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The Mecp2 gene has been shown to be mutated in most cases of
human Rett syndrome, and mouse models deleted for the ortholog
have been generated. Lineage-specific deletion of the gene indi-
cated that the Rett-like phenotype is caused by Mecp2 deficiency
in neurons. Biochemical evidence suggests that Mecp2 acts as a
global transcriptional repressor, predicting that mutant mice
should have genome-wide transcriptional deregulation. We tested
this hypothesis by comparing global gene expression in wild-type
and Mecp2 mutant mice. The results of numerous microarray
analyses revealed no dramatic changes in transcription even in
mice displaying overt disease symptoms, although statistical
power analyses of the data indicated that even a small number of
relatively subtle changes in transcription would have been de-
tected if present. However, a classifier consisting of a combined
small set of genes was able to distinguish between mutant and
wild-type samples with high accuracy. This result suggests that
Mecp2 deficiency leads to subtle gene expression changes in
mutant brains which may be associated with the phenotypic
changes observed.

Rett syndrome (RTT) is a common, severe mental retardation
disorder affecting mainly females (incidence 1�20,000–1�

15,000; Online Mendelian Inheritance in Man no. 312750; ref. 1).
Behavioral findings include developmental stagnation after 7–18
months, ataxia, stereotyped hand-wringing motions, and autism
(2). Microcephaly of affected girls has been reported (2–5), and
histological findings include reduced neuron size (6).

Mutation of the MECP2 gene was found in most cases of RTT
studied (7–10). The MECP2 gene encodes a methyl-CpG-
binding protein which is thought to bind specifically to methyl-
ated CpG dinucleotides (11) and to act as a transcriptional
repressor by virtue of its interaction with a histone deacetylase�
Sin3 complex (12, 13). The involvement of the Mecp2 gene
product in methylation-specific transcriptional repression sug-
gests that RTT may be a result of misregulated gene expression.
Because the prevailing model (based on biochemical evidence)
suggests that Mecp2 acts as a global transcriptional repressor, it
would predict that Mecp2 deficiency should result in widespread
gene derepression.

Mice deficient for Mecp2 were generated by targeted mu-
tagenesis (14, 15) and found to exhibit phenotypic similarities to
RTT. Importantly, the specific deletion of Mecp2 in the brain (by
using a Nestin-Cre;Mecp22lox conditional allele) mimicked the
germline loss of Mecp2 (14, 15), indicating that Mecp2 is exclu-
sively required for proper central nervous system function.
Furthermore, it was shown that deletion of Mecp2 in postmitotic
neurons (using a calmodulin kinase promoter-driven Cre recom-
binase) also mirrored the Rett phenotype, although with later
onset (14). These results suggest that the Rett-like phenotype is
not caused by a defect in early development, but rather is caused
by dysfunction of postmitotic, differentiated neurons.

In this work, we tested the hypothesis that Mecp2 deficiency
results in a widespread alteration of transcription by performing

global transcriptional profiling of brain tissue from Mecp2
wild-type and mutant (14) mice by using oligonucleotide mi-
croarrays. The goal was to identify genes associated with the
disease state, and, possibly, to identify genes whose expression
may be regulated directly by Mecp2. Our results suggest that
Mecp2 deficiency does not lead to global alterations in transcrip-
tion but instead leads to subtle changes of gene expression that
are only detectable by sensitive statistical analysis of relatively
large datasets.

Materials and Methods
Mice. The Mecp22lox allele (14) was bred to Nestin Cre (16) and
Cam Kinase Cre 93 (Cre 93) transgenes (17). The former was
used to recombine the Mecp22lox allele in the germline, thus
producing Mecp21lox/y progeny for analysis of the germline-null
mutants. The Mecp22lox/y;Cre93 mice were analyzed to assess the
conditional phenotype. All mice were of mixed background
(129�SVJae, BALB�c, C57BL�6).

RNA Samples and cRNA. For forebrain samples, the forebrain was
separated from the mid- and hindbrain by a coronal cut along the
rostral border of the superior colliculi. For cerebral cortex and
hippocampus samples, these structures were conservatively dis-
sected: the cerebellum was removed and the brains were cut
midsagittaly; under a dissecting microscope, the anterior border
of the hippocampus was identified as the fimbria hippocampi;
dorsally, the hippocampal white matter was carefully separated
from overlying cerebral cortex along the alveus; and, finally, the
subiculum was bisected in the middle to release the hippocampal
gray matter. After removal of the hippocampus, the cerebral
cortex was isolated; each hemisphere was cut coronally into
blocks of �1.5-mm thickness, blocks between the interaural
coordinates �5 mm and �1 mm, corresponding to the rostro-
caudal extension of the corpus callosum, were flattened, and
cortical gray matter was separated from underlying white matter.
For each block, the band of cortical gray matter extending
laterally from the perirhinal cortex to the cingulate and retro-
splenial cortex medially, was collected. Samples were frozen on
dry ice and subsequently extracted with Trizol (Life Technolo-
gies, Grand Island, NY). RNA samples were checked for integ-
rity by gel electrophoresis and ethidium bromide staining. Tar-
gets for hybridization to Affymetrix arrays were produced from
individual (i.e., not pooled) tissue samples, as described (18, 19).
After hybridization and washing, arrays were scanned (18). Both
Affymetrix Mu11k and MGU74A arrays were used in this study.
Each array represents �10,000 genes (on two arrays and one
array, respectively), with an overlap of �8,000 genes (although
not necessarily represented by the same probes).
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Data Scaling. Mean response analysis (i.e., average difference of
one sample’s rank from those of all replicates) of the scaled data
showed that even scaled data could be �20 SDs from zero sum
variance within a genotype group. Analysis of the array images
showed a mottled pattern of signal intensity, especially evident
at the top of the array where bubbles were often observed during
the fluidics protocol. This observation motivated a baseline
equalization step: CEL files from the GENECHIP program (MI-
CROARRAY SUITE 4, Affymetrix), were background subtracted by
using the 25th percentile of a moving window (step 32 features,
window 51 � 51 features) of the mismatch probes across the
image of the array. The background-subtracted intensity values
were then written into a CEL file for analysis.

Data Analysis. Unmodified CEL files were used to obtain AD
values by using the MICROARRAY SUITE 4.0 GENECHIP program,
and background-subtracted CEL files were used to calculate
modeled-expression values by using the DCHIP program (follow-
ing DCHIP’s invariant rank normalization; ref. 20). Both sets of
data were analyzed and were qualitatively similar. Only data
from the DCHIP program is presented. Analysis was limited to
those genes showing a majority of ‘‘P’’ (present) calls as judged
by the GENECHIP software. Although other filtering schemes
were also explored, the majority P call criterion was chosen for
its superior power (vs. considering all genes) and inclusivity (vs.
considering genes with 100% P calls), although the differences
between filters of 20–80% P calls were minor. Note also that
‘‘present’’ and ‘‘absent’’ are possibly misleading terms; ‘‘high-’’
and ‘‘low-confidence in the measured expression’’ are more
evocative descriptions of the call algorithm used. It was found
necessary to rescale this subset of data one last time by using a
robust linear regression (robustfit routine of MATLAB) scaling of
the majority P call data. Furthermore, gene expression values
were floored to a low positive level (100 for Mu11K data and 10
for U74A data) to eliminate negative and zero values. At this
point, the median correlation coefficient of the expression values
from the arrays was determined, and those arrays falling below
a value of 0.95 were discarded (six experiments were discarded
for this reason, and five more were discarded because too few
samples remained in an experiment to perform statistical anal-
ysis), yielding a final dataset of 100 profiles. Individual gene
outliers [defined as absolute signal �2 � IQR (interquartile
range) from median] were set to median � 2 � IQR. For testing
differential expression, several different methods were applied
to the data (21–25). Data were processed and�or analysis re-
sults were compared by using EXCEL (Microsoft) and MATLAB
(Mathworks).

Predictors. The GENECLUSTER 2 (26) program [kindly provided in
prerelease form by Pablo Tamayo and Keith Ohm (Whitehead
Institute�MIT Center for Genome Research, Cambridge, MA)]
was used to classify the data. Data from Mu11k and MG U74
arrays was combined by using a correspondence table from
Affymetrix. In addition to the aforementioned P-call filter, a
variation filter was also used whereby only genes showing a range
of expression of 3-fold and 100 absolute units were analyzed.
These three filters were applied to each experiment individually
and all data points from genes which passed were used in the
predictor. The predictors were constructed by crossvalidating
and building on one experiment (of 9) or one ‘‘metaexperiment’’
(all whole forebrain, cortex, or hippocampus samples, after
individual standardization), and testing on either the entire
dataset or on one of the metaexperiments not included in the
training set. Weighted voting and k-nearest neighbor predictors
were constructed for a variety of features (1–20 features, 1–10
neighbors where applicable) and tested for accuracy on the
validation sets.

RNase Protection Assays. Candidate genes were chosen on the
basis of a number of analyses including several successful
classifiers (in addition to the optimal classifier presented) trained
on different subsets of the data (prostaglandin D2 synthase, Rho
GDI �, parvalbumin, Cam kinase II, calcium channel �3, and
serum-glucocorticoid related kinase) and consistent VERA�
SAM or t test significance across several experiments and�or
data processing methods (FABP7, �-synuclein). Probes were
generated by PCR (except �-actin, which was supplied with the
Ambion kits). Amplification primers added 10–15 nt of nonho-
mologous (T3 promoter sequence) to the 3� end of probes. T7
RNA polymerase promoters were added to the PCR products by
using the Lig’n Scribe kit (Ambion; the adapter adds another
10–12 nucleotides of nonhomologous sequence to the 5� end of
probes), and probes were transcribed by using the Maxiscript kit
(Ambion) as described, except that reactions were carried out for
3 h. To equalize intensities of bands in the RNase protection
assay, the probes were synthesized at different specific activities
by diluting the UTP�P32 [3,000 Ci�mmol, 10 mCi�ml (1 Ci � 37
GBq), Amersham Pharmacia] with unlabeled nucleotide as
follows: �-synuclein [amplified from an IMAGE consortium
clone obtained from American Type Culture Collection (ATCC)
catalog no. 3150394], 1:20 dilution; prostaglandin D2 synthase
(21 kDa, brain; ATCC no. 6009404), 1:150; Rho GDP dissoci-
ation inhibitor (GDI) � (ATCC no. 5664578), 1:1; parvalbumin
(ATCC no. 5569832), 1:25; calcium�calmodulin-dependent pro-
tein kinase II � (ATCC no. 6483808), 1:250; calcium channel �-3
subunit (amplified directly from C57BL�6 first strand cDNA),
1:5; fatty acid-binding protein 7, brain (ATCC no. 1765841), 1:1;
serum�glucocorticoid regulated kinase (amplified directly from
C57BL�6 first strand cDNA), 1:10; Gapdh (ATCC no. 3897874),
1:50; 18s rRNA (ATCC no. 995394), 1:160,000; �-actin, 1:200.
Probes were gel-purified, and 1,000 cpm each eluted probe was
used for each assay. An amount of 10 �g of total RNA was used
for each assay (using the Ambion RPA III kit), the samples were
precipitated with the probes, resuspended in 9 �l of hybridiza-
tion buffer, denatured, and hybridized overnight at 56°C. After
digestion with 1:100 dilution of RNase A�T1 mix, the samples
were separated on a 4% acrylamide (1:30 bisacrylamide) se-
quencing gel at 50 W, constant power. After drying, the gel was
exposed to film and to a BAS 2000 phosphorimager screen (Fuji)
for quantitation. For comparison, samples were scaled by using
regression of the three control genes (actin, Gapdh, and 18s
rRNA), as well as background measurements.

Results
Sample Collection. The goal of our study was to compare gene
expression in control and mutant mice before and after the
onset of overt disease. Male mice mutant for Mecp2 are overtly
normal until roughly one month of age [postnatal day 30
(P30)]. At this point, they begin to exhibit the phenotype
characteristic of this gene disruption: tremors�seizures, leth-
argy, and variable weight gain. After deteriorating over the
course of approximately another month, mutant mice gener-
ally die between P60 and P80. The course of disease progres-
sion is similar for mice which are Mecp22lox/y;Nestin-Cre�/o.
These mice recombine the functional allele of Mecp2 mainly in
neural progenitors and are, therefore, deficient for Mecp2 in
the central nervous system. The disease progression in mice
that are Mecp22lox/y;Cam Kinase Cre 93�/o (which delete the
active Mecp2 allele only in postmitotic neurons; ref. 17) is
delayed, with mice developing symptoms at �3 months of age
and surviving to 8 or more months of age. We based our sample
collection on these time courses (Table 1). Tissue samples were
obtained from Mecp2 mutant mice (Mecp21lox/y; ref. 14) and
wild-type sibling controls (Mecp22lox/y or Mecp2�/y). In initial
experiments we isolated forebrains from P24, P35, and P56 mice.
Thus, the mutant mice were asymptomatic, early symptomatic,
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and late symptomatic, respectively. The samples were hybridized
to Affymetrix Mu11k arrays. We also analyzed dissected cerebral
cortex and hippocampus at P35 and P63 and cerebral cortex and
hippocampus of 4- to 6-month-old conditional mutant mice
(Mecp22lox/y; Cam Kinase Cre 93�/o; ref. 14) and Mecp2�/y

littermates by using MG U74Av1 arrays.
We note that the assayed regions of the brain are most likely

to be involved in the Rett-like phenotype of Mecp2 mutant
mice on the basis of the following observations. The Cam
Kinase-Cre conditional mutants (which qualitatively recapit-
ulate the germline-null phenotype) are deleted primarily in the
neocortex, hippocampus, amygdala, and striatum (17). The
cortex and hippocampus have been reported by various au-
thors to be functionally or histologically abnormal in human
RTT patients (6, 27–30), whereas there have not been reports
of abnormalities in the striatum or amygdala. The observed
histological abnormalities in the mutant mice (decreased
neuron soma size) are most evident in the cerebral cortex and
hippocampus (unpublished results; ref. 14). Finally, the struc-
tures were chosen for the practical reason that they can be
reproducibly dissected.

Data Analysis and Statistical Tests. Power analyses (see Figs. 3 and
4, Tables 3 and 4, and Supporting Text, which are published as
supporting information on the PNAS web site, www.pnas.org)
suggested that our data and statistical methods were of sufficient
quality to detect even a small number of small-fold changes if
they were present. Despite the apparent sensitivity of the
experiments, the number of genes called statistically significant
(t test, P � 0.05) that were also changed �1.5-fold (although
none were changed more than 2-fold) varied between zero and
three per experiment, close to the false-positive expectation. In
addition, only one gene was called significantly changed when
correcting for multiple testing in our Mecp2-mutant brain sam-
ples: in the Mecp22/y;CamK-Cre93�/o vs. Mecp2�/y cortex exper-
iment, calcium channel �3-subunit, which was down 20% on
average, adjusted P � 0.006. Because the Mecp2 allele we used
(a deletion of exon 2; ref. 14) does not markedly affect the
expression of the remainder of the transcript (not shown), we
could not use differences in Mecp2 levels as a positive control for
gene-expression changes in our studies. Genes that could tan-
gentially be considered as candidates for expression changes
based on published studies (31, 32) were individually inspected
and confirmed to be unchanged in our experiments (not shown).

Supervised Learning. Next, we explored the possibility that, al-
though mutant and wild-type samples were not significantly

different in expression of single genes, the behavior of multiple
genes considered as a set may be correlated with Mecp2 defi-
ciency. We constructed weighted voting (23) and k-nearest
neighbor (33) classifiers. Surprisingly, predictors as small as five
genes, trained on the hippocampus data, could successfully
classify all of the samples in this study (100 samples from
forebrain, cerebral cortex, as well as hippocampus) with �85%
accuracy (proportional chance criterion (34) P � 0.05 for all
experiments except P35 cerebral cortex samples: P � 0.2;
P �� 0.001 for the classification of the entire dataset). The
optimal predictor was trained on the hippocampus data, used 10
features (representing nine Unigene clusters; ref. 35), and
compared query samples with the six nearest neighbors in the
training set, weighted inversely to distance. This predictor was
93% accurate (93�100 correctly classified, P �� 0.001) in clas-
sifying the entire dataset and 89% accurate (56�63 correctly
classified, P �� 0.001) in classifying samples not in its training set
(i.e., whole forebrain and cortex samples). By using the propor-
tional chance criterion, each of the nine experiments were
successfully classified with P � 0.05. By using the more conser-
vative Fisher’s exact test, all experiments with sample size �8
were significantly correctly classified (P � 0.05).

Fig. 1 A and B compare the singular value decomposition
(SVD) of the predictor input and output genes. SVD describes
multidimensional data (100 samples yields 100 dimensions in this
case) in terms of the most significant variation in the data. Thus,
distance between points on an SVD plot is related to the extent
of difference of two expression profiles. Fig. 1 A shows that
mutant and wild-type samples are essentially superimposable
when considering all genes passing a variation filter. Fig. 1B
shows that, when restricting analysis to the genes comprising the
optimal predictor, rough separation of mutant and wild-type
samples is achieved, although the distinction is not perfect. Fig.
1 C and D show the inter-sample correlation matrix of expression
levels for the same sets of genes. Again, Fig. 1C shows that there
is relatively little correlation between individual samples, even
between sibling replicates (not explicitly shown, but clustered
together on each axis). However, note that these genes were
chosen specifically for high variance to allow detection of
differentially expressed genes, so this does not represent lack of
correlation genome-wide. By comparison, Fig. 1D shows con-
siderable correlation of all wild-type samples with all wild type
and all mutant with all mutant samples when considering only
the 10 features in the predictor. Taking these four plots together,
it is apparent that the majority of the variation in the input data
are not associated with the mutant�wild-type distinction, but a
small subset of these genes, taken separately, does correlate with
this division. Fig. 1E shows the result of hierarchical clustering
(36) of the genes comprising the optimal predictor (columns,
indexed along the bottom of the panel to the row numbers of
Table 2). One observation which can be made is that the
predictor is better able to classify the samples than is clustering
analysis (or SVD or correlation matrices, for that matter). By
using clustering analysis, three major clusters of experimental
samples are formed (the dendrogram at the left of Fig. 1E) that
respectively comprise mostly wild-type (branch no. 3, 35 samples
in this category, including 3 mutant samples), mostly mutant (no.
1, 41 samples in this category, including 8 wild type), and a
mixture of samples (no. 2, 24 in this category, 10 mutant, 14 wild
type). The optimal predictor was able to unequivocally classify all
of the samples and had a lower error rate, suggesting that
supervised learning is better able to uncover class-specific
expression differences than unsupervised approaches such as
clustering. Conversely, it can be seen that the profiles of the
majority of samples that were incorrectly classified by the
predictor (denoted by asterisks in Fig. 1E) do indeed resemble
those of the incorrect genotype more so than the correct one.
Table 2 shows the average fold change and the P values

Table 1. Samples analyzed

Experiment Age Symptomatic? Tissue
N,
wt

N,
mut

N,
total

1 P24* Pre Forebrain 4 6 10
2 P35* Early Forebrain 6 6 12
3 Early Cortex 3 3 6
4 Early Hippocampus 3 3 6
5 P56† Late Forebrain 4 4 8
6 P63* Late Cortex 6 6 12
7 Late Hippocampus 7 6 13
8 P135–P180‡ Late Cortex 8 7 15
9 Late Hippocampus 9 9 18
Total 100

This table shows the sources and sizes of the samples used in the microarray
experiments.
*Mecp21lox/y vs. Mecp2�/y.
†Mecp21lox/y or Mecp22lox/y; Nestin-Cre�/o vs. Mecp22lox/y or Mecp2�/y.
‡Mecp22lox/y; Cam Kinase Cre 93�/o vs. Mecp2�/y.
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associated with these genes across all samples. Note that none of
the predictor components are individually significantly changed
if a multiple-testing correction is applied.

Gene Expression Changes as Determined by RNase Protection Assays.
We set out to confirm some of the changes observed in our
microarray experiments. By using a number of genes that were
reported changed by different analyses, we developed an RNase
protection assay to quantify simultaneously eight experimental
and three control genes (Fig. 2). Three of these genes were
components of the optimal predictor, whereas the remainder
were candidates identified by other analyses (such as other
successful predictors, consistent identification by t test, etc.).
Assaying cerebral cortex and hippocampus of several sets of
mutant and control animals, we were able to confirm a subset of
the changes observed in our microarray experiments. Although
the average fold-changes were small, as observed in our
microarray data, they were nonetheless statistically significant
(Fig. 2). In particular, we verified down-regulation of Rho GDI
� (also called ‘‘Rho GDI 5’’) in all sample sets assayed. We also
observed changes in �-synuclein, parvalbumin, fatty acid-
binding protein 7, serum�glucocorticoid-regulated kinase, and
voltage-gated calcium channel subunit-�3 in some sets but not in
others, although aggregating the data of 43 cerebral cortex
samples gave significant changes in all of these genes. We did not
see convincing changes in calcium�calmodulin-dependent
kinase II or prostaglandin D2 synthase. Note that Rho GDI �,
�-synuclein, and serum�glucocorticoid-regulated kinase were
components of the optimal predictor.

Discussion
Our results suggest that, despite striking physiological conse-
quences including tremors, weight gain followed by wasting,

Fig. 1. Optimal predictor. A 10-feature, 6-nearest neighbor predictor was trained on the hippocampus data and was 93% accurate in classifying the entire 100-sample
dataset. (A and B) Singular value decomposition (performed by using MATLAB svd function) of the variation-filtered data which was the input to the predictor training
(A) (n � 95, see Materials and Methods for definition) and the components of optimal predictor (B). The first two principal components are shown (PC1 on x axis, PC2
on y axis), and the scale is the same. Samples that were misclassified by the optimal predictor are depicted as Xs. (C and D) The correlation matrix of the same sets of
genes. High correlation is denoted by bright green. (E) A 10-feature, 6-nearest neighbor predictor was trained on the hippocampus data and was 93% accurate in
classifying the entire 100-sample dataset. The 10 features (from nine Unigene clusters) comprising the predictor are shown with the columns corresponding to the
numbered genes in Table 2, and with the expression of the individual experiments represented as rows. The yellow�blue bars represent mutant and wild-type samples,
respectively. The cyan�magenta�white bars represent the cerebral cortex (C), whole forebrain (F), and hippocampus (H) samples. Asterisks denote samples incorrectly
classified by the predictor. The data were clustered and visualized with the CLUSTER and TREEVIEW programs (36). Black represents the median, red represents expression
higher than the median (saturated at two interquartile ranges), and green represents expression lower than the median (saturated at two interquartile ranges).

Table 2. Components of the optimal predictor

Marker features
Mut�wt

ratio
Wilcoxon

test P value

Wilcoxon test,
BY-corrected

P value

1 Rho GDI � 0.86 0.002 0.73
2 Mm.204 0.93 0.32 1.00
3 Prothymosin � 0.95 0.74 1.00
4 Serum�glucocorticoid-

regulated kinase
1.07 0.14 1.00

5 Lipoprotein lipase 0.92 0.08 1.00
6 Mm.204 0.93 0.29 1.00
7 Neurogenic

differentiation 1
1.09 0.53 1.00

8 Parvalbumin 1.10 0.08 1.00
9 Mm.2962 1.18 0.03 1.00

10 Mm.22227 1.06 0.34 1.00

Shown are the genes that were components of the optimal predictor (10
marker features representing nine genes, six nearest-neighbor classifier). The
following column shows the median mutant to wild-type ratios across all nine
experiments (Table 1). Also shown are the Wilcoxon two-tailed P values for
these comparisons, the Benjamini-Yekutieli (BY) multiple hypothesis
testing-corrected Wilcoxon P values. Note that none of the genes is signifi-
cantly changed if multiple-testing correction is applied.
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death at 2 months, and the exclusive requirement of Mecp2 in the
brain (deletion in the brain has the same phenotype as deletion
throughout the body; refs. 14 and 15), the mutant brains have
few, if any, genes that are significantly changed in expression
level when considered singly. Nevertheless, a k-nearest neighbor
classifier (33) was able to uncover a change in expression in all
brain regions examined. Further examination of the components
of this predictor shows that the average fold-changes of the genes
comprising the predictor are small and generally well within the
range of high false-positive rate seen when a t test is applied to
all of the genes in the dataset. If the statistical tests are corrected
for multiple hypothesis testing, no individual classifier compo-
nent is found to be significantly changed. Our analysis does not
indicate, however, whether these gene expression changes are a
direct consequence of Mecp2 deficiency or a secondary result of
physiological changes in the affected mutants.

Two simple explanations exist for our observations. First, it is
possible that no gene is deterministically changed in expression
in the absence of Mecp2. Alternatively, it is possible that small
changes in expression are simply beyond the ability of the
platform to detect reliably. This interpretation is bolstered by the
ability of the RNase protection assay to detect significant
(although low-fold) changes in expression where microarray
analysis detected no changes with high confidence. Nevertheless,
the significant accuracy of the predictor in classifying samples
based on this small set of genes suggests that there are tran-
scriptional differences in the brains of Mecp2 mutant vs. wild-
type mice. Having uncovered a number of genes whose tran-
scription seems to be changed in mutant mice, the question of the
potential biological significance remains the subject of further

study, although these genes are perhaps best thought of as
markers for the phenotype rather than causative of the disease
state.

The lack of more obvious changes in gene transcription in
mutant mice is unexpected considering that Mecp2 has been
proposed to function as a general transcription repressor. We
consider the following possibilities to explain our observations.
(i) Mecp2 is a member of a family of methyl-binding proteins that
have similar and possibly redundant functions. For example,
similar to Mecp2, Mbd2 and Mbd1 have both been implicated in
methyl-CpG-specific DNA binding, recruitment of histone
deacetylases, and transcriptional repression (37–39), and it is
possible that expression of any of these proteins partially com-
pensates for the loss of a member of the gene family. In this
context, it is of interest that deficiency of Mbd2 or Mbd1 results
in little or no overt phenotype (M.T., unpublished observations;
ref. 40), possibly revealing redundancy in function between the
different methyl-binding proteins. If functional redundancy is a
factor in the methyl-cytosine-mediated transcriptional repres-
sion pathway and is responsible for the observed lack of global
expression changes in Mecp2 mutants, the redundancy must be
incomplete in view of the phenotype observed. To test this
hypothesis, gene expression analyses need to be performed in
mice that are deficient for several methyl-binding proteins.
(ii) The Mecp2-null phenotype may be the result of transcrip-
tional dysregulation in a small subset of cells which would not be
detectable by our analysis. (iii) It is also possible that neurons are
exquisitely sensitive to subtle changes in the dosage of many
mRNAs, some of which we detected in our analysis, and that such
subtle changes underlie the phenotype. (iv) Finally, we cannot

Fig. 2. (A) Representative RNase protection assay. Shown are the same samples used for the P63 Mecp21�y vs. Mecp2��y, cerebral cortex microarray experiment
(Table 1, experiment 6). Lane 1 is a 1�5 loading of the 	RNase control. Lane 2 shows the 	sample �RNase control. Lanes 3–9 are the wild-type cerebral cortex
samples; lanes 10–15 are the mutant samples. (B) Bands from four separate RNase protection experiments were quantitated by phosphorimaging, the results
were converted to z-scores (i.e., standardized), and the results are presented. Plots were generated by MATLAB boxplot function. Briefly, the median is the
horizontal line inside each box, the interquartile range is represented by the box, the ranges of the data are represented by the whiskers, and any outliers are
represented by crosses. Each pair of boxes represents an experiment; wild-type samples are in blue, mutants are in red. Experiment a: Mecp21lox/y (n � 6) vs.
Mecp2�/y (n � 6), P40–60 cerebral cortex. Experiment b: Mecp21lox/y (n � 7) vs. Mecp2�/y (n � 6), P63 cerebral cortex (Table 1, experiment 6). Experiment c:
Mecp22lox/y, Cam Kinase Cre 93�/o (n � 9) vs. Mecp2�/y (n � 9), P135–180 cerebral cortex (Table 1, experiment 8). Experiment d: Mecp21lox/y (n � 5) vs. Mecp2�/y

(n � 6), P40–60 hippocampus. Asterisks denote comparisons that are statistically significant (P � 0.05 by two-tailed t test). Above each plot are shown the ratio
of the means of mutant to wild type for all of the cerebral cortex samples (experiments a–c, n � 43) as well as the results of a two-tailed Wilcoxon signed rank
test on the combined standardized data. The genes’ data are organized according to their origin as candidates: the top three genes were components of the
optimal predictor (Fig. 1) and the next five plots were candidates because of their appearance in other significantly successful predictors, or due to significant
VERA�SAM or t test scores. The bottom three plots represent the loading controls used.
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rule out the possibility that the essential function of Mecp2 is not
transcriptional, as has been suggested by the biochemical evi-
dence. If this is the case, any changes in gene expression are
secondary to another physiological role of the gene.

It should also be pointed out that Colantuoni et al. (32) have
reported that samples from human Rett patients have more
dramatic transcriptional changes than we observe. This may be
caused by the differential sensitivity of humans and mice to loss
of Mecp2 (note that male mutant mice are viable, whereas it is
thought that many, although not all, human males with MECP2
mutations die perinatally; refs. 2 and 41). It is also possible that
the relatively small sample size analyzed in the Colantuoni et al.
study using disparate expression profiling techniques (which are
likely to be inconsistent; ref. 42) and subsequent confirmation of
array data with the same instead of independent samples (pro-
viding controls for the assay, not the biological variation) did not
adequately control experimental noise and may have led to
false-positive results. Interestingly, a study of human MECP2-
mutant fibroblasts and lymphoblastoid cells suggests that loss of
the Mecp2 protein does not cause reproducible changes in
transcript levels (43).

It is possible that the subtle changes in gene expression found
in our study are caused by the dysregulation of the most
methylation-sensitive promoters, although the particular genes
we identified may not be the primary targets of regulation and

may instead be downstream of sensitive genes. If this were the
case, one would expect that reduction of either additional MBD
family members or of Dnmt1 (the maintenance methyltrans-
ferase) levels would aggravate the subtle molecular phenotype
we see. To this end, the effect of compound mutations on the
organismal and transcriptional phenotypes should be explored
further.

Note Added in Proof. In addition to the two mouse models cited (14, 15),
another targeted disruption of the Mecp2 gene has recently been
published (44).
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