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Summary

Two genetic loci, RP2 and RP3, for X-linked retinitis
pigmentosa (XLRP) have been localized to Xp11.3-
11.23 and Xp21.1, respectively. RP3 appears to account
for 70% of XLRP families; however, mutations in the
RPGR gene (isolated from the RP3 region) are identified
in only 20% of affected families. Close location of XLRP
loci at Xp and a lack of unambiguous clinical criteria
do not permit assignment of genetic subtype in a ma-
jority of XLRP families; nonetheless, in some pedigrees,
both RP2 and RP3 could be excluded as the causative
locus. We report the mapping of a novel locus, RP24,
by haplotype and linkage analysis of a single XLRP ped-
igree. The RP24 locus was identified at Xq26-27 by
genotyping 52 microsatellite markers spanning the entire
X chromosome. A maximum LOD score of 4.21 was
obtained with DXS8106. Haplotype analysis assigned
RP24 within a 23-cM region between the DXS8094
(proximal) and DXS8043 (distal) markers. Other chro-
mosomal regions and known XLRP loci were excluded
by obligate recombination events between markers in
those regions and the disease locus. Hemizygotes from
the RP24 family have early onset of rod photoreceptor
dysfunction; cone receptor function is normal at first,
but there is progressive loss. Patients at advanced stages
show little or no detectable rod or cone function and
have clinical hallmarks of typical RP. Mapping of the
RP24 locus expands our understanding of the genetic
heterogeneity in XLRP and will assist in development
of better tools for diagnosis.
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Introduction

Retinitis pigmentosa (RP) is a heterogeneous group of
retinal degenerative disorders. Hallmarks of these dis-
eases include night blindness, progressive loss of periph-
eral vision, and pigmentary changes in the retina, even-
tually leading to complete loss of vision (Heckenlively
1988). There is tremendous genetic and allelic hetero-
geneity in RP; 125 responsible loci/genes have been
mapped and/or characterized (RetNet database). The
first locus for an X-linked form of RP (XLRP), called
“RP2” (RP type 2), was localized by linkage to a DNA
marker, DXS7 (Bhattacharya et al. 1984), and later was
refined to Xp11.3-11.23 within a 4–5 cM region (Thi-
selton et al. 1996). Genetic heterogeneity in XLRP was
demonstrated by mapping of the second locus, RP3 (RP
type 3), at Xp21.1 (reviewed in Aldred et al. 1994a;
Fujita and Swaroop 1996). Multilocus homogeneity tests
had established RP3 as the major XLRP locus and had
suggested the existence of another locus, RP6 (RP type
6) at Xp21.3 (Musarella et al. 1990; Ott et al. 1990).
The RP15 (RP type 15) locus was mapped to Xp22.13-
22.11 by linkage analysis of a single family with a var-
iant form of RP (McGuire et al. 1995). Genetic studies
from many laboratories have demonstrated that the RP3
subtype may account for 60%–90% of affected XLRP
families (Musarella et al. 1990; Ott et al. 1990; Teague
et al. 1994; Fujita et al. 1997). The RPGR (RP GTPase
regulator) gene was recently determined to be in the RP3
region, by use of a positional cloning strategy (Meindl
et al. 1996; Roepman et al. 1996). However, extensive
mutation screening has revealed RPGR mutations in
only 20% of XLRP (and genetically characterized RP3)
families (Buraczynska et al. 1997; Fujita et al. 1997; M.
Guevara-Fujita, S. Fahrner, and A. Swaroop, unpub-
lished data), suggesting additional genetic heterogeneity.
The RP2 gene has also been cloned recently, and mu-
tations in this gene may account for an additional
15%–20% of XLRP families (Schwahn et al. 1998).

Previously, linkage and heterogeneity analyses were
performed by the genotyping of markers spanning the
short arm of the X chromosome, and statistical analysis
was employed to determine the relative frequency of RP2
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and RP3 subtypes in XLRP families (Musarella et al.
1990; Ott et al. 1990; Teague et al. 1994). Aldred et al.
(1994b) had reported three RP families with apparent
X-linked inheritance that were not linked to the RP2
and RP3 loci. In our haplotype analysis of 38 XLRP
families, the RP3 locus could be unambiguously assigned
to only 11 pedigrees, when obligatory recombination
events were utilized to distinguish the RP3 locus from
the RP2 locus (Fujita et al. 1997). All the known loci
were excluded as the disease locus in three XLRP fam-
ilies that we studied. We report the localization of a novel
XLRP locus to Xq26-27, in a single pedigree, by hap-
lotype and linkage analyses of genetic markers spanning
the entire X chromosome, and we describe the associated
clinical phenotype. This new locus has been designated
“RP24” (RP type 24) by the Human Genome Organi-
zation/Genome Database Nomenclature Committee.

Subjects and Methods

Subjects

Members of a five-generation family with RP (XLRP-
114; fig. 1) were included in this study. Medical records
of ocular examinations on patients were obtained, and
a subset of patients was examined with visual-function
tests. The pedigree indicated an X-linked mode of in-
heritance of disease, with severely affected men, no male-
to-male transmission, and mildly affected or clinically
asymptomatic obligate carrier women. All participants
in the study were fully informed of the nature of the
procedures, and the research was performed in accor-
dance with institutional guidelines and the Declaration
of Helsinki.

Visual-Function Tests

Kinetic and static threshold perimetry was performed
as described elsewhere (Jacobson et al. 1989, 1991,
1997). Sensitivity losses for rods (500 nm stimulus, dark
adapted) and long/middle wavelength (L/M) cones (600
nm stimulus, light adapted) were calculated on the basis
of locus-specific normal values. Full-field electroretino-
grams (ERGs) were performed with similar methods, in
two centers (Retina Foundation of the Southwest, Dallas
and Scheie Eye Institute, Philadelphia), by use of bipolar
contact-lens electrodes and computer-based systems
(Birch and Fish 1987; Jacobson et al. 1989, 1997). In
three affected young males, high–stimulus energy (up to
4.6 log scotopic troland seconds [scot.td.s] blue and 4.1
log photopic troland seconds [phot.td.s] red, in Phila-
delphia, and up to 4.1 log phot.td.s white, in Dallas)
photoresponses were recorded under dark-adapted
(Philadelphia) and light-adapted (Philadelphia and Dal-
las) conditions. The leading edge of the photoresponses
was analyzed by use of physiologically based models of

phototransduction, and maximum amplitude (Rmax) and
sensitivity parameters were estimated for rods and cones
(Cideciyan and Jacobson 1993, 1996; Cideciyan et al.
1998; Hood and Birch 1993, 1995, 1997).

DNA Analysis

Blood samples were collected from participating in-
dividuals, and DNA was extracted by standard proce-
dures. Fifty-two microsatellite markers, spanning the en-
tire X chromosome, were used for genotyping 21 family
members (including seven affected males), who represent
four generations of the XLRP-114 pedigree. Descrip-
tions of the polymorphic markers, genetic distances, and
PCR conditions were obtained from Généthon and/or
the Genome Database.

Linkage Analysis

Two-point and multipoint (five-point) linkage analy-
ses were performed by use of the MLINK and ILINK
programs of the FASTLINK computer package (Lathrop
et al. 1984; Becker et al. 1998). Linkage analysis was
performed by assuming a fully penetrant disease model
without phenocopies. The affected twin brothers (IV-3
and IV-4) were coded as DZ, on the basis of information
provided by the family. Obligate carrier females were
coded as heterozygotes; therefore, a codominant disease
model essentially was used. Three of the females in the
pedigree (III-10, III-11, and III-12; fig. 1) were treated
as phenotypically unknown, since they were not clini-
cally examined. The frequency of the disease-predispos-
ing allele was set to .0001. In the two-point analysis,
the marker-allele frequencies were treated as nuisance
parameters—that is, the likelihood was maximized over
these parameters independently, under the null hypoth-
esis of no linkage and under the alternative hypothesis
of linkage (Terwilliger and Ott 1994).

Results

Exclusion of Previously Reported XLRP Loci

Our a priori hypothesis was that a mutation in one
of the previously characterized loci at Xp (RP15, RP6,
RP3, or RP2) would be responsible for the disease in
the XLRP-114 family. However, the haplotype analysis
revealed obligatory meiotic recombination events be-
tween the disease locus and markers from the region of
the aforementioned XLRP loci (fig. 1; see fig. 2 for the
location of disease and marker loci). As expected from
the haplotypes, the two-point linkage analysis with
markers at Xp provided negative LOD scores (table 1),
which excluded all known XLRP loci as the site of dis-
ease-causing mutation in this family. Markers linked to
loci for other retinal disorders—such as those for con-
genital stationary night blindness loci, at Xp21.1-p11.2,



Figure 1 Pedigree of the XLRP-114 family, showing marker haplotypes in the RP24 region. Marker haplotypes were organized by allowance
of minimum crossover events. Additional microsatellite markers from the region of known XLRP loci at Xp (RP15, RP6, RP3, and RP2) and
choroideremia (CHM) are indicated (see fig. 2 for schematic representation). Marker loci are in the following correlative order, from DXS989
at Xp22.13 (top) to DXS8011 at Xq28 (bottom): Xpter-DXS989 (RP15)-DXS1214 (RP6)-CYBB-RP3/RPGR-DXS1068-DXS7-(RP2)-DXS6941-
Cen-DXS995-DXS1002 (CHM)-DXS1046-DXS8094-DXS1211-DXS1192-DXS8013-DXS1205-DXS8106-DXS8084-DXS8043-DXS8011-
Xqter (see fig. 2). Only pedigree members relevant for the analysis are shown. An asterisk (*) and a double asterisk (**) indicate recombination
events that define the proximal and distal boundaries of the RP24 locus, respectively. The haplotype segregating with the disease locus is boxed.
Three female individuals (III-10, III-11, and III-12; indicated by a circle with a question mark [?] inside the circle) were not clinically evaluated;
of these, III-10 and III-11 carry the disease haplotype (boxed with dotted lines).
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Figure 2 Schematic representation of the human X chromosome,
showing genetic loci for retinal diseases (left) and relevant marker loci
(right). An expanded map of the critical genetic interval for RP24 is
shown with the thick vertical bar, and genetic distances are indicated
in centimorgans (to the right of the marker loci). The map locations
of disease loci were obtained from the Online Mendelian Inheritance
in Man and RetNet databases.

retinoschisis, at Xp22, and choroideremia, at Xq21—
were also tested and demonstrated no evidence of
linkage.

Mapping of a Novel XLRP Locus at Xq

A systematic genotype analysis was then undertaken
with microsatellite markers, separated by 5–20 cM,
spanning the remaining regions of the X chromosome.
The disease status in the XLRP-114 family came into
phase as markers from the Xq26-q27 region were ex-
amined (figs. 1 and 2). Two-point linkage analysis gave
positive and significant LOD scores at a recombination
fraction (v) of .00 for several markers in this region
(DXS1211–DXS8084) (table 2). The LOD scores were

within the range 0.58–4.21, solely depending on the in-
formativeness of the marker, with a maximum LOD
score (Zmax) at for DXS8106 (table 2). In agree-v 5 .00
ment with the two-point results, multipoint analysis gave
a very flat LOD-score curve that was slightly 14, over
this nonrecombinant interval (data not shown).

Marker haplotypes were used to determine the max-
imum genetic interval, as defined by recombination
events in clinically affected or unaffected male individ-
uals in the pedigree. As shown in figure 1, DXS8094
and DXS8043 (separated by 23 cM; see fig. 2 for the
genetic distance between markers) identify the proximal
and distal boundaries of the novel XLRP locus, which
has been designated “RP24” by the HUGO/GDB No-
menclature Committee. In family XLRP-114, no meiotic
crossovers were observed with the nine markers in the
region DXS1211–DXS8084.

Phenotype

Five affected males were examined by visual-function
tests. Two young patients (IV-3 and IV-4) were followed
during ages 5–16 years; one patient (V-1) was evaluated
at age 11 years, and two older patients (III-8 and II-4)
were assessed in the 6th decade of life. At age 11 years,
patient V-1 had a normal eye examination and normal
kinetic perimetry (targets V and I; fig. 3A, left panel).
Static threshold perimetry showed a relatively uniform
loss of rod sensitivity across the visual field (mean field
loss of ∼2 log units), whereas L/M cone sensitivity was
within normal limits, at most test loci (fig. 3A, middle
and right panels). Kinetic perimetry in patient IV-3, at
age 8 years, was also full (target III). The two older
affected males (III-8 and II-4) had typical pigmentary
retinopathy and only a residual central island of vision,
with reduced visual acuities (e.g., 20/50 in patient III-8,
at age 58 years). Records from two other affected males
(IV-1 and IV-2), who are in their 4th decade of life,
described “RP” on clinical examination, with severely
limited visual fields, and retained visual acuity.

Standard ERGs are shown for young male patients at
different disease stages (fig. 3B). Patient V-1 had a re-
duced but recordable rod b-wave, to dim blue flashes of
light in the dark-adapted state. A bright white (maximal
standard) flash elicited a negative waveform, with re-
duced a- and b-wave amplitudes. Cone ERGs were nor-
mal in amplitude and timing. Patient IV-3 had no de-
tectable rod b-wave, reduced a- and b-wave amplitudes
to a maximal stimulus, and cone ERGs that were re-
duced in amplitude and delayed in timing. Patient III-8
(age 58 years) had no detectable ERGs with these stim-
uli. The natural history of cone flicker ERG-amplitude
loss in patients IV-3 and IV-4, over a decade of serial
observations, indicates an average loss of 0.1 log unit
(21%) of remaining cone flicker ERG amplitude per year.

Figure 3C shows ERGs described by use of a model
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Table 1

Two-Point LOD Scores between RP24 and Marker Loci Spanning Xp22.32-11.23

LOCUSa Zmax (v)

LOD SCORE AT v 5

.00 .01 .05 .10 .20 .30 .40 .50

KAL .000 (.500) 2` 27.69 24.28 22.86 21.52 2.78 2.31 .00
DXS989 .000 (.500) 2` 29.43 25.29 23.54 21.87 2.97 2.39 .00
DXS1214 .000 (.500) 2` 24.08 22.27 21.44 2.69 2.32 2.12 .00
CYBB .000 (.500) 2` 23.96 21.96 21.18 2.50 2.19 2.05 .00
DXS1068 .000 (.500) 2` 27.29 23.88 22.47 21.17 2.52 2.17 .00
DXS7 .002 (.473) 22.71 22.39 21.30 2.77 2.31 2.10 2.01 .00
MAOB .000 (.500) 2` 25.68 22.99 21.92 2.93 2.43 2.14 .00
DXS1003 .000 (.500) 2` 24.62 23.40 22.85 21.43 2.59 2.16 .00
DXS1367 .000 (.500) 2` 27.02 24.67 23.14 21.57 2.75 2.26 .00
DXS6849 .000 (.500) 2` 25.03 23.73 22.79 21.36 2.60 2.19 .00
DXS6941 .035 (.424) 2` 23.66 21.69 2.94 2.32 2.06 .03 .00

a The order of the loci is from pter to cen.

of phototransduction in a normal subject and in patient
V-1 and a graphical summary of parameters for three
affected individuals. ERGs evoked by two different in-
tensities of blue flashes (upper and lower traces) and a
red flash (middle trace) are shown; the upper two traces
are scotopically matched, and the lower two traces are
photopically matched. The rod (dashed lines) and cone
(dotted lines) components of the phototransduction
model are estimated to fit the sum (thick solid line) to
the three ERG traces simultaneously (Cideciyan et al.
1998). The ERG of patient V-1, evoked by a bright blue
flash, dark adapted, lacked a b-wave. Rmax and sensitivity
(log j) parameters for rods and cones are plotted as the
logarithm of the ratio to the mean normal; rectangles
show the normal range. Rod Rmax was reduced, but sen-
sitivity was normal for patient V-1; cone Rmax and sen-
sitivity fell within normal limits. Patients IV-3 and IV-4
were tested in light-adapted conditions, to obtain cone
photoresponses; Rmax and sensitivity are plotted with re-
spect to corresponding mean normals. These two af-
fected males had reduced cone Rmax, with normal
sensitivity.

Females who are obligate heterozygotes by history
were not symptomatic. Patient III-7 showed, by peri-
metry, patchy rod and cone sensitivity losses in both eyes
and abnormalities of rod and cone ERGs that are similar
to those reported for females who are obligate carriers
of XLRP (e.g., see Berson et al. 1979; Fishman et al.
1986; Jacobson et al. 1989).

Discussion

We have localized a novel locus (RP24) for XLRP to
Xq26-27, within a 23-cM region, by using extensive
haplotype and linkage analyses. So far, other XLRP loci
have been mapped only to Xp. The assertion that RP3
is the predominant XLRP locus (accounting for 70% of
families) is based on heterogeneity tests, but, interest-

ingly, only 20% of affected families reveal causative mu-
tations in the RPGR gene from the RP3 region. For most
pedigrees, it is difficult to distinguish between XLRP
subtypes, because of the small size of the pedigrees and
the short genetic interval (10–20 cM) that separates the
RP3 and RP2 loci at Xp. In earlier studies, markers
spanning most of the Xq chromosomal region had not
been employed for genetic analysis of affected families.
This is the first study in which the entire X chromosome
was scanned for linkage to the disease locus, and, al-
though the pedigree studied is not very large, we were
able to obtain a significant LOD score of 14 with
DXS8106 at Xq26-27. The mapping of RP24 should
lead to reevaluation of genetic data, with additional
markers and for a larger cohort of XLRP families.

Phenotype analyses of affected male individuals with
XLRP have suggested that rod photoreceptors are an
early site of disease manifestation. In one young hemi-
zygote from the RP24 family who had normal cone func-
tion, there was not only rod photoreceptor outer-seg-
ment disease but also disproportionate loss of rod
bipolar cell activity. Whether the functional abnormality
at or proximal to the rod synapse is a direct manifes-
tation of the defective gene product or a secondary de-
generative process requires further investigation. “Neg-
ative ERGs” have been noted for other forms of RP (e.g.,
see Cideciyan and Jacobson 1993), and rod synaptic
changes have been found in transgenic animals with pri-
mary rod photoreceptor outer-segment disease (e.g., see
Roof et al. 1994; Li et al. 1998). The natural history of
RP24 disease involves progressive loss of both rod and
cone receptor and postreceptor function, with relative
preservation of central versus peripheral function and,
eventually, severe retinal degeneration.

A large number of retinal diseases have been localized
to the X chromosome, but only a few map to Xq (see
fig. 2). Recently, a gene for an X-linked cone dystrophy
(COD2) was assigned to Xq27, in an 8-cM genetic in-



Figure 3 Results of visual-function tests of young males. A, Kinetic perimetry and static threshold perimetry for V-1, at age 11 years.
Static perimetry is displayed as gray-scale maps of rod and cone sensitivity loss: white indicates normal, and black indicates 13 log units of
sensitivity loss for rods and unmeasurable sensitivity for cones; the physiological blind spot is shown as black, at the 127 temporal (“T”) field.
N 5 nasal, I 5 inferior, and S 5 superior. B, Rod, mixed, and cone ERGs for a representative normal subject and for V-1 (age 11 years) and
IV-3 (age 14 years). Stimulus onset is at trace onset. Arrows indicate stimulus onset for 30-Hz flicker in the presence of a background; calibration
bars are shown. Serial cone flicker ERG amplitudes for two hemizygotes were recorded in the absence of a background and with a 0.7–log
unit dimmer stimulus, compared with standard traces; the dashed line indicates the mean normal amplitude. C, Photoresponses (thin solid lines)
to blue (2.3 and 4.6 log scot.td.s, upper and lower traces, respectively) and red (3.6 log phot.td.s, middle trace) stimuli in the dark-adapted
state, for a representative normal subject and affected male V-1. Rod (dashed lines) and cone (dotted lines) components of the phototransduction
activation model and their sum (thick solid line) are shown. Parameters of rod and cone activation are plotted for V-1, IV-3, and IV-4 (ages
11, 15, and 15 years, respectively); boxes represent normal limits.
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Table 2

Two-Point LOD Scores between RP24 and Marker Loci Spanning Xq25-28

LOCUSa Zmax (v)

LOD SCORE AT v 5

.00 .01 .05 .10 .20 .30 .40 .50

DXS1046 1.432 (.147) 2` 2.13 1.05 1.37 1.38 1.08 .61 .00
DXS8094 2.132 (.071) 2` 1.64 2.10 2.11 1.78 1.28 .69 .00
DXS1211 2.966 (.000) 2.97 2.92 2.72 2.46 1.92 1.34 .70 .00
DXS1192 3.612 (.000) 3.61 3.56 3.32 3.02 2.35 1.61 .81 .00
DXS984 .601 (.000) .60 .59 .55 .50 .39 .27 .14 .00
DXS1232 1.204 (.000) 1.20 1.18 1.09 .98 .72 .44 .17 .00
DXS8013 2.782 (.000) 2.78 2.73 2.53 2.26 1.71 1.10 .44 .00
DXS1205 2.819 (.000) 2.82 2.77 2.55 2.28 1.69 1.08 .49 .00
DXS1227 1.505 (.000) 1.50 1.48 1.37 1.23 .93 .59 .25 .00
DXS8106 4.214 (.000) 4.21 4.15 3.88 3.53 2.76 1.91 .96 .00
DXS8084 3.656 (.000) 3.66 3.59 3.34 3.02 2.31 1.53 .73 .00
DXS8043 2.618 (.066) 2` 2.15 2.60 2.57 2.16 1.54 .79 .00
DXS8011 1.656 (.134) 2` .16 1.32 1.62 1.56 1.17 .61 .00

a The order of the loci is from cen to qter.

terval between DXS292 and DXS1113 (Bergen and
Pinckers 1997). This interval has a partial overlap with
the RP24 critical region that we have reported. For the
RP24 family, retinal function and clinical results are
completely different from those described for the COD2
family. Nevertheless, it is conceivable that RP24 and
COD2 are allelic diseases. This hypothesis can be tested
after cloning of either of the responsible genes.

At this stage, the critical region of the RP24 locus
(i.e., the region between DXS8094 and DXS8043) spans
23 cM. We plan to explore additional families unlinked
to Xp loci and/or genotype more members of the XLRP-
114 family, to narrow the genetic interval. A positional
candidate approach will also be employed to facilitate
RP24 cloning. The genes for Lowe oculocerebrorenal
syndrome and for red and green cone pigments (RCP
and GCP, respectively) reside outside the RP24 critical
region. A search of the human expressed-sequence da-
tabase at the National Center for Biotechnology Infor-
mation revealed six genes and 10 unidentified transcripts
(expressed-sequence tags [ESTs]) within a 24-cM region
that includes the RP24 interval. Of the six genes, only
one (cerebellar degeneration–associated protein mRNA
[CDR34]; Chen et al. 1990) appears to be a good can-
didate and will be examined for mutation(s) in the RP24
family. Among the 10 ESTs, 7 have been isolated from
human brain (infant or adult) cDNA libraries and may
be suitable as candidate genes. Elucidation of the mo-
lecular and biochemical defect(s) at the RP24 locus
promises to provide significant insights into visual func-
tion and to facilitate further development of diagnostic
and therapeutic approaches for XLRP.
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