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Universal arrays contain all possible oligonucleotides of a certain
length, typically 6-10 bases. They can determine in a single
experiment all substrings of that length that occur along a target
sequence. That information, also called the spectrum of the se-
quence, is not sufficient to uniquely reconstruct a sequence longer
than a few hundred bases. We have devised a polynomial algo-
rithm that reconstructs the sequence, given the spectrum and an
additional reference sequence, homologous to the target se-
quence. Such a reference is available, for example, in the identi-
fication of single-nucleotide polymorphisms. The algorithm can
handle errors in the spectrum as well as substitutions, insertions,
and deletions in the target sequence. We present extensive sim-
ulation results, which show that the algorithm correctly recon-
structs target sequences of >2,000 nucleotides from error-prone
8-mer spectra when realistic levels of single-nucleotide polymor-
phisms are present.

sequencing by hybridization | mutation detection | SNP genotyping |
hidden Markov models | DNA microarrays

Sequencing by Hybridization

equencing by hybridization (SBH) was invented in the late

1980s as an alternative to gel-based sequencing (1-3). This
method makes use of a universal DNA microarray, which
harbors all oligonucleotides of length & (called k-words, or simply
words when £ is clear). These oligonucleotides are hybridized to
an unknown DNA fragment, whose sequence we would like to
determine. Under ideal conditions, this target molecule would
hybridize to all words whose Watson—Crick complements occur
somewhere along its sequence. Thus, in principle, one could
determine in a single microarray reaction the set of all k-long
substrings of the target and try to infer the sequence from those
data. The technique was validated in arrays of 7 and 8 mers (4,
5), and up to 10 mers are possible with current array technology.

The fundamental computational problem in SBH is the re-
construction of a sequence from its spectrum, the set of all words
occurring along the sequence. Pevzner (6) reduced that problem
(assuming the number of occurrences of each word is known) to
the polynomial task of finding an Eulerian path in a graph.

The main weakness of SBH is ambiguous solutions: When
several sequences have the same spectrum, there is no way to
determine the true sequence. Theoretical analysis and simula-
tions (4, 7) have shown that even when the spectrum is errorless
and contains the multiplicity of each word, the average length of
auniquely reconstructible sequence using an 8-mer array is <200
bases, far below a single read length on a commercial gel-lane
machine.

Although an effective and competitive sequencing solution
using SBH has yet to be demonstrated, this strategy continues to
attract attention. In principle, SBH holds promise to consider-
ably economize on the task of sequencing, one of the major
efforts in modern biotechnology. Alternative array designs (8-
10) as well as interactive protocols (11) were suggested.

Similar Sequences Are Ubiquitous

Similarity among DNA sequences is a fundamental phenomenon
in biology, caused by evolution: different contemporary se-

15492-15496 | PNAS | November 26,2002 | vol.99 | no.24

quences have evolved by mutations from a single ancestral
molecule. Such related (homologous) sequences exhibit similar-
ity to their common ancestor, and thus to each other. Homology
is routinely encountered in genome analysis: individuals of the
same species have almost identical genomes, repeat elements are
highly similar, and paralogous members of a gene family, as well
as orthologous genes in related species, exhibit varying degrees
of similarity.

Because sequence data accumulate in an accelerated rate, an
increasing number of sequencing targets have a homolog whose
sequence is already known. This availability of homologues
motivates the development of new sequencing strategies that
utilize homology information. Genotyping single-nucleotide
polymorphisms at previously identified locations has been suc-
cessfully accomplished by hybridization to custom-made mi-
croarrays (12-14). A recent review on genetic testing noted the
desirability and lack of an effective and generic microarray
solution for resequencing (15). To the best of our knowledge, this
study is the first proposal to use standard universal arrays and
homology information for resequencing.

Our Contribution

We describe here a method for resequencing, by combining
information on a reference sequence with experimental spec-
trum data obtainable from a universal array. We call the
technique spectrum alignment, because the algorithm attempts
to find the best “alignment” of the reference sequence with the
spectrum. The algorithm is polynomial, and it handles substitu-
tions, insertions, and deletions between the reference and the
target sequences. No prior knowledge of the sought mutations is
needed, although such information can be exploited, if available.
The method accommodates noise in the spectrum, which is
common in hybridization results. It does not require knowledge
of the multiplicities of the words in the spectrum. Our method
can also handle profiles and hidden Markov models as homology
information (see ref. 16), instead of a particular reference
sequence. Simulations show that this method allows an order of
magnitude increase of reconstructed target length compared to
regular SBH.*

Preliminaries

Scoring by Hybridization Data. Let > = {4, C, G, T} be our
alphabet. We denote sequences by a string of symbols from X
between angle brackets (¢)). A k-spectrum of a sequence T =
(t1t2 - -~ tr) is the set of all k-long substrings (words) of T. For
each word ¥ = (x1x2 ** *xx) € 3¥, we define T(¥) to be 1if X is
a substring of T, and 0 otherwise. We denote K = 4%,

A hybridization experiment measures, for each word ¥ € 3k,
the intensity of its hybridization signal. Due to the stochastic
nature of hybridizations, most signal levels cannot be binarized
satisfactorily. We therefore use a probabilistic representation.

This paper was submitted directly (Track ) to the PNAS office.
Abbreviations: SBH, sequencing by hybridization; FN, false negative; FP, false positive.
*To whom correspondence should be addressed. E-mail: izik@tau.ac.il.

*A preliminary version of the method is presented in ref. 17.
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The relevant information in a hybridization signal can be trans-
formed to probabilities Py(X) and P;(¥), where the probability of
this observed intensity is Py (X), assuming X is a substring of T, and
Py(¥) otherwise. Such probabilities can in fact be experimentally
obtained (18). We therefore define a probabilistic spectrum W to
be a pair (P, P1) of functions P; : 3% +— [0, 1]. If the experiment
were perfect, i.e., if the probabilities were all zero or one [with
Py(X) + P1(X) = 1], then the hybridization data would directly
imply a unique k-spectrum. In practice, though, both Py(¥), P1(X)
are positive, and any deterministic binarization of the hybrid-
ization signal will contain errors. Our algorithms will therefore
use the probabilistic data.

The de Bruijn graph of order k is a directed graph G(V, E)
whose vertices are labeled by all the (k — 1) mers V' = 3%~1, and
its arcs are labeled by k mers, E = 3. The arc labeled
(x1xs *++xx) leads from the vertex (xux>**-xx—1) to the vertex
(x2+*+xz). There is a 1:1 correspondence between candidate
L-long target sequences and (L — k + 1)-long paths in G, whose
arc labels comprise the target spectrum. In case the spectrum
dataset is perfect and the multiplicities are known, omitting all
zero probability arcs from G one gets Pevzner’s formulation, i.e.,
every solution sequence is an Eulerian path (6). To handle noisy
spectra, we devise a scoring scheme for paths and search for the
highest-scoring path in G. Hereafter, we interchangeably refer to
arcs and their labels and also to sequences and their correspond-
ing paths. Observe that because words may reoccur, paths are
not necessarily simple.

We assume that hybridization results of different oligonucle-
otides are mutually independent. Define w(X) = log(P1(¥)/
Po(¥)) and consider the experimental likelihood L¢(T) =
Prob(¥|T) of a candidate target sequence T. We can thus write:

log L(T) = . log Po®) + >, w(®).

XESk T®)=1

The first term is a constant, independent of T, and is omitted
hereafter.

Let p = ey, .
Then

.., er— be the path in G corresponding to T.

. L—k
log L) = >, w(ey) [1]

i=0

is an approximate likelihood score. Although it deviates from the
true likelihood whenever an arc is revisited along p, it approx-
imates the true score and is easier to compute.

Scoring by Homology Information. We now show how to use
homology information to obtain a prior distribution on the space
of candidate target sequences. Assume the unknown target
sequence T = (t; -+ - t;) has a known homologous reference H =
(hy -+ hy) that differs from it by some substitutions without
indels. Due to the prevalence of single-nucleotide polymor-
phisms in intraspecies variation (19), this situation is common
when the target T is taken from an individual while # is the
wild-type genomic sequence. We assume a set of 4 X 4 position-

specific substitution matrices M™, ..., M® are known, where
for position j along the sequence:
MI[i,i'] = Prob(t; =i | hj=i"). [2]

The setting just presented implies a distribution on the space
of possible target sequences. This prior distribution for un-
gapped homology, D", can be written for each candidate target
sequence T as:
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1
D“(T) = Prob(T|H) = [ | M9[1;, hy]. [31

j=1
We denote LO[x, y] = log MD[x, y].

Spectrum Alignment

In this section, we show how to combine our two sources of
information on the target sequence, i.e., the result ¥ of the
hybridization experiment, and the reference sequence H. We
formulate a Bayesian score, which is a composition of the scores
discussed above, and present a fast dynamic programming
algorithm to compute this score.

Ungapped Score. The probability of a candidate solution sequence
T, given the information we have, is:

Prob(H)-Prob(T|H)-Prob(V|H, T)

Prob(T|H, W) = Prob(H, V)

[4]
Given T, the hybridization signal is independent of %:

Prob(V|H, T) = Prob(\lf|‘§“).

Thus, omitting the constant Prob(‘H)/Prob(H, V), we can write:
Prob(T|H, W) = D*(T)-L(D). [5]

We shall use the approximated likelihood, l?(‘b, and after
taking logarithms, we obtain the following ungapped score of a
candidate target:

Score”(‘b = log I?(‘T) + logD"(‘i’). [6]

Dynamic Programming Algorithm. We can compute the highest-
scoring target sequence by dynamic programming. For each
vertex y = (y1***yk—1) € 2! and integerj = k — 1, k, k +
1,..., 1, we compute S“[y, j], the maximum score of a j-long
sequence ending with y = (y;---yr—1) aligned to (- --hy),
according to the following recursion:

S, j1=LYyx -1, K]+ max {S'[Z,j — 1]+ w(e)}

e=(,y)EE
[7]

As in the Smith-Waterman algorithm (20), a sequence T*
attaining the optimal score can be reconstructed by standard means
from the matrix $“. The time complexity is O(/K). Note that
although the complexity is exponential in k (K = 4%), it is linear in
[ for a given array and not too large for practical values of k.

A crucial issue for the practicality of this algorithm is memory
requirement. A naive implementation uses O(/K) space, which
is prohibitive for typical data parameters. By following the
paradigm of Hirschberg (21), we provide an algorithm imple-
menting Eq. 7 in O(K) space, at the price of increasing the time
complexity by an O(log /) factor. Exact details appear in ref. 17.

Handling Gaps. Suppose substitutions, as well as indels, with
respect to the reference sequence may occur along the target.
This kind of homology with gaps can be probabilistically mod-
eled by HMM:s as demonstrated by their use for profiling protein
families (22). We use a similar formulation to describe homology
between nucleotide sequences. The reference, along with the
statistical assumptions, actually creates a profile.

Consider an HMM profile with a state-set O, comprised of a
chain of [, states that describe matches/mismatches to positions
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Fig. 1. Performance for different false positive (FP)/false negative (FN) rates
and for targets of different lengths.

in the reference sequence, and additional states describing
indels. Let L be some bound on the length of the target sequence.
Define a three-dimensional array S, where for eachg € Q,y =
Y1 ye-1)€EV,r=k,...,L,S[q,¥,r]is the maximum score
of an r-long sequence ending with (y; - * - yx—1), whose alignment
to the profile ends in g. S can be computed by dynamic
programming. For efficiency, one can compute only S entries
whose ¢, r coordinates are along the R-wide diagonal strip.

The time complexity is O(R(lp + L)K-log L), and the space
complexity is O(R(lp + L)'K) (17).

Exact Scoring Algorithm. The algorithms presented above optimize
the approximated score. This approximation is quite good when
only few words reoccur along the target sequence. However,
when this is not the case, that score considerably deviates from
the true likelihood. For small values of k, the best solution
according to the approximated score often places high-scoring
words in wrong positions in addition to their correct positions.
The score sums the contributions of all words along the se-
quence, and repeated words contribute repeatedly. This is why
words with high contribution tend to reappear. The correct
likelihood score adds the weight of each different word along the
sequence only once. The misplaced duplicated words usually
appear concatenated to each other to form a duplicated region,
compensating the overall score of this region for poor contri-
bution by the homology component of its score. Consequently,
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Fig.2. Impact of mutation rate on performance for different target lengths.

15494 | www.pnas.org/cgi/doi/10.1073/pnas.232278299

100% = I | o
L T p—-"'__---
e N //’ / 9 —
M o
€ 60% 6 o
\ =
40% - f / a ﬁ
20% - e 2
¢ T m
0% — B — L0
5 6 7 8 9 10

-~ PRR, 1000 bp target =~ PRR, 2500 bp target| Probe length
—— ASE, 1000 bp target = ASE, 2500 bp target

Fig. 3.
lengths.

Impact of probe length on performance for different target

in such erroneously duplicated regions, the algorithm admits
many differences between the reference sequence and the
suggested solution.

To overcome this problem, we first identify regions in the
putative solution that contain either substitutions or repeated
words. For each such region, we apply the dynamic programming
algorithm using the respective fragment of the reference se-
quence and a modified probabilistic spectrum. In that spectrum,
the arc weight w(¥) is redefined as 0 for every ¥ that occurs
outside the reference fragment. Iterated application of this
procedure usually eliminates artifact repeats and gives a score
that is very close to the correct likelihood.

Computational Results

Simulation Setup. The algorithm was extensively tested in simu-
lations. Each simulation scenario specified the sequence length,
mutation probabilities, probe length, and hybridization error
rates. As a reference, we used prefixes of real coding sequences,
arbitrarily taken from GenBank’s collection of human tran-
scripts. Sequences with long repeats were discarded. For testing
the reconstruction of long targets, we pooled (concatenated)
several transcripts. For each simulation scenario, we collected
statistics from 100 sequences.

Each simulation run was performed as follows:

(i) Introduce mutations in the reference sequence R and
obtain the target sequence 7.
(ii) Form the probabilistic spectrum of T.
(iii) Reconstruct the target from the reference R and the
spectrum using the dynamic programming algorithm.
(iv) Compare the reconstructed sequence to 7.
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Fig. 4. The combined impact of target and probe lengths on performance.
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Fig. 5. Impact of probe length on the maximum length of a target recon-

structible at high fidelity.

For simplicity, substitutions by different nucleotides were
equiprobable, and mutation rates remained fixed along the
sequence. In some of the simulation scenarios, we restricted
mutations to substitutions only. We simulated hybridization
signals using two parameters for the hybridization error: the
rates for FNs and FPs. If X occurred in 7, then the signal was
positive with probability 1 — FN and negative with probability
FN. If X did not occur in 7, then the signal was positive with
probability FP and negative with probability 1 — FP. For positive
signals, (Py(X), P1(¥)) were set to (FP, 1 — FN) and for negative
signals, to (1 — FP, FN).

All probabilistic parameters were position/word independent.

We quantified performance by two figures of merit:

(i) Perfect reconstruction rate. The fraction of runs for which
T was perfectly reconstructed.

(ii) Average sequencing error. The fraction of base-calling
errors in the reconstruction.

Our basic simulation scenario assumed hybridization to an 8-mer
array, with FP = FN = 0.05. Mutations were substitutions only,
with the single-nucleotide polymorphism (SNP) rate being 1:200
bp. This rate is in fact higher than the SNP rate observed in
human DNA (19). To examine the effects of different param-
eters, we performed several series of simulations. In each such
series, we changed one or more parameter values while keeping
the rest at their basic scenario values.

The algorithm was implemented in C++. Running times on a
Pentium 3 600-MHz machine with a Linux operating system,
ranged from roughly 7 min for a 500-bp-long sequence to 2.5 h
for 6 kb. Only the main memory was used, with the application
consuming at most 40 Mb.

Results. With 8-mer arrays, assuming realistic levels of hybrid-
ization error, one can resequence 2-2.5 kb with perfect recon-
struction rate of ~90% and base-call error rate below 1:10,000
(Fig. 1). These results are quite robust to changes in hybridiza-
tion error rate. High FN rate has a stronger effect than high FP
rate. Because most of the FP signals correspond to arcs of the de
Bruijn graph that are far from high-scoring paths, they do not
damage performance as much as FNs do.

Higher mutation rates still comfortably allow sequencing 1
kb, although performance for 2.5 kb severely deteriorates (Fig.
2). This length enables, for example, sequencing a chimpanzee
gene using the known human homolog as a reference. The
nonmonotonicity of the plots is not a statistical error but rather
an artifact of our simplified simulation setup (23). It is not
expected to occur on real data where FP and FN are position
dependent.

When comparing arrays with probes of increasing lengths
(Figs. 3-5), the expected improvement in performance is evi-
dent. Incrementing the probe length by one (i.e., quadrupling
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Fig. 6. Impact of indels: The plots show the effect of target length on
performance for different FP/FN rates in the presence of mismatches and
indels. Deletion and insertion probabilities were set to 1:600 and 1:2,000,
respectively.

the array size) increases the length of reconstructible target 2- to
3-fold.

Fig. 6 demonstrates performance in the presence of insertions
and deletions as well as substitutions. Even in this case, we are
able to achieve good performance with an 8-mer array for targets
of 2 kb, which is three to four times the read length in current
sequencing machines.

Discussion

We have developed a computational method that combines
hybridization data from a universal array and homology infor-
mation to reconstruct a target sequence. The method is general
enough to allow for insertions and deletions, hybridization
errors, and a profile or a hidden Markov model instead of a
single reference sequence. Because the spectrum data needed
originate from standard arrays that can easily be mass produced,
the cost of generating the hybridization data can potentially be
reduced to a small fraction in comparison to current special-
purpose arrays.

Performance of our method on simulated data is encouraging.
In realistic noise levels, 8-mer arrays enable reconstruction of 2-
to 2.5-kb targets, longer than most human genes. [In fact, the
target can also be a collection of DNA segments of that total
length (17)]. A notable simplification of our model is the
independence assumption regarding probe hybridizations. This
assumption can be relaxed at the expense of increased compu-
tational complexity.

Our approach is not limited to array oligonucleotide hybrid-
ization data: It can be applied by using any other technology that
gives the word contents of the sequence, e.g., beads, primer
extension, etc. Further research is needed to validate this
approach on real data from any such technology.

Our method may have important implications for high-
throughput genotyping: universal arrays can be manufactured
rapidly and economically on a large scale, and this method
enables their use for resequencing genomic information. This
ability to determine the sequence of any gene of choice, or a
selection of exons from different genes involved in a particular
disease or pathway, has wide applications. Potential uses include
resequencing somatic variants for cancer-predictive medicine,
accurate allele typing of the human leukocyte antigen, and
identification of pathogens and pathogen strains. Methods sim-
ilar to ours can also be used for correction of sequencing errors
during genome assembly. We believe this work may have great
impact on these applications.
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