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Summary

Hypomagnesemia due to isolated renal magnesium loss
has previously been demonstrated in two presumably
unrelated Dutch families with autosomal dominant
mode of inheritance. Patients with magnesium deficiency
may suffer from tetany and convulsions, but the patients
with hereditary renal magnesium wasting can also be
clinically nonsymptomatic. In a genomewide linkage
study, we first excluded a possible candidate region, on
chromosome 9q, that encompasses the gene for intestinal
hypomagnesemia with secondary hypocalcemia and,
subsequently, found linkage to markers on chromosome
11q23. Detailed haplotype analyses identified a common
haplotype segregating in both families, suggesting both
their relationship through a common ancestor and the
existence of a single, hypomagnesemia-causing mutation
within them. The maximum two-point LOD score (Zmax)
was found for marker D11S4127 ( at a re-Z 5 6.41max

combination fraction of .00), whereas a multipoint anal-
ysis gave a Zmax of 8.24 between markers D11S4142 and
D11S4171. Key recombination events define a 5.6-cM
region between these two markers on chromosome
11q23. We conclude that this region encompasses a gene,
involved in renal magnesium handling, that is mutated
in our patients and is different from the gene involved
in intestinal magnesium handling.

Introduction

Hypomagnesemia due to isolated renal magnesium loss
is a rare inherited disorder for which both autosomal
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dominant and autosomal recessive modes of inheritance
have been described. Patients suffering from magnesium
deficiency can present with a number of symptoms, in-
cluding tetany and convulsions, but, in patients with the
familial form of magnesium wasting, nonsymptomatic
hypomagnesemia has also been observed (Geven et al.
1987b). The autosomal dominant form (MIM 154020)
appears to be associated with a lowered excretion of
calcium in the urine, whereas in the autosomal recessive
form (MIM 248250) the calcium urinary excretion is
normal (Freeman and Pearson 1966; Milazzo et al.
1981; Rude et al. 1983; Geven et al. 1987a, 1987b).
The renal reabsorption disorder has to be differentiated
from the more commonly occurring hypomagnesemia
caused by intestinal absorption failure (Stromme et al.
1969; Nordio et al. 1971; Haijamae and MacDowall
1972; Chery et al. 1994). The latter form of magnesium
wasting is inherited as an autosomal recessive trait (MIM
602014) and is associated with secondary hypocalcemia
(HSH) (Walder et al. 1997). In addition, urinary mag-
nesium excretion is not increased in this form, since the
excess of magnesium is presumed to be eliminated
through the bowel. Recently, HSH has been linked to a
14-cM interval on chromosome 9q (Walder et al. 1997).
For both the autosomal dominant and autosomal re-
cessive forms of the renal disorder, as well as for the
intestinal disorder, a genetic defect has not been iden-
tified yet.

Isolated renal magnesium wasting is different from
other renal tubular disorders that have hypomagnesemia
as a symptom. In Gitelman syndrome (MIM 263800),
hypomagnesemia is considered one of the hallmarks of
the disease, and, as in the case of the autosomal dom-
inant form of isolated renal magnesium wasting, affected
individuals are hypocalciuric and may lack symptoms
during the first years of life. However, in Gitelman syn-
drome patients, hypokalemia and metabolic alkalosis oc-
cur, which is not the case in isolated renal magnesium
loss. In classical Bartter syndrome (MIM 241200), ap-
proximately one-third of the patients have lowered se-
rum magnesium levels. The presence of hypokalemia,
metabolic alkalosis, and impaired urine-concentration
ability makes differentiation from isolated renal mag-
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nesium loss usually not difficult (recently reviewed by
Rodriguez-Soriano 1998). In another syndrome, familial
hypomagnesemia is associated with hypercalciuria and
nephrocalcinosis (MIM 248250) (Rodriguez-Soriano
and Vallo 1994; Praga et al. 1995). In addition, ocular
abnormalities such as myopia and horizontal nystagmus
are often present.

In the current study, we present the results of a ge-
nomewide linkage search for a locus involved in the
autosomal dominant form of isolated renal hypomag-
nesemia. For this purpose, we have used those members
with an autosomal dominant mode of inheritance of
renal hypomagnesemia who are from the two families
described elsewhere by Geven et al. (1987b) and have
also included some additional family members. We de-
cided to start our search on chromosome 9q, the region
that encompasses the putative gene involved in hypo-
magnesemia caused by intestinal absorption failure
(Walder et al. 1997), and, after exclusion of this region,
we screened the entire genome.

Patients, Materials, and Methods

Patients and Families

Two Dutch families were recruited for this study (fig.
1). In family A, the proband presented with generalized
convulsions at 7 years of age (individual III.9). Serum
magnesium was measured for the first time when the
individual was 15 years old and was found to be 0.39
mmol/liter (normal 0.75–1.25 mmol/liter). In family B,
the disorder became apparent when a 13-year-old girl
(individual III.18) was admitted because of generalized
convulsions. On examination, serum magnesium was
0.40 mmol/liter. Laboratory data showed no other elec-
trolyte abnormalities in either of the two patients. Urine
examination showed a normal excretion of magnesium
(7–9.5 mmol/24 h and 8.3 mmol/24 h) and a lowered
calcium excretion (0.13–0.34 mmol/24 h and 0.57–0.88
mmol/24 h) in the probands in families A and B, re-
spectively (normal calcium excretion 1.1–7.4 mg/kg/24
h) (data are from Geven et al. 1987b). Treatment con-
sisted of oral administration of magnesium. After 35
additional members of family A and 12 additional mem-
bers of family B were tested, the disorder was shown to
be inherited in an autosomal dominant manner. Patients
were identified on the basis of low serum magnesium
(!0.65 mmol/liter) associated with a lowered renal ex-
cretion of calcium. Remarkably, none of the additional
family members with hypomagnesemia showed any of
the symptoms usually related to magnesium deficiency.
Some adult patients in family A developed symptoms of
pseudogout (for more detailed clinical data, see Geven
et al. 1987b).

Marker Typing

Samples of peripheral blood were taken from all avail-
able family members, and DNA was isolated by means
of standard procedures (Miller et al. 1988). Individuals
were genotyped in a genomewide linkage analysis using
373 microsatellite markers with an average spacing of
11 cM. Semiautomated genotyping was performed as
described elsewhere (Saar et al. 1997), by an ABI 377
DNA sequencer. Data were analyzed by Genescan 2.1
software and Genotyper 2.0 software (Perkin-Elmer).

Linkage Analysis

Two-point LOD-score calculations were performed by
the LINKAGE program package (Lathrop and Lalouel
1984) with the help of the newly developed LINKRUN
computer program (T. F. Wienker, personal communi-
cation), using an autosomal dominant fully penetrant
model. For computation of four-point LOD scores (dis-
ease locus and three marker loci), the program VITESSE
(O’Connell and Weeks 1995) was used. Two-point and
multipoint analyses assumed equal allele frequencies.
Haplotyping was performed by CRI-MAP version 2.41
(see the Alphabetical List of Genetic Analysis Software
Website), with the option CHROMPIC and by hand.
For each chromosome, exclusion maps were displayed
by LODVIEW EXCEL 5.0 (Hildebrandt et al. 1993).

The genetic maps and marker data were obtained
from the 1996 Généthon map (Dib et al. 1996), and the
detailed chromosomal localization of the ROMK gene
was obtained from the Stanford Human Genome Center
database. The ideogram in figure 2 was obtained from
the Department of Pathology, University of Washington.
Database searches were performed by use of the Genome
Database.

Results

Exclusion of Chromosome 9q, and Genomewide
Screening

The chromosome 9q region encompassing the putative
gene involved in autosomal intestinal hypomagnesemia
could be excluded by testing some of the markers re-
ported by Walder et al. (1997) and by haplotyping (data
not shown). Subsequently, a total genome scan was per-
formed. Linkage was obtained for marker D11S4127
(11q23) in both families, with a highest joint LOD score
(Zmax) of 5.89 at a maximum recombination fraction
(vmax) of .00 (table 1).

Interval Mapping and Haplotyping

To determine the size of the linked region, the fol-
lowing markers in the vicinity of D11S925 were char-
acterized: D11S927, D11S4111, D11S4142, D11S-



Figure 1 Pedigrees of families A and B, with autosomal dominant isolated renal hypomagnesemia. Blackened symbols denote affected family members. For haplotypes, linked genotypes are
depicted as blackened bars; inferred phenotypes are within parentheses, and, if unknown, are denoted by a question mark (?); and critical recombinants (in individuals III.10 and III.12 in family A)
are indicated by an upward-facing arrow (F). The proband in family A could not be haplotyped. In each family, the proband is indicated by an asterisk (*).
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Figure 2 Left, Ideogram of chromosome 11. a, Closest recombinants (in individuals III.10 and III.12 in family A), limiting the linkage
interval to a 5.6-cM region between D11S4142 and D11S4171. Marker D11S924 was not informative for individual III.12. b, Inferred haplotypes
of the great-grandfathers (individuals I.1 and I.3 in families A and B, respectively). Recombinations defining the haplotype-shared region were
divided arbitrarily between both individuals. Haplotype sharing is shown between D11S4111 and D11S4107.

4092, D11S4127, D11S4195, D11S1356, D11S4104,
D11S924, D11S4171, D11S4107, (D11S925), D11S-
4167, D11S1336, D11S4144, and D11S934.Figure 1
shows the haplotypes for families A and B, with addi-
tional markers around D11S925 (markers D11S927,
D11S4092, D11S924, and D11S4107 are not shown).
Key recombination events were observed with
D11S4171 telomeric (individual III.12 in family A) and
with D11S4142 centromeric (individual III.10 in family
A), limiting the autosomal dominant renal hypomag-
nesemia locus to a 5.6-cM interval (fig. 2a; for LOD
scores, see table 1).

Disease-Haplotype Sharing and Candidate Genes

Haplotyping revealed that patients in both families
share a common haplotype over a length of 10.5 cM
(11 markers were tested) overlapping the critical region
(fig. 2b). We also calculated LOD scores under the pre-
sumption that the two families are related through a
common ancestor—that is, by considering them as one

large family. This resulted in a Zmax of 6.41 (v 5max

), for marker D11S4127. Figure 3 shows a four-point.00
analysis between markers D11S927-D11S4151. The
highest LOD score found was 8.24 between markers
D11S4142 and D11S4171.

Database searches yielded no candidate genes within
the linked region. The nearest plausible candidate, the
ROMK gene, lies ∼16 cM telomeric from D11S4171.
Therefore, the ROMK gene can be excluded as a can-
didate.

Discussion

In this study we have presented a linkage study in two
Dutch families with autosomal dominant isolated renal
magnesium loss. In biochemical studies, the affected
status could clearly be distinguished. However, even
though some of the affected family members have serum
magnesium levels as low as 0.32 mmol/liter, none of
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Table 1

Joint Pairwise LOD Scores, for Families A and B (Calculated as if Unrelated), between
the Locus for Hereditary Isolated Autosomal Dominant Renal Magnesium Loss and
Markers on Chromosome 11

MARKERa

LOD SCORE AT RECOMBINATION FRACTION OF

Zmax vmax.0 .01 .05 .1 .2 .3 .4

D11S927 299.99 26.97 22.97 21.29 2.03 .30 .25
D11S4111 299.99 2.90 3.22 3.02 2.30 1.44 .58 3.22 .05
D11S4142 299.99 3.13 3.44 3.24 2.47 1.53 .59 3.44 .05
D11S4092 4.76 4.66 4.27 3.78 2.74 1.67 .66 4.76 .00
D11S4127 5.89 5.78 5.33 4.74 3.53 2.26 .97 5.89 .00
D11S4195 4.04 3.94 3.57 3.09 2.12 1.17 .38 4.04 .00
D11S1356 3.40 3.32 3.01 2.62 1.83 1.06 .41 3.40 .00
D11S4104 5.06 4.97 4.59 4.11 3.11 2.04 .91 5.06 .00
D11S924 4.86 4.78 4.44 3.99 2.99 1.91 .80 4.86 .00
D11S4171 299.99 3.50 3.79 3.55 2.73 1.75 .73 3.79 .05
D11S4107 299.99 3.30 3.61 3.42 2.68 1.76 .77 3.61 .05
D11S925 5.16 5.06 4.65 4.13 3.02 1.87 .75 5.16 .00
D11S4167 4.62 4.54 4.19 3.74 2.82 1.85 .82 4.62 .00
D11S1336 2.41 2.26 2.13 1.84 1.26 .71 .27 2.41 .00
D11S4144 299.99 2.22 .90 1.16 1.05 .69 .29 1.16 .1
D11S934 299.99 .85 1.89 2.04 1.69 1.07 .44 2.04 .1

a The marker (D11S4127) with the highest joint LOD score is underlined.

them, except the two index cases mentioned, showed
clinical symptoms related to magnesium deficiency. In
the larger family, family A, some affected adult family
members developed symptoms of pseudogout that could
possibly be related to the low serum magnesium values,
but in the smaller family, family B, the lack of symptoms
still requires explanation. The hereditary nature of the
hypomagnesemia, however, enabled us to perform a
linkage study in search of a gene involved in renal mag-
nesium handling.

In the whole-genome screen, we found linkage—and
mapped a locus involved in autosomal dominant isolated
renal hypomagnesemia—to a 5.6-cM region on chro-
mosome 11q23. After additional markers were geno-
typed, it became evident that the two examined families
share the affected haplotype over a region of 10.5 cM,
which overlapped the critical region. The shared hap-
lotype is most likely the result of a founder effect, and
it suggests the existence of a single hypomagnesemia-
causing mutation in both families.

The number of generations back to the common an-
cestor can be very roughly estimated as 6–10. The ex-
pected genomic sharing between two distantly related
(i.e., identical by descent) individuals is 200/n, where n
is the number of meioses that have taken place between
them (i.e., up to the common ancestor and down to the
other individual) (Fisher 1965). The best estimate for n
is therefore , which accounts for 9–10200/10.5 ≈ 19
generations in each family; the largest possible shared
region is 15.9 cM (the distance between the markers
flanking the shared region), which makes the best esti-
mate 6–7 generations in each family. Because the dis-

tribution of the shared region is approximately expo-
nential, the variance is very high, resulting in an SD of
6–10 generations (Te Meerman et al. 1995). Possibly, if
a founder can be identified, more families can be re-
cruited, to further narrow the candidate region. Gene-
alogy studies should prove to be a helpful tool for this
goal.

Database searches did not result in possible candidate
genes within our linked region. We found that a gene
involved in glycogen-storage disease type 1b (Annabi et
al. 1998) is located within the same region as our pu-
tative gene; but the disease phenotypes are completely
unrelated. Also, the ROMK gene was found to be lo-
cated immediately distal to this region. Mutations in this
gene have been shown to cause the antenatal variant of
Bartter syndrome (International Collaborative Study
Group for Bartter-like Syndromes 1997). However, the
ROMK gene was mapped first on chromosome 11q, by
FISH (Krishnan et al. 1995), and later between markers
D11S1351 and D11S4131, by radiation hybrid mapping
(Stanford Human Genome Center map; resolution 500
kb). Therefore, the ROMK gene must lie >16 cM telo-
meric to the critical region and can be effectively ex-
cluded as a candidate for autosomal dominant isolated
renal magnesium wasting.

The physiology of renal magnesium handling has been
studied mainly in the rat. Most reabsorption of mag-
nesium appears to be passive and located in the cortical
thick ascending limb of Henle’s loop (cTAL). It has re-
cently been recognized that, in the rat, the distal con-
voluted tubule (DCT) plays an important role in active
magnesium reabsorption. Although the DCT reabsorbs
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Figure 3 Four-point analysis (disease locus and three marker loci), calculated by VITESSE (O’Connell and Weeks 1995), for the region
from marker D11S927 to marker D11S934. The highest LOD score (8.24) is indicated by a downward-pointing arrowhead (.).

only ∼10% of the total filtered load of magnesium, this
is 70%–80% of the magnesium delivered to the DCT
(recently reviewed by Quamme 1997), suggesting that
an active magnesium-transporting system is expressed
there. If this model applies to the human kidney as well,
this could be the system that is disrupted in our patients.
In that case we would expect the expression of the gene,
mutated in our affected family members, to be located
within the DCT.

In recent years, several genes encoding proteins in-
volved in renal tubular transport have been identified.
Their physiological role became apparent when muta-
tions in these genes were found in renal tubular disor-
ders. Thus, in Bartter syndrome, mutations were found
in the NKCC2 gene (Bartter syndrome type I) (Simon et
al. 1996a; Vargas-Poussou et al. 1998), the ROMK gene
(Bartter syndrome type II) (Simon et al. 1996b; Inter-
national Collaborative Study Group for Bartter-like Syn-
dromes 1997), and the CLCNKB gene (Bartter syn-
drome type III) (Simon et al. 1997). We now know that
the recycling of potassium across the luminal membrane
of the TAL by ROMK is essential for the normal func-
tioning of the Na-K-Cl cotransporter (NKCC2), which
reabsorbs ∼30% of filtered sodium. The CLCNKB gene
encodes a chloride channel and is expressed basolaterally
in the medullary thick ascending limb of Henle (mTAL).
Mutations in this gene, leading to either loss of function
or dysfunction of the channel, impair transepithelial
chlorine transport in the mTAL (reviewed by Rodriguez-
Soriano 1998). Mutations in another chloride-channel

gene, CN5, are associated with Dent disease (MIM
300009) (Lloyd et al. 1996). In patients suffering from
Gitelman syndrome, mutations were found in the
SLC12A3 gene, which encodes the thiazide-sensitive Na-
Cl cotransporter (Simon et al. 1996c). Mutations in an-
other gene involved in renal electrolyte handling, the
calcium-sensing–receptor gene, can cause hypercalciuria
(MIM 601199) (Baron et al. 1996) or, depending on the
type of mutation, hypocalciuria (MIM 601198) (Janicic
et al. 1995). Until now, for magnesium, only bacterial
transporters have been reported (Smith and Maguire
1993; Townsend et al. 1995). Also, the recently isolated
yeast aluminum-resistance genes ALR1 and ALR2 have
been suggested to be involved in magnesium transport
(MacDiarmid and Gardner 1998). Still, even though
magnesium is the fourth most abundant cation in the
body and is the second most abundant intracellular cat-
ion (Kelepouris and Agus 1998), a gene involved in renal
magnesium handling has not yet been found. The es-
tablishment of a locus for autosomal dominant isolated
renal magnesium loss might enable the isolation of such
a gene. Familial isolated renal magnesium loss has been
found in both the autosomal dominant and autosomal
recessive forms. It is unclear whether these two modes
of inheritance are caused by different mutations in the
same gene or whether more than one gene is involved.
Our research is a first step toward identification of one
or more genes involved in renal magnesium handling
and will lead to a better understanding of renal mag-
nesium reabsorption.
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