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Summary

Genetic factors influence the development of type II di-
abetes mellitus, but genetic loci for the most common
forms of diabetes have not been identified. A genomic
scan was conducted to identify loci linked to diabetes
and body-mass index (BMI) in Pima Indians, a Native
American population with a high prevalence of type II
diabetes. Among 264 nuclear families containing 966
siblings, 516 autosomal markers with a median distance
between adjacent markers of 6.4 cM were genotyped.
Variance-components methods were used to test for link-
age with an age-adjusted diabetes score and with BMI.
In multipoint analyses, the strongest evidence for linkage
with age-adjusted diabetes (LOD 5 1.7) was on chro-
mosome 11q, in the region that was also linked most
strongly with BMI (LOD 5 3.6). Bivariate linkage anal-
yses strongly rejected both the null hypothesis of no
linkage with either trait and the null hypothesis of no
contribution of the locus to the covariation among the
two traits. Sib-pair analyses suggest additional potential
diabetes-susceptibility loci on chromosomes 1q and 7q.

Introduction

It is well recognized that type II diabetes mellitus has a
substantial genetic component (Barnett et al. 1981;
Knowler et al. 1981; Hanson et al. 1995a). Genes that
predispose to some types of diabetes have been identi-
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fied; these include several loci for type I diabetes (Davies
et al. 1994) and for maturity-onset diabetes of the young
(Froguel et al. 1992; Yamagata et al. 1996a, 1996b;
Stoffers et al. 1997). However, the genes that cause the
most common forms of diabetes remain unknown, and
it is, therefore, likely that additional important diabetes-
susceptibility loci remain to be identified. Moreover, the
specific risk factors through which such genes influence
the development of type II diabetes are also unknown.
Obesity, as quantified by body-mass index (BMI) (kg/
m2), is a strong risk factor for type II diabetes (Knowler
et al. 1981) and is also likely to have genetic determi-
nants (Price et al. 1994). The present study represents a
genomewide search for loci linked to diabetes and BMI
in Pima Indians, a Native American population with a
high prevalence of type II diabetes and obesity (Bennett
et al. 1971; Knowler et al. 1978, 1991).

Subjects and Methods

Subjects and Phenotypes

Since 1965, a longitudinal study of diabetes has been
conducted among the residents of the Gila River Indian
Community in central Arizona, most of whom are Pima
or Tohono O’odham Indians (Bennett et al. 1971; Know-
ler et al. 1978). All individuals who are x5 years old
are invited to participate in a standardized health ex-
amination every 2 years. Genealogical information has
been collected for all participants, and this allows con-
struction of pedigrees for family and genetic studies. A
75-g orally administered glucose-tolerance test is inter-
preted according to World Health Organization criteria
for the diagnosis of diabetes: a plasma glucose concen-
tration x11.1 mmol/liter, observed either in the 2-h
postload venous plasma (World Health Organization
1985) or in the course of routine medical care (Knowler
et al. 1978). Height and weight are measured, with the
subject wearing light clothing and no shoes, for calcu-
lation of BMI (kg/m2). In the present analysis, the max-
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imum BMI observed in the longitudinal study was used
as a measure of susceptibility to obesity; because the
validity of BMI as a measure of obesity in young children
is not well established, determination of the maximum
was restricted to examinations at age 115 years.

A sample of 1,338 individuals who had participated
in the longitudinal study was selected for genomic scans
for loci linked to type II diabetes and obesity; criteria
for inclusion were available DNA and membership in a
nuclear family informative for diabetes or its metabolic
correlates. The individuals constituted 332 nuclear fam-
ilies in 112 extended pedigrees. The present analyses
involved the 264 nuclear families selected to be poten-
tially informative for linkage studies of diabetes (i.e., x1
sibling pair with x1 affected sibling). There were 966
offspring in these nuclear families, 667 (69%) of whom
had diabetes; among these families, there were 1,766 sib
pairs informative for analyses of diabetes and 1,664 sib
pairs informative for BMI. (There were more individuals
in analyses of diabetes than in analyses of BMI, because
a few persons of age !15 years were included.) The mean
maximum BMI among offspring was 37.2 (SD 8.0) kg/
m2. The mean age at onset of diabetes among affected
offspring was 34.0 (SD 10.6) years, and the mean age
at last examination of nondiabetic offspring was 35.5
(SD 11.1) years. A subset of 225 of the individuals in
the present analysis have been studied with respect to
physiological components of obesity and diabetes, such
as energy expenditure, adiposity, and insulin resistance
and secretion; linkage analyses of these phenotypes have
been reported elsewhere (Norman et al. 1997, 1998;
Pratley et al. 1998).

Genotypes

Five hundred three autosomal microsatellite markers
were typed in the laboratory of J. Weber, at the Marsh-
field Medical Research Foundation (Schwengel et al.
1994; Dubovsky et al. 1995). An additional 13 markers
were typed at Glaxo-Wellcome. The median distance be-
tween adjacent markers was 6.4 cM (range 0–25.6 cM);
median heterozygosity was 68%. Genotypes for each
marker were assessed by PCR and either fluorescent or
radioactive-labeled specific primers. The reproducibility
of the genotyping was evaluated in 76 duplicate samples,
typed blindly for each marker. The median rate of agree-
ment between duplicate samples was 97%, and no
marker had an agreement rate !90%.

Inspection of the pattern of Mendelian errors over all
markers was used to confirm that the genetic relationship
among samples was compatible with the genealogical
information. The distribution of marker alleles shared
identical by state for each pair of siblings also was an-
alyzed, to check for consistency (Ehm and Wagner
1998). After incompatible subjects were eliminated, ad-

ditional Mendelian errors involving individual markers
(presumably typing errors) were corrected by an algo-
rithm that identifies family members whose genotypes
could be responsible for the incompatibility and that
iteratively (and arbitrarily) deletes these until all incom-
patibilities are resolved. Marker-allele frequencies were
estimated on the basis of the genotypes of all remaining
individuals.

The CRI-MAP program (Lander and Green 1987) was
used to create maps with distances estimated on the basis
of meiotic recombinants in the Pima data. In most cases,
the order of the markers was taken as that on maps
provided by the Marshfield Medical Research Founda-
tion. For chromosomes 1, 4, 7, and 19, the data justified
a slightly different marker order.

Linkage Analyses of Quantitative Traits

Linkage analysis of diabetes must account for the age-
specific occurrence of the disease. This was accomplished
with a cumulative-incidence method, which uses age and
affection status to produce an “age-adjusted” diabetes
score that can be analyzed as a quantitative trait (Han-
son and Knowler 1998). The trait is defined as Y 2

, where if the individual is affected andCI Y 5 1 Y 5x

if the individual is unaffected and where CIx is the0
population cumulative incidence at age x, which is either
the age at onset (for affected individuals) or the age at
last examination (for unaffected individuals). The re-
sulting continuous variable was analyzed by the trans-
formation of Therneau et al. (1990), to produce a more
symmetric distribution. The cumulative-incidence meth-
od is a powerful way to account for variable age at onset
in sib-pair analysis, particularly when the gene of interest
affects age at onset of the disease (Hanson and Knowler
1998). The natural logarithm of the maximum BMI at
age 115 years also was analyzed, as a quantitative trait,
and, prior to linkage analysis, was adjusted for age and
sex, by linear regression.

For these quantitative traits, linkage analyses were
conducted for sibships by means of variance-compo-
nents methods (Amos 1994). In brief, the method in-
volves fitting a linear “mixed” model, which, in the pres-
ent study, involved estimating the trait mean (m) and
three components of variance. The variance was parti-
tioned into (a) an additive monogenic component linked
to the region of interest ( ), (b) a “polygenic” com-2jM

ponent that incorporates overall familial effects ( ), and2jG

(c) an “environmental” component that incorporates ef-
fects unique to the individual ( ). Under the assumption2jE

of no recombination between the trait and marker loci,
the phenotypic variance-covariance matrix (Q) for in-
dividuals in a pedigree is , where2 2 2Q 5 Fj 1 Pj 1 IjG M E

F is a matrix of the expected proportion of alleles shared
identical by descent (IBD) (.5 for siblings), P is a matrix
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of the proportion of alleles shared IBD, as estimated on
the basis of the genotypic data, and I is an identity
matrix.

The parameters of these models were estimated, under
the assumption that the distribution of the trait was
multivariate normal, by maximizing the likelihood over
all sibships, by use of the scoring algorithm (Lange et
al. 1976). The null hypothesis of no linkage was assessed
by comparing the full model to one in which was2jM

constrained to equal 0. Twice the difference in the nat-
ural logarithm of the likelihood between these two mod-
els has a distribution that is a : mixture of a x2 variable1 1

2 2

and a point mass at 0, and the likelihood-ratio test (x2

with 1 df) can be used for hypothesis testing (Hopper
and Matthews 1982). The LOD score (Z) for variance-
component analyses was calculated by dividing the like-
lihood-ratio test for linkage by 2*loge(10).

Since the analyses of single traits suggested that BMI
and diabetes were linked to the same region, the extent
to which the presumed gene in this region influences both
traits, a phenomenon defined as “pleiotropy,” was as-
sessed. Bivariate linkage analyses therefore were con-
ducted, by covariance-components models (Lange and
Boehnke 1983). The parameters of the bivariate model
include the mean and variance components of the first
trait (mx, , , and ), the mean and variance com-2 2 2j j jGx Mx Ex

ponents of the second trait (my, , , and ), and2 2 2j j jGy My Ey

the polygenic, monogenic, and environmental compo-
nents of covariance between both traits ( , , andj jGxy Mxy

). The null hypothesis of no linkage with either phe-jExy

notype was assessed by comparing the full model to one
in which , , and are constrained to equal 0;2 2j j jMx My Mxy

the resulting x2 statistic was assessed on 3 df. The
parameter describes the covariance between trait xjMxy

in one relative and trait y in another relative, as a func-
tion of their similarity at the chromosomal location of
interest; that is, it reflects the pleiotropic effects that the
linked locus has on both phenotypes. One therefore can
test for this pleiotropy, by testing the null hypothesis

. This bivariate-linkage method can substan-j 5 0Mxy

tially increase the power to detect genes that act pleio-
tropically to influence two traits (Almasy et al. 1997).
As parameterized here, any potential direct effect of one
trait on the other will be included in the “pleiotropic”
effect.

Additional Linkage Analyses of Diabetes

To maximize the ability to detect diabetes-suscepti-
bility loci, linkage analyses of diabetes were performed
by several additional methods. Affected-sib-pair analyses
were conducted by testing the null hypothesis that the
mean proportion of alleles shared IBD among affected
sib pairs is .5, against the alternative that it is 1.5 (Elston
1984). To account for age in these analyses, individuals

were considered to be affected only if the age at onset
of diabetes was prior to an arbitrary threshold. For the
present analyses, age thresholds of !45 years (for 551
sib pairs) and !25 years (for 55 sib pairs) were used. In
addition, an analysis comparing sib pairs concordant for
diabetes versus discordant sib pairs also was conducted,
by means of the Haseman-Elston test (Haseman and
Elston 1972; Elston 1984). In this analysis, individuals
were considered to be affected if onset was at age !45
years and were considered to be unaffected if they were
known to be nondiabetic at age 145 years (even if they
subsequently developed diabetes). To account for the
lack of independence introduced by the use of multiple
sib pairs from the same family, the P value was assessed
by use of a modified number of df (Wilson and Elston
1993).

Multipoint Analyses

The method of Fulker et al. (1995) was used to obtain
approximate multipoint estimates of IBD. At each chro-
mosomal location, this method estimates the proportion
of alleles shared IBD for each sib pair, as a weighted
average of the IBD estimates at each individual marker.
In the present analyses, estimates of IBD for individual
markers were generated by the SIBPAL program (SAGE
1994); missing data were imputed on the basis of flank-
ing markers, prior to full multipoint estimation (Fulker
and Cardon 1994). Haldane’s (1919) mapping function
was used to convert map distances into recombination
fractions. This method produces an approximate esti-
mate of the multipoint IBD distribution. Although an
exact estimate can be obtained from the Lander-Green
algorithm (Lander and Green 1987), as implemented in
the MAPMAKER/SIBS program (Kruglyak and Lander
1995), the computational burden for larger sibships be-
comes excessive, so that 13 individuals have to be deleted
from the larger sibships, to accommodate the limitations
of the MAPMAKER/SIBS program. Analyses using the
IBD estimates derived from these families produced re-
sults similar to those derived from the approximate
method. However, only the results from the latter are
presented, since these allow use of all individuals in the
larger sibships. In many situations, multipoint analyses
using the proportion of alleles shared IBD capture almost
all of the linkage information that is available from use
of the full IBD distribution (Fulker and Cherny 1996).

Results

Results of single-marker variance-components anal-
yses giving ( ) with either age-adjustedZ 1 1.18 P ! .01
diabetes or BMI are shown in table 1. Four markers, on
chromosomes 6, 11, 13, and 14, showed evidence for
linkage with age-adjusted diabetes, at . SixZ 1 1.18
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Table 1

Markers with Linkage of ( ) to Age-Z 1 1.18 P ! .01
Adjusted Diabetes or BMI

CHROMOSOME

AND MARKER

DISTANCEa

(cM)

(Zb) FOR2jM

Diabetesc BMId

6:
D6S1009 127.8 .22 (1.84) .00 (.00)

11:
D11S2000 108.7 .01 (.00) .17 (1.19)
D11S1998 127.5 .05 (.07) .15 (1.19)
D11S4464 136.6 .22 (1.87) .27 (2.63)
D11S912 143.9 .18 (.70) .27 (2.08)

13:
D13S779 93.3 .20 (1.38) .00 (.00)

14:
D14S617 89.9 .21 (1.65) .04 (.06)

16:
D16S769 45.9 .02 (.02) .16 (1.24)
D16S753 53.3 .08 (.21) .16 (1.34)

a From the p-terminal end of the chromosome, ac-
cording to a genetic map derived from the data from the
data of the present study.

b Calculated on the basis of the likelihood-ratio test
c Data adjusted for age and sex, by a cumulative-in-

cidence method.
d Data are adjusted for age and sex, by linear

regression.

Figure 1 Maximum multipoint Z value, by chromosome, for
diabetes and BMI.

markers, four of which are on chromosome 11q and
two of which are on chromosome 16, showed linkage
with BMI, at . The same marker, D11S4464,Z 1 1.18
showed the strongest evidence for linkage with each
trait.

The highest Z value obtained in multipoint variance-
components linkage analyses of age-adjusted diabetes
and BMI is shown, for each of the 22 autosomal chro-
mosomes, in figure 1. Three regions showed evidence for
linkage with age-adjusted diabetes, at (Z 1 1.18 P !

; table 2). These included regions on chromosome.01
11q ( , ), chromosome 6q ( ,Z 5 1.7 P 5 .003 Z 5 1.4

), and chromosome 9q ( , ).P 5 .006 Z 5 1.2 P 5 .009
The chromosome 11q region that was linked to diabetes
also was strongly linked to BMI ( ,Z 5 3.6 P 5 2.6 #

). No other chromosomal region showed2510 Z 1 1.18
for BMI, in multipoint analyses.

Since on chromosome 11 there was evidence for link-
age to both diabetes and BMI, a multipoint bivariate
analysis was conducted to determine the extent to which
a single locus may influence both traits (fig. 2). The
strongest evidence for linkage was in the region between
D11S4464 and D11S912. The bivariate analysis
strongly rejected the null hypothesis of no linkage with
either phenotype ( , two-tailed ).26Z 5 5.0 P 5 1.8 # 10
The null hypothesis of no pleiotropy also was strongly
rejected ( , two-tailed ), and the25Z 5 3.7 P 5 3.4 # 10
value of the pleiotropic covariance between the two phe-
notypes ( ) implied that the genetic correlation wasjMxy

1.0. These findings suggest that the same locus influences
both phenotypes (i.e., both a high BMI and an early age
at onset of type II diabetes cosegregate with a genetic
element in this region).

Additional linkage analyses of diabetes identified an-
other potential diabetes-susceptibility locus, on chro-
mosome 1 (fig. 3). The highest Z scores occurred near
D1S1677 (171 cM), in analyses comparing sib pairs con-
cordant for diabetes versus discordant sib pairs (Z 5

, ), and near D1S2127 (192 cM), in anal-2.5 P 5 .0004
ysis of affected sib pairs with onset at age !25 years
( , ). Analysis of sib pairs affected26Z 5 4.1 P 5 7.4 # 10
at age !45 years also suggested a potential diabetes-
susceptibility locus, on chromosome 7, near D7S1799
( , ; fig. 4). For chromosome 11q, theZ 5 1.8 P 5 .002
analysis of affected sib pairs with onset at age !45 years
gave ( ), whereas the comparison ofZ 5 0.4 P 5 .094
concordant and discordant sib pairs gave Z 5 1.9
( ).P 5 .0014

Discussion

The present genomic scan in Pima Indians provides
(1) strong evidence that on chromosome 11q there is a
locus influencing susceptibility to both obesity and type
II diabetes and (2) some evidence that there are addi-
tional diabetes-susceptibility loci, on chromosomes 1q
and 7q.

The study was conducted in a relatively large number
of families from a population with a high prevalence of
both diabetes and obesity. The longitudinal data allowed
accurate assessment of both age at onset of diabetes and
maximum BMI. The families came from a single Native
American population in which there is probably less ge-
netic heterogeneity in susceptibility to obesity and type
II diabetes than there is in most other populations.
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Figure 2 Multipoint results for chromosome 11 for BMI and
for diabetes, adjusted for age and sex by a cumulative incidence
method. The bivariate-analysis tests the null hypothesis of no linkage
with either phenotype. The comparison of the full bivariate model
with the model in which there is no linkage is in terms of x2 with 3
df; the Z value shown here has been calculated on the basis of the x2

(1 df) corresponding to the P value. Distances are from the p-terminal
end of the chromosome, on the basis of a genetic map derived from
data from the present study.

Table 2

Chromosomal Regions with ( ) for Linkage with Age-Adjusted Diabetes or BMI, inZ 1 1.18 P ! .01
Multipoint Analyses

CHROMOSOME MARKER (DISTANCE)/MARKER (DISTANCE)a

DISTANCEb

(cM)

(Z) FOR2jM

Diabetesc BMId

6 D6S1009 (127.8 cM)/D6S1003 (139.1 cM) 128 .21 (1.39) .00 (.00)
9 D9S299 (100.3 cM)/D9S2026 (107.4 cM) 105 .18 (1.22) .00 (.00)
11 D11S4464 (136.6 cM)/D11S912 (143.9 cM) 139e .21 (1.66) .29 (3.57)

a Markers are those on either side (p terminal to q terminal) that are closest to the location of the peak
mulitpoint Z value for the region; the locations are as determined on the basis of a genetic map derived
from the data of the present study

b Location of peak multipoint Z value for region.
c Data are adjusted for age and sex, by a cumulative-incidence method.
d Data are adjusted for age and sex, by linear regression.
e The peak on chromosome 11 for diabetes occurred at 137 cM, whereas that for BMI occurred at

141 cM.

The variance-components method used in the present
analysis is a powerful tool for assessment of genetic link-
age, for quantitative traits. It is often more powerful than
sib-pair–based methods, such as the Haseman-Elston
test (Amos et al. 1996; Pugh et al. 1997). Although it
requires the assumption of multivariate normality, the
method is generally robust to violations of this assump-
tion (Beaty et al. 1985; Amos 1994; Amos et al. 1996).
In fact, analysis of the present data that uses the Hase-
man-Elston method, which does not require the as-
sumption of multivariate normality, identified the same
regions as being linked with both BMI and diabetes
(Hanson et al. 1997; Hanson and Pima Diabetes Genes
Group 1997); for chromosome 11 the Z values were 2.0
and 2.4, respectively, for age-adjusted diabetes and BMI.

Criteria for assessment of statistical significance in ge-
netic linkage studies of complex traits have been con-
troversial. Some investigators have suggested that a rel-
atively stringent threshold of is needed to obtainZ 1 3.6
a genomewide P of !.05 (Lander and Kruglyak 1995),
whereas others have maintained that the traditional cri-
terion of is unlikely to be a false positive (Mor-Z 1 3.0
ton 1998). The issue becomes more complicated when,
as in genetic studies in the Pima Indians, several corre-
lated traits have been analyzed, because it is unclear
whether—or how—one ought to adjust for multiple
comparisons. With these caveats, the present analysis
gives both evidence, on chromosome 11, for linkage to
BMI ( ) and strong evidence for linkage to theZ 5 3.6
combined bivariate phenotype of diabetes and BMI
( ). There is also strong evidence that the BMIZ 5 5.0
locus pleiotropically affects diabetes ( ). TheZ 5 3.7
present results, therefore, imply the existence, on chro-
mosome 11, of a locus influencing susceptibility to obe-
sity and type II diabetes. Statistical tests, however, do
not in themselves establish causality, and, ultimately, to
distinguish between etiologically important linkage and

statistical artifact, the results must be either replicated
in other populations or extended in the population that
we have studied.

Current genetic maps (Murray et al. 1994; Dib et al.
1996) place the obesity-diabetes locus identified in the
present study at 11q23-25. In a smaller, partially over-
lapping, sample of Pima Indians, this chromosome 11
region also was linked to 24-h energy expenditure (Nor-
man et al. 1998), and a region ∼30 cM centromeric was
linked to percentage of body fat (Norman et al. 1997,
1998). It is tempting to speculate that the same locus is
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Figure 3 Multipoint results for linkage with diabetes, on chro-
mosome 1. In analyses comparing concordant with discordant sib-
pairs (Conclusion versus Discussion), onset was at age !45 years. Dis-
tances are from the p-terminal end of the chromosome, on the basis
of a genetic map derived from data from the present study. P values
have been converted to equivalent Z values under the assumption of
a one-tailed test and a x2 distribution (Chotai 1984).

Figure 4 Multipoint results for linkage with diabetes, on chro-
mosome 7. Results are for affected sib-pair analyses for sib-pairs with
onset at age !45 years. Distances are from the p-terminal end of the
chromosome, on the basis of a genetic map derived from data from
the present study. P values have been converted to equivalent Z values
under the assumption of a one-tailed test and a x2 distribution (Chotai
1984).

responsible for these results. However, to characterize
further the contribution that the locus detected in the
present study makes to the etiology of diabetes and obe-
sity, the specific gene or genes responsible for the linkage
results need to be identified. The metabolic studies also
identified other regions, on chromosomes 1p, 18q, and
20q, as being linked to obesity-related traits, but none
of these regions showed evidence for linkage with BMI
in the present analyses.

The familial aggregation of diabetes in Pima Indians
occurs in a manner that is partially separate from fa-
milial aggregation of obesity, and this suggests that there
are additional genetic determinants of diabetes, which
do not influence obesity (Hanson et al. 1995b). In the
present analyses, two additional potential diabetes-sus-
ceptibility loci were identified, on chromosomes 1q and
7q, in regions that were not linked to obesity. The region
on chromosome 1 showed very strong evidence for link-
age with diabetes ( ), in the 55 sib pairs who hadZ 5 4.1
onset of diabetes at age !25 years; the evidence was
weaker, but still suggestive of linkage, in analyses com-
paring sib pairs concordant for diabetes versus discor-
dant sib pairs. The analyses of affected sib pairs with
onset of diabetes at age !45 years showed modest link-
age evidence on chromosome 7 but little evidence on
chromosome 1 ( ). The evidence that chromo-Z 5 0.5
somes 1 and 7 are linked to diabetes in Pima Indians is
thus weaker than the evidence for an obesity-diabetes
locus on chromosome 11. The same chromosome 1 re-

gion, however, was linked to diabetes in a European
American population in Utah (Elbein et al. 1998); the
finding of linkage in two different populations strength-
ens the evidence for a diabetes-susceptibility locus in this
region.

Several other chromosomal regions have been linked
to some form of diabetes in other populations. These
regions include genes for autosomal dominant diabetes
with young age at onset (Bell et al. 1991; Froguel et al.
1992; Vaxillaire et al. 1995; Mahtani et al. 1996; Ya-
magata et al. 1996a, 1996b; Stoffers et al. 1997), the
human leukocyte-antigen system on chromosome 6p
(Tuomilehto-Wolf et al. 1993; Davies et al. 1994), and
the NIDDM1 locus on chromosome 2q (Hanis et al.
1996). The present study, however, shows no evidence
for linkage with any of these loci (table 3). These neg-
ative findings suggest that these loci do not account for
a large portion of the familial aggregation of diabetes
in Pima Indians. These loci, however, still could have
relatively small effects that are difficult to detect with
linkage analysis, or they could provide the genetic
“background” for the development of diabetes.

Genes that predispose to type II diabetes may be ex-
pected to be linked as well to its risk factors or metabolic
constituents, such as obesity, low insulin sensitivity, and
defective insulin secretion (Bogardus and Lillioja 1992;
Ghosh and Schork 1996). In Pima Indians, there is sug-
gestive evidence for linkage with insulin sensitivity and
secretion in other chromosomal locations (Pratley et al.
1998), but there is little evidence for linkage with dia-
betes in these locations. However, the identification of
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Table 3

Multipoint Sib-Pair Analyses for Selected Regions Linked or Associated with either Diabetes or Glucose
Levels in Other Studies

REFERENCE(S) CHROMOSOME

DISTANCEa

(cM)

(Zb) FOR2jM

Diabetesc BMId

Hanis et al. (1996) 2 247 .06 (.17) .00 (.00)
Tuomilehto-Wolf et al. (1993), Davies et al. (1994) 6 50 .00 (.00) .01 (.01)
Froguel et al. (1992) 7 62 .00 (.00) .00 (.00)
Vaxillaire et al. (1995) 12 113 .00 (.00) .03 (.07)
Stoffers et al. (1997) 13 34 .01 (.00) .08 (.25)
Bell et al. (1991) 20 67 .08 (.20) .05 (.09)

a Approximate locations for each candidate region, determined on the basis of nearby markers and available
genetic maps.

b Calculated by the likelihood-ratio test.
c Data are adjusted for age and sex, by a cumulative incidence method.
d Data are adjusted for age and sex, by linear regression.

a locus that influences both obesity and diabetes suggests
that the diabetogenic effect of this locus may be medi-
ated, in part, through obesity. In fact, in the present
study, analysis of the pleiotropic effect of the obesity
locus on diabetes resulted in enhanced power to detect
the diabetes-susceptibility locus. The present results,
therefore, not only provide strong evidence for an obe-
sity-diabetes locus on chromosome 11q but also dem-
onstrate the importance of analyzing other risk factors,
concomitantly with the disease itself, in linkage studies
of complex diseases.
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