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Fluorescent spectroscopy experiments with single-enzyme mole-
cules yield a large volume of statistical data that can be analyzed
and interpreted using stochastic models of enzyme action. Here,
we present two models, each based on the mechanism that an
enzyme molecule must pass through a sequence of conformational
transformations to complete its catalytic turnover cycle. In the
simplest model, only one path leading to the release of product is
present. In contrast to this, two different catalytic paths are
possible in the second considered model. If a cycle is started from
an active state, immediately after the previous product release, it
follows a different conformational route and is much shorter. Our
numerical investigations show that both models generate non-
Markovian molecular statistics. However, their memory landscapes
and distributions of cycle times are significantly different. The
memory landscape of the double-path model bears strong simi-
larity to the recent experimental data for horseradish peroxidase.

Large biomolecules may act as machines that generate motoric
motions or, in the case of enzymes, catalyze individual

reaction events. To understand the functions of enzymes at a
molecular level, experiments with single molecules are impor-
tant. Such experiments have been performed for lactate dehy-
drogenase (1, 2), alkaline phosphatase (3, 4), �-D-galactosidase
(5), cholesterol oxidase (6), horseradish peroxidase (7), staph-
ylococcal nuclease (8), and RNA polymerase (9). Because
realistic computer simulations of enzymic turnover cycles are not
yet possible, interpretation of experimental data are based on
phenomenological models of single-enzyme kinetics. Theoreti-
cal and experimental investigations reveal that proteins are
characterized by rugged energy landscapes (10, 11). Intramo-
lecular relaxation in proteins involves passing through a large
number of metastable substates and may therefore be slow.

Conformational changes are essential for the catalytic enzyme
function. They are generally used to explain allosteric regulation
and the phenomena of cooperativity in enzymes with several
interacting subunits. Conformational memory has been found
for the enzyme wheat germ hexokinase (12, 13). Experiments on
peptide binding to class II MHC proteins have further suggested
that conformational memory of previous functional states is
present in such macromolecules (14, 15). A strong memory effect
has also been discovered in single molecules of the hairpin
ribozyme (16). In the investigations of cholesterol oxidase by Lu
et al. (6), slow conformational f luctuations in the equilibrium
state of a single enzyme, leading to modulation of its affinity for
a given substrate, were shown to explain correlations between
subsequent catalytic cycles. In this case, conformational dynam-
ics was not directly influenced by enzyme activity and played an
external role with respect to its catalytic function. In contrast to
this, experiments with horseradish peroxidase could be inter-
preted by assuming that the memory of earlier functional states
was present in an enzyme molecule (17).

Processes of conformational relaxation may be intrinsically
involved in a molecular turnover cycle (18–20). In this view, the
binding of a substrate makes an enzyme leave its state of thermal
equilibrium and initiates a sequence of conformational changes,
eventually leading to a conformation where a reaction event

converting substrate into product is facilitated. This is followed
by another sequence of conformational transitions returning the
enzyme to its equilibrium free state. Models of single-enzyme
kinetics, based on this picture, have been used to study effects of
mutual synchronization of turnover cycles for enzymic reactions
in microvolumes (21, 22) and to analyze the experimental data
on external optical synchronization of a photosensitive cyto-
chrome P450-dependent monooxygenase system (23). However,
implications of conformational relaxation for statistics of single-
enzyme events have not been investigated so far.

In this paper, two molecular models with conformational
relaxation are considered. In the first model, a turnover cycle is
assumed to follow a fixed sequence of conformational transitions
described by a continuous conformational coordinate. In the
second, two different conformational paths are possible. Binding
of a substrate in the activated state immediately after release of
a product leads here to a catalytic cycle, the duration of which
is significantly shorter than that of the normal turnover cycle
involving full conformational relaxation. We show that the
memory of previous functional states is characteristic for both
considered models. A detailed analysis, however, reveals that
their memory landscapes (as introduced in ref. 17) show impor-
tant differences. Furthermore, essential differences are also
found in other statistical properties of the models, such as
autocorrelation functions and distributions of cycle times.

Models of Single-Enzyme Kinetics
The Michaelis–Menten (MM) Model. According to the classical MM
model (24), a substrate molecule S binds to the enzyme E at rate
k1 to form the enzyme–substrate complex ES. This complex can
either decay again at rate k�1 to free substrate and enzyme
molecules or complete the enzymic reaction to give free product
P and free enzyme E at rate k2,

S � E L|;
k1

k�1

ES O¡
k2

E � P. [1]

The substrate binding rate is proportional to the substrate
concentration, k1 � �S.

Thus, only two distinct states, corresponding to the free
enzyme and the enzyme–substrate complex, are present in this
theoretical description. In their study of dynamical disorder, Xie
et al. (6) have used the MM model where the substrate binding
rate constant depended on the instantaneous conformational
state of the enzyme molecule and equilibrium conformational
f luctuations produced slow random variations of the rate k1.
Below, the standard MM model with constant rates is chosen as
a reference system.

Single-Path Model. This model additionally takes into account the
processes of conformational relaxation inside the enzymic turn-
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over cycle (see Fig. 1a). The cycle starts when a substrate
molecule is bound. Although a free enzyme molecule is in the
state of thermal equilibrium, the initial state of the enzyme–
substrate complex is far from equilibrium, and therefore relax-
ation to its equilibrium conformation begins. The complex passes
through a series of conformational substates, until a conforma-
tion favorable for the chemical transformation of the substrate
into the product is reached. In our simple model, we assume that
the energy barrier is reduced so strongly in this conformational
substate that the substrate–product transformation takes place
without any waiting time. After that, the relaxation of the
enzyme–substrate complex is continued until a conformation
optimal for the release of a product molecule is achieved. Once
this has occurred, a free enzyme molecule in a conformational
state far from equilibrium is obtained. Thus, it starts its own
conformational-relaxation process leading to the equilibrium
state.

Conformational relaxation in proteins is a complex process,
because it involves motion through a large number of hierarchi-
cally organized metastable substates (10). As a rough simplifi-
cation, it can be modeled (see ref. 25) as diffusive drift along an
effective conformational coordinate. To describe conforma-
tional-relaxation processes inside an enzymic turnover cycle,
three different coordinates, corresponding to the substrate–
enzyme and product–enzyme complexes and to the free enzyme,
are generally needed. We shall combine them into a single
conformational coordinate �, so that the interval 0 � � � �EP
corresponds to the substrate–enzyme complex, the interval
�EP � � � �P corresponds to the product–enzyme complex, and
a free enzyme is found inside the interval �P � � � 1. Thus, the
initial state of the substrate–enzyme complex is � � 0, the
product is released at � � �P, and the free enzyme returns to its
equilibrium state when � � 1 is reached. The conformational
motion inside a turnover cycle is described by a stochastic
Langevin equation

d�

dt
� v � ��t�. [2]

Although the mean speed of relaxation is generally different at
its different stages, we assume for simplicity that it is always

constant and equal to v. The white Gaussian noise � in this
equation takes into account conformational f luctuations accom-
panying the relaxation process. It has intensity � and the
correlation function

���t���t��� � 2�	�t � t��. [3]

For small noise intensities �, the mean time T0 � �tturn� needed
to complete a cycle (the turnover time) and its relative statistical
dispersion 
 � T0

�1 �	tturn
2 �1�2 are approximately given by T0 �

1�v and 
 � 
2��v.
In this model, binding of a substrate is possible only from the

equilibrium state of free enzyme, reached when the cycle is
completed (� � 1). Binding takes place at a rate k1 � �S, where
S is the substrate concentration and � is the binding rate
constant. In our example, we neglect a possibility of substrate
dissociation. Moreover, we assume that product dissociation
takes place instantaneously when the state � � �P is reached.

Double-Path Model. Investigations of peptide binding to proteins
(14, 15) and recent experiments with single-enzyme molecules
(7, 17) indicate that some enzymes may have more complex
internal organization. Immediately after release of a product,
they are found in an active state. Binding of a substrate in this
state is possible and, if it has taken place, a new product molecule
is formed within a short time. But if substrate binding in the
active state has not occurred, the enzyme enters an inactive state.
Starting from the inactive state, a turnover cycle can also be
initiated, but the turnover rate is then much smaller.

In the context of conformational relaxation, this situation can
be modeled by assuming that two different turnover cycles are
possible inside the same enzyme molecule (Fig. 1b). Now the
enzyme can perform either a rapid cycle characterized by a short
mean turnover time Ts, or a slow cycle with a longer mean
turnover time Tl. After having bound a substrate molecule in the
ground state (� � 0), the slow cycle is initiated, the enzyme–
product complex is formed at the point �EP, and the product is
released at the point �P. At this moment, cycle branching takes
place. Within a short time interval after product release, the
enzyme is ‘‘active’’: it can bind a substrate and thus trigger a short
turnover cycle. If this has not occurred, the enzyme must
undergo slow conformational relaxation to its ground state (� �
1), and only then start a new slow turnover cycle by binding
substrate from this ground state.

For simplicity, we shall assume that motions inside both cycles
are described by the same stochastic Langevin equation (Eq. 2),
and thus are characterized by the same drift velocity v and
intensity � of intramolecular noise. The slow cycle takes the
whole interval 0 � � � 1, whereas the rapid cycle starts at
� � 0 and ends at � � �s, where �s � Ts�Tl. Binding of the
substrate from the ground state occurs at rate k1 � �S. The
probability w of binding substrate from the active state, imme-
diately after product release, depends on the substrate concen-
tration and is given by w � 1 � exp(�aS), where a is a coefficient
specifying probability of binding of a single substrate molecule
within the active state. At low substrate concentrations, so that
aS �� 1, the probability w is proportional to the sub-
strate concentration (w � aS). At high substrate concentrations
it approaches unity, so that short activated cycles become
dominant.

Statistical Characterization of Enzymic Cycles
The time series data derived from spectroscopic experiments
with single-enzyme molecules monitors only a certain state of
the enzyme. For example, in the case of cholesterol oxidase one
can only distinguish the fluorescent oxidized state of the tightly
bound coenzyme FAD from the nonfluorescent reduced form
FADH2 (6). The reaction catalyzed by horseradish peroxidase

Fig. 1. Molecular models of enzyme action. (a) Single-path model. Binding
of substrate S initiates a cycle that represents diffusive drift relaxation along
the conformational coordinate �. Release of product P at � � �P is further
followed by relaxation to the equilibrium conformation state of a free en-
zyme. (b) Double-path model. Immediately after release of product, the
enzyme is in the active state, in which it may bind substrate and perform a
rapid catalytic cycle. The enzymes are assumed fluorescent in the parts of their
cycle marked by thick lines.
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oxidizes the nonfluorescent substrate dihydrorhodamine 6G to
the fluorescent product rhodamine 6G so that the fluorescent
enzyme–product complex can be observed (7). To compare the
model predictions with such experimental data, we define for
each model a binary variable Xt, which has the value Xt � 0, if,
at time t, an enzyme is in the ‘‘f luorescent’’ state, and Xt � 1 if
an enzyme is in the ‘‘nonfluorescent’’ state. For the classical MM
model, the fluorescent state is chosen to correspond to the
substrate–enzyme complex. For both models with conforma-
tional relaxation, we assume that an enzyme is in a fluorescent
state (Xt � 0) when a product–enzyme complex has already been
formed but the product has not yet dissociated (�EP � � � �P).

By running a simulation of one of the stochastic models, a
certain time series Xt is obtained. This stochastic data can be
processed in different ways to obtain statistical characterization
of enzymic cycles. Normalized two-time and three-time auto-
correlation functions G2(�) and G3(�1, �2) of such binary stochas-
tic processes can be defined as

G2��� �
�XtXt � ��

�Xt��Xt � ��
, [4]

G3��1, �2� �
�XtXt � �1

Xt � �1 � �2
�

�Xt��Xt � �1
��Xt � �1 � �2

�
. [5]

They can further be used to construct the memory function (17),

f��1, �2� � �Xt��G3��1, �2�

G2��1�
� G2��2�� . [6]

This memory function vanishes if the stochastic process Xt is
Markovian. Indeed, for any Markov process the three-time
conditional probability �3(Xt1

�Xt2
, Xt3

) to find the system in a state
Xt1

at time t1, provided it was in the states Xt2
and Xt3

at two
previous moments t2 and t3 (t2 � t3), does not depend on the
earlier state Xt3

and is therefore reduced to the two-time
conditional probability �2(Xt1

�Xt2
). The memory function (Eq. 6)

can be equivalently written as f(�1, �2) � �3(Xt�1�2
� 1�Xt�1

�
1, Xt � 1) � �2(Xt�1�2

� 1�Xt�1
� 1), and therefore it is

identically zero for a Markov process that has no memory. Note
that because the considered random process is statistically
uniform, its moments �Xt�, �XtXt��, and �XtXt�1

XtXt�1�2
� can-

not explicitly depend on time t. Thus, �Xt� � �Xt�1
� � �Xt�1�2

�
� const.

In addition to autocorrelation functions, statistical distribu-
tions of cycle times can be considered. For a binary process Xt,
such cycle times are defined as intervals separating subsequent
release of product molecules by the same enzyme (that is,
as intervals between subsequent transitions from X � 0 to
X � 1).

The autocorrelation functions (Eqs. 4 and 5) follow the
definitions used in ref. 17. In the literature (see, for example, ref.
6), a different definition is also found, and according to this, the
stochastic process is specified by a binary variable 
t, taking value

t � 1 in the fluorescent state and 
t � 0 in the nonfluorescent
state. Moreover, another normalization of the autocorrelation
functions is used. Because 
t � 1 � Xt, the two definitions are
closely related. However, under the other definition the three-
time autocorrelation function of a Markov process would not
factorize into a product of two two-time correlation functions,
and a memory function, similar to Eq. 6, cannot be easily
introduced.

Results and Discussion
The time series Xt generated by the MM model is Markovian. Its
normalized two-time autocorrelation function is a simple expo-
nential, G2(�) � 1  (k�1  k2) k1

�1 exp[�(k1  k�1  k2)�]. The

three-time autocorrelation function of the MM model factorizes,
G3(�1, �2) � G3(�1)G2(�2), and its memory function vanishes,
f(�1, �2) � 0. The cycle times can be defined for the MM model
as time intervals T between subsequent release of the products.
In the formal limit, when dissociation of a substrate–enzyme
complex is negligibly small, the distribution over such cycle times
is given by q(T) � k1k2(k1 � k2)�1 [exp(�k2T) � exp(�k1T)].
Generally, the distribution q(T) can be determined numerically.
It increases linearly as q(T) � k1k2T for small cycle times T,
reaches a maximum, and then slowly decreases in the limit of
large times.

To numerically investigate the models with conformational
relaxation, the stochastic differential equation (Eq. 2) has been
discretized by dividing time into equal small steps 	t and thus
replaced by a stochastic map

��t � 	t� � ��t� � v	t � ��	t, [7]

where  are independent Gaussian random numbers with �� �
0 and �2� � 2. Because dissociation of substrate, back transfor-
mation of product into substrate, and reverse binding of product
are excluded in the considered models, the points � � 0, � �
�EP, and � � �P cannot be passed in the opposite direction.
Should this have happened in a simulation, we replaced �(t  	t)
yielded by the map (Eq. 7) by the values v	t, �EP  v	t, or
�P  v	t, respectively.

The results for the single-path conformational-relaxation
model are presented first. Fig. 2 a and b shows normalized
autocorrelation functions G2(�) in this model for two different
intensities of intramolecular noise. When the noise is relatively
weak (corresponding to the statistical dispersion of 10% in
turnover times), oscillations with the period equal to the mean
turnover time are observed in the autocorrelation function
(Fig. 2a). Increasing the noise intensity so that the mean
statistical dispersion of turnover times becomes 40% leads to
strong damping, and only the first oscillation is then discernible
(Fig. 2b).

Fig. 2. Normalized autocorrelation functions G2(�) in the single-path (a and
b) and double-path (c and d) models. The parameters of the single-path model
are T0 � 1 s, v � 1 s�1, �EP � 0.2, �P � 0.55, � � 25 mmol�1�s�1, S � 1
mmol�liter�1, and 
 � 0.1 (a) or 
 � 0.4 (b). The parameters of the double-path
model are Tl � 1 s, Ts � 0.25 s, v � 1 s�1, �EP � 0.15, �P � 0.25, � � 25
mmol�1�liter�s�1, a � 0.925 mmol�1�liter, S � 1.5 mmol�liter�1, and 
 � 0.1 (c)
or 
 � 0.4 (d).
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The typical memory functions f(�1, �2) computed for the
single-path model are displayed as memory landscapes in Fig. 3
a–d. When the intensity of intramolecular noise is low (Fig. 3 a
and b), a checkerboard pattern with alternating minima and
maxima is observed. Increasing the noise intensity (Fig. 3 c and
d) leads both to smaller amplitudes of oscillations of the memory
function and to more rapid decay of such oscillations. If substrate
concentration is low (Fig. 3 a and c), the enzyme spends more
time waiting in the ground state until binding of a substrate
molecule triggers a reaction cycle, and therefore the period of
oscillations in the memory function is longer. Furthermore, the
amplitude of oscillations is smaller and they are damped more
strongly at low substrate concentrations, as seen by comparing
Fig. 3 a and c with b and d. Because the binding of substrate is
a stochastic process, it introduces an additional source of fluc-
tuations for the single-enzyme kinetics. The contribution from
such fluctuations is larger when an enzyme molecule waits for a
longer time to bind a substrate.

Fig. 4a shows the distribution q(T) of cycle times computed for
the single-path conformational-relaxation model at a relatively
low intensity of intramolecular noise. For comparison, the
respective distribution for the MM model with the same mean
production rate is also presented (thick curve). The two distri-
butions are qualitatively different. In the conformational relax-
ation model, the distribution is roughly Gaussian, and the
probabilities for having short cycles are exponentially low. In
contrast to this, the distribution q(T) for the MM model is
strongly asymmetric and linear for small cycle times T. This
reflects the different nature of cycle times in both systems. In the
MM model, the enzyme is only waiting for a transition in one of
the two possible discrete states. The process is Markovian, and
the probability that a transition will occur within the next short
time interval does not depend on how long the enzyme has
already stayed in the respective discrete state. Hence, both
transitions can relatively easily occur within a short time interval.
In the relaxation model, the cycle involves diffusive drift motion
along a fixed conformational path. Only when such motion is
completed may the next cycle start. Therefore, short cycle times
will be found only if, as a statistical f luctuation, the velocity of
motion along the cycle turns out to be very high, much higher

than the average drift velocity. Such fluctuations are very rare,
and this explains the existence of an effective gap at short cycle
times in the distribution q(T). Fig. 4b displays the distribution
q(T) for the single-path model with strong intramolecular noise.
Although the distribution is broad, very short cycles are still only
rarely found, as compared with the MM kinetics.

The same numerical investigations have been repeated for the
double-path conformational-relaxation model. The autocorre-
lation functions G2(�) exhibit a more complex structure in this

Fig. 3. Memory landscapes of single enzymes. (a–d) Single-path model. Statistical dispersions of turnover times are 
 � 0.1 (a and b) and 
 � 0.4 (c and d);
substrate concentrations are S � 0.0625 mmol�liter�1 (a and c) and S � 1 mmol�liter�1 (b and d). Other parameters are the same as in Fig. 2 a and b. (e–h)
Double-path model. Statistical dispersions of turnover times are 
 � 0.1 (a and b) and 
 � 0.4 (c and d); substrate concentrations are S � 0.5 mmol�liter�1 (a and
c) and S � 1.5 mmol�liter�1 (b and d). Other parameters are the same as in Fig. 2 c and d. Memory functions f(�1, �2) are plotted using color codes indicated by
vertical bars on the right side of the panels.

Fig. 4. Distributions of cycle times q(T) in the single-path (a and b) and
double-path (c and d) models. The parameters of the single-path model are 
 �
0.1 (a) and 
 � 0.4 (b), and substrate concentration is S � 1 mmol�liter�1. The
parameters of the double-path model are 
 � 0.1 (c) and 
 � 0.4 (d); substrate
concentration is S � 1.5 mmol�liter�1. Other parameters are the same as in Fig. 2,
except for �P � 0.55 and �EP � 0.2. The thick solid line in a shows distribution q(T)
for the MM model with parameters k1 � 10 s�1, k�1 � 9 s�1, and k2 � 2.483 s�1.
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case (Fig. 2 c and d). It can be understood as a superposition of
damped oscillations with the period Tl and Ts corresponding to
the long and the short paths. For the same intensity of intramo-
lecular noise, oscillations are damped more strongly in the
double-path model. This is because stochastic switching between
the path introduces an additional effective noise, reducing the
coherence of intramolecular dynamics. Moreover, it can also be
noted that the maximum at � � 0 is much stronger for the
double-path model. When intramolecular noise is strong, oscil-
lations are no longer visible (Fig. 2d). The autocorrelation
function has then a narrow peak at � � 0 and a shoulder
extending to � � 1.

The memory functions for the double-path model are dis-
played in Fig. 3 e–h. In contrast to the previously discussed
model, the checkerboard structure is absent here, and a pattern
of stripes extending perpendicular to the diagonal direction is
observed instead. Generally, the amplitude of variations in the
memory function is smaller in this model and the oscillations are
damped more strongly. For low substrate concentration (Fig. 3
e and g), the characteristic time scale of the pattern is determined
by the duration of long inactive cycles that are then prevailing.
Elevating the substrate concentration (Fig. 3 f and h) leads to a
pattern mainly determined by the short active cycles. When the
intramolecular noise is increased (Fig. 3 g and h), the amplitude
of the diagonal stripe pattern decreases and the memory land-
scape becomes nearly flat.

Thus, the intensity of intramolecular noise is important in
determining the properties of autocorrelation and memory
functions. When noise is weak, an enzyme goes like a mechanical
clock through an ordered sequence of conformational states, and
this is reflected in the presence of oscillations with the clock cycle
period in the auto-relation functions. Strong noise destroys the
ordered cyclic motion and washes out the oscillations.

The statistical distributions of cycle times for the double-path
model (Fig. 4 c and d) show a bimodal structure, with the maxima
corresponding to the characteristic durations of the long and the
short cycles. When the intramolecular noise is low, two separate
peaks are visible (Fig. 4c). At strong noises (Fig. 4d), the peaks
become broad and overlap.

Our results indicate that both investigated models exhibit mem-
ory of previous activity states. Enzymes must pass through a
sequence of conformations, and only when this process is com-
pleted can the next reaction event occur. Thus, an interval between
two reaction events cannot be arbitrarily small. Such memory
should be absent for the enzymes obeying standard MM kinetics.
On the other hand, the shapes of the memory landscapes are
qualitatively different for the two models. The pattern of diagonal
stripes obtained for the double-path model is more closely repro-
ducing the structure of memory landscapes based on the experi-
mental data for horseradish peroxidase (17). This theoretical study,
based on two simple models of enzyme action, reveals that effects
of conformational relaxation may be essential for the analysis of
single-enzyme experiments and for understanding the operation of
such molecular machines. Further systematic statistical investiga-
tions of such a family of models are needed.

Appendix
In this Appendix, concentration dependences of macroscopic
reaction rates for both conformational-relaxation models are
analytically determined. For the MM model, the dependence
of the inverse of the mean product generation rate V (per
single-enzyme molecule) plotted versus the inverse of the
substrate concentration S is linear and given by 1�V � (k2)�1 
(k�1  k2)(k2�)�1(1�S). This representation is known as the
Lineweaver–Burk plot of an enzymic reaction.

The mean product generation rate for the single-path model
with low intramolecular noise can be found analytically. We
define the probability p0 to find an enzyme in its ground free

state and the probability density p(�), so that the probability to
find an enzyme inside the cycle in the interval from � to �  d�
is p(�)d�. The normalization condition implies that p0 
�0

1 �(�)d� � 1. The cycles are initiated when, at rate �S, a free
enzyme binds a substrate. Hence, we have v�(� � 0) � �Sp0.
Because the reverse reaction is absent, the rate V of product
generation is, under steady state conditions, equal to the rate of
substrate binding, i.e., V � �Sp0. In the steady state, all cycle
phases are equally probable, and the distribution �(�) is f lat, i.e.,
�(�) � const. Therefore, p0  � � 1 and v� � �Sp0. This yields
the dependence

1�V � T0 � ��1�1�S�, [8]

where T0 � 1�v is the cycle duration.
To extend this analysis to the double-path model, we note that,

under steady state conditions, we should distinguish then be-
tween the probability p0 of finding an enzyme in its free ground
state, and the probability densities �l and �s to find it inside a long
and a short cycle, respectively. The normalization condition
yields p0  �l  �s�s � 1. The product generation rate is given
by V � v(�l  �s). Additionally, we have two conditions v�l �
�Sp0 and �s � w(S)(�l  �s), where the last one takes into account
that a short cycle can be initiated with probability w(S) each time
a product molecule has been released. Solving this set of
equations, we obtain

1�V � �1 � w�S��Tl � w�S�Ts � �1 � w�S����1�1/S�,

[9]

where w(S) � 1 � exp(�aS).
In the derivation of Eqs. 9 and 8, f luctuations of times T0, Tl,

and Ts due to intramolecular noise have been neglected. The
Lineweaver–Burk plots for both models with a relatively strong
noise have been numerically determined from the simulation
data and are shown in Fig. 5, together with the respective
analytical predictions in the low-noise limit. We see that the
single-path system has a linear Lineweaver–Burk plot, and
therefore, based only on the macroscopic reaction properties, it
cannot be distinguished from the MM model. For the double-
path system, long inactivated cycles are dominant at low sub-
strate concentrations (1�S �� a), as follows from Eq. 9. In this
limit, w(S) � 0 and the linear Lineweaver–Burk dependence with
T � Tl holds approximately. As the substrate concentration is
increased, the contribution from activated cycles with T � Ts

Fig. 5. Lineweaver–Burk plots for the single-path (circles) and the double-
path (triangles) models. The parameters of the single-path model are � � 25
mmol�1�liter�s�1, T0 � 1 s, and 
 � 0.4; the parameters of the double-path
model are � � 25 mmol�1�liter�s�1, a � 1 mmol�1�liter, Tl � 1 s, Ts � 0.55 s, and

 � 0.4. Thick and thin solid lines show the respective analytical predictions in
the weak noise limit, given by Eqs. 8 and 9.

15414 � www.pnas.org�cgi�doi�10.1073�pnas.232376799 Lerch et al.



grows and the reaction is enhanced. When the substrate is
abundant (1�S �� a), we have w(S) � 1 and the reaction rate is
controlled by the rapid turnover cycle, so that 1�V � Ts. A similar
result is obtained from numerical simulations of the double-path
model at strong noise (see Fig. 5b). Thus, enzymes described by
a double-path conformational-relaxation model have nonlinear
Lineweaver–Burk plots, similar as found for enzymes with

several cooperating subunits (26, 27). Some deviations from
linear Lineweaver–Burk plots in enzyme kinetics involving con-
formational relaxation have previously been considered (28).
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