono-
disperse spherical unilamellar vesicles coexist with cylindrical
vesicles with hemispherical end caps (having a diameter equal to
the spherical vesicle diameter) and open discs at all concentra-
tion ratios. The composition and extent of the ‘‘vesicle’’ phase
was reproducible regardless of the sample history or mixing path,
and the vesicle size distributions were stable for months (4,
26–28). The apparent equilibrium between open discs and closed
bilayer vesicles and cylinders is consistent with recent time-
resolved neutron and x-ray scattering experiments by Gradzielski
and coworkers (29), who showed that after mixing anionic and
cationic surfactant solutions, the micelles break up to form
bilayer discs, and these discs slowly grow and close over the
course of minutes to hours to form closed structures. These
vesicles likely open and close with some frequency as dye or
glucose within the vesicles is not retained (26). The surfactant
monomer concentration is quite high in comparison to more
typical double chain lipids that form bilayers, suggesting that any
osmotic pressure or composition gradients within or between
vesicles can be quickly relaxed (4, 27, 28).

At CTAB�FC7 ratios of 25:75 (Fig. 1 Top), unilamellar
spherical vesicles coexist with open discs and there are very few
cylinders. The spherical vesicles were monodisperse with a mean
radius of 25 � 2.9 nm, and the discs were also quite monodis-
perse with a mean radius of 35 � 4 nm. At a CTAB�FC7 ratio
of 20:80 (Fig. 1 Middle), the mean size of the spherical vesicles
was essentially unchanged with a mean radius of 23 � 2.7 nm, but
a significant population of cylindrical vesicles with hemispherical
end caps were observed, along with fewer discs. The cylinders
had a mean radius of 24 � 2 nm and a length of 134 � 36 nm.
The mean size of the discs also did not change with composition;
the mean disk radius of the CTAB�FC7 ratio of 20:80 was 33 �
6 nm. At a CTAB�FC7 ratio of 15:85, the fraction of cylindrical
vesicles increased, and the fraction of discs decreased (Fig. 1
Bottom). The size distribution of discs, spheres, and cylinders did
not change with the CTAB�FC7 ratio, only the relative numbers
of each structure. The invariance of size distribution of the
spherical vesicles suggests that the spontaneous curvature, Ro,
and the sum of the bending constants, � � ���2, does not change
significantly with the CTAB�FC7 ratio (4, 30).

For cylindrical and spherical vesicles to coexist at equilibrium,
the curvature energy of a single spherical vesicle of total bilayer
area, A, must be approximately equal to a cylindrical vesicle with
hemispherical end caps, also of total area A [this assumes that the
area per molecule is the same in all surfactant structures in
equilibrium (3, 20, 31)]. To simplify the calculations, the cylin-
drical vesicle is idealized as a right circular cylinder of radius Ro

and length L, capped by two hemispheres, also of radius Ro. The
Gaussian curvature term (second term in Eq. 1) is constant
(4��� ) as the integral of this curvature is invariant for closed
objects of the same genus (Gauss–Bonnet theorem) (32). For the
sphere, R1 � R2 � R and the curvature energy is

Fsphere � 4�R2�2��1
R

�
1
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�2

�
��
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R
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�2

� 4��� .

[2]

For the cylinder of radius Ro and length L we have R1 � Ro and
R2 � �. Hence, the curvature energy, Fcyl is:
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The curvature energy of the two structures will be equal when:

L
Ro

� 8�1 �
R
Ro
�2

[4]

subject to the constraint that the sphere and cylinder have the
same bilayer area (or number of surfactant molecules):

4�Ro
2 � 2�RoL � 4�R2

[5]L
Ro

� 2� R
Ro
�2

� 2,

which gives a quadratic equation for the crossover at which
Fcyl � Fsphere:

3� R
Ro
�2

� 8� R
Ro
� � 5 � 0, � R

Ro
� � 1, 5�3. [6]

The root R � Ro is for the sphere of radius Ro, or a cylinder with
L � 0. The second root R � 5 Ro�3 corresponds to a cylinder of
length L � 32 Ro�9, or 3.56 Ro. The total length, l, of the cylindrical
vesicle is 5.56 Ro. Hence, we expect a crossover between spheres
and cylinders whenever a cylindrical vesicle is longer than about
5.6 times its radius.¶ From our images, Ro � 23 nm (4),� and the
cylinder length is 134 � 36 nm. This gives l�Ro � 134�23 � 5.8 �
1.6, (L�Ro � 3.8) which is consistent with the prediction of 5.56 Ro.
This crossover is only a consequence of the geometry of the
aggregates and is independent of the values of � and �� .

What is surprising is that there are so many cylinders. The
crossover from sphere to cylinder does not occur until R�Ro �
5�3. For the CTAB�FC7 vesicles, this corresponds to spherical
vesicles of radius 38 nm; this is about 6 SDs larger than the mean
vesicle size. Hence, there are very few such large vesicles in this
distribution as they are quite unfavorable with respect to the
minimum energy sphere of radius Ro (4). Although cylinders are

¶Helfrich predicted a general sphere to ellipsoidal instability for R�Ro� 6 in ref. 1.

�The radius of the minimum curvature energy vesicle, r0, determined from the mean of the
size distribution of the spherical vesicles, is related to the spontaneous curvature, R0, in

Eq. 1 by R0 � � 2�

2� � ���r0. This can be derived by minimizing the energy density (terms in

square brackets in Eq. 2) with respect to R. For our measured values of r0 � 23 nm, � � 5
kBT, and �� � 2 kBT, this gives a spontaneous curvature, R0 � 19–20 nm. R0 is smaller than
the mean vesicle size because �� is positive. A positive �� means that the Gaussian curvature
energy increases proportionally to the number of vesicles. Hence, the minimum energy
vesicle (or cylinder) has a radius larger than the spontaneous curvature to minimize the
total curvature energy. However, using the mean vesicle or cylinder diameter or the
corrected value of the spontaneous curvature does not have an effect on the values we
calculate for � and �� within experimental error.
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more stable than such large vesicles (for R�Ro 	 5�3), cylinders
should be exceedingly rare if they only form due to an instability
of individual large vesicles. As cylinders are common in the
images, it is more likely that a cylinder can have a curvature
energy equal to a number of spherical vesicles of radius Ro with
the same area (number of molecules) as the cylinder. This leads
to a relationship between the Gaussian and mean curvature
elastic constants of the bilayer as shown below.

The measured size distribution of the cylinders in Fig. 1 is
centered around a bilayer area (number of molecules) approx-
imately the same as three vesicles of radius Ro. The three spheres
have a small bending energy (effectively zero as R3 Ro), but a
net Gaussian curvature energy that is three times the Gaussian
curvature of one cylinder. For cylinders of L � 3.8 Ro:

Fcyl �
��L
Ro

� 4��� �
��
3.8Ro�

Ro
� 4��� 	 12� � 4��� . [7]

In comparing the three spheres with the single cylinder, there is
likely a small contribution from the increased entropy of the
three spheres compared with the single cylinder, but the entropy
difference should be less than 2 kB:**

F3 spheres 	 12��� . [8]

For spheres and cylinders to coexist, the free energies of spheres
and cylinder (per unit area of bilayer) must be roughly equal:

12� 
 8��� [9]

Eq. 9 shows that �� 	 0 because � � 0 (1). Theory suggests that
vesicles are stable if �� is sufficiently negative, but only if the
spontaneous bilayer curvature is zero (12, 13), which is not the
case here. Assuming that the bilayers in both cylinders and
spheres have the same bending constants and spontaneous
curvature at a given surfactant composition, we can use the
parameter values measured from the vesicle size distribution (4)
to provide a second relationship between the bending constants:

6 kBT � K � � � ���2. [10]

Solving Eqs. 9 and 10 simultaneously gives � � 5 � 1 kBT, �� �
2 �1 kBT. This is one of the few situations in which all of the
relevant parameters in the Helfrich free energy can be measured
from a single set of experiments.

In all of the samples, there is also a small population of open
bilayer discs, which is consistent with the SANS results of
Schmölzer et al. (29). The size distribution of the discs does not
change appreciably with concentration; only the relative number
of discs changes with concentration. The discs have a mean
radius centered around Rd 	 �2Ro, which have the same area
(number of molecules) as spherical vesicles of radius of 0.7–0.8
Ro. Spherical vesicles of this size are only 1.5–2 SDs from the
mean, so there are a reasonable number of such vesicles at
equilibrium (3). The disk has zero curvature (R1 � R2 � �),
which leads to a bending energy due to the spontaneous curva-
ture, but zero Gaussian curvature:
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The equivalent area sphere has a curvature energy of

Afsphere � 8���1 �
Rs

Ro
�2

� 4���

� 8���1 �
Ro��2

Ro
�2

� 4���

� 0.7�� � 4��� . [12]

The disk also has an energy associated with the edge, which should
have a very different environment than the bulk of the disk. As the
discs are at higher densities in the solutions with higher CTAB
fractions, it is likely that the CTAB is stabilizing this edge. CTAB
likes high curvature environments such as rod-like micelles (26). If
	 � energy�length of this edge, the disk (Eq. 11) and the equivalent
sphere (Eq. 12) curvature energies are known from the parameters
determined earlier, Eq. 13 determines this edge energy:

2�Rd	 � 4�� � 0.7�� � 4��� . [13]

Using the values � � 5 kBT, �� � 2 kBT determined above, 	 �

0.1 kBT�nm, suggesting a preference of the CTAB for the edge
of the disk. This also suggests why smaller discs are not observed.
The ratio of disk edge to disk area goes like 2�Rd, which would
require a larger fraction of excess CTAB for smaller discs.
Larger discs, of course, are unstable relative to spherical vesicles.

For the variety of aggregates seen in Fig. 1 to coexist at
equilibrium, the variation of curvature energies between the
various aggregates must be of order kBT. Moreover, from these
size and shape distributions, it is possible to determine all of the
important parameters in the Helfrich model of curvature free
energy. It is likely that in many surfactant mixtures, including the
CTAB�FC7 system, spherical vesicles are not the only form of
bilayer organization to occur at equilibrium. Unilamellar, bila-
mellar, and multilamellar vesicles may coexist, depending on the
surfactant or counterion chemistry or concentration (4, 8, 26, 27,
33–36); vesicles may coexist with micelles (33, 34, 37); discs may
coexist with lamellar phases or vesicles (2, 38), or unusual shapes
like icosahedra (9) or cylinders may form. If a degree of control
over the bilayer organization can be gained through a better
understanding of the molecular origins of �, �� , and Ro, it may be
possible to control and optimize bilayer organization into novel
structures useful as templates for polymerization, mesoporous
silicates, or other applications (39).
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