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Summary

Covariate models have previously been developed as an
extension to affected-sib-pair methods in which the co-
variate effects are jointly estimated with the degree of
excess allele sharing. These models can estimate the dif-
ferences in sib-pair allele sharing that are associated with
measurable environment or genes. When there are no
covariates, the pattern of identical-by-descent allele shar-
ing in affected sib pairs is expected to fall within a small
triangular region of the potential parameter space, under
most genetic models. By restriction of the estimated al-
lele sharing to this triangle, improved power is obtained
in tests for genetic linkage. When the affected-sib-pair
model is generalized to allow for covariates that affect
allele sharing, however, new constraints and new meth-
ods for the application of constraints are required. Three
generalized constraint methods are proposed and eval-
uated by use of simulated data. The results compare the
power of the different methods, with and without covar-
iates, for a single-gene model with age-dependent onset
and for quantitative and qualitative gene-environment
and gene-gene interaction models. Covariates can im-
prove the power to detect linkage and can be particularly
valuable when there are qualitative gene-environment
interactions. In most situations, the best strategy is to
assume that there is no dominance variance and to ob-
tain constrained estimates for covariate models under
this assumption.
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Introduction

Affected-sib-pair models are a popular approach for de-
tection of genetic loci linked to a disease gene when the
mode of inheritance is unknown. Methods for analysis
of affected-sib-pair data generally estimate a function of
the expected allele or haplotype sharing identical by de-
scent (IBD) at a marker locus in the affected pairs. Al-
though the genetic model is unknown for most complex
diseases, there is often epidemiological evidence showing
that measurable environmental factors affect disease
risk, and it is plausible that the presence of such factors
may change the ratio of disease penetrances and hence
affect the evidence for linkage. In the classic model-based
LOD-score linkage models, covariate effects can be in-
corporated by alteration of the disease penetrances in
liability classes (Beaty 1997). In affected-sib-pair linkage
studies, examination of known environmental modifiers
of disease risk can help in providing an understanding
of the disease etiology and can identify subpopulations
in which the evidence for linkage is stronger. Khoury et
al. (1987) and Yang and Khoury (1997) have examined
allele sharing and relative risks in the presence of an
exposure variable, by stratifying a sample of affected sib
pairs by exposure status. More-general models for sib
pairs have been proposed by Dawson et al. (1990) and
Flanders and Khoury (1991 ); each developed a method
for modeling a delayed age at onset and the effects of
other covariates in mixtures of affected and unaffected
sibs.

Explicit covariate models have also been developed as
an extension to affected-sib-pair methods (Greenwood
and Bull 1997; Greenwood 1998), in which the covariate
effects are jointly estimated with the degree of excess
allele sharing. Although, for categorical covariates, the
results will be similar to those obtained by estimation
of the allele sharing in each subgroup, these general mod-
els enjoy the benefit of being able to include continuous
covariates and more than one covariate at once. Covar-
iate models can also be used to evaluate different defi-
nitions of phenotype or severity and to assess how the
evidence for linkage changes with the phenotype.

The expected proportions of sib pairs sharing zero,
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one, or two alleles IBD at a genetic locus have been
expressed in terms of genetic-model parameters and pop-
ulation prevalences for a single gene (Suarez et al. 1978;
Motro and Thomson 1985). Louis et al. (1987) dem-
onstrated that these expected proportions will fall within
a subregion of the potential parameter space defined by

, and , where zj is the expected proportionz < .5 z > 2z1 1 0

of sib pairs sharing j alleles IBD. In addition, Risch
(1990) showed that, for many multigene models without
strong epistasis, the expected allele-sharing pattern for
affected sib pairs falls within the same bounded triangle.
Holmans (1993) showed that constraining the estimated
allele sharing to this “possible triangle” could increase
the power to detect linkage. Craddock et al. (1995) de-
lineated the constraints appropriate for oligogenic mod-
els. Louis et al. (1987) and Whittemore and Tu (1998)
examined the case of three affected sibs and developed
an appropriate constraint region for this case.

In the presence of environmental effects, however, the
allele-sharing estimates will not necessarily fall within
the triangle applicable for simple genetic models. We first
explore potential patterns of allele sharing for one gene
and one covariate. Subsequently, the affected-sib-pair
model with covariates (Greenwood and Bull 1997) is
briefly reviewed, and three approaches for the fitting of
constrained models in this context are proposed. Ap-
propriate constrained models have not been presented
previously for affected- sib-pair models with covariates,
and such constraints can lead to tests for linkage that
have better performance. The power of the models with
covariates and of the various methods for constraining
these models are evaluated by use of data simulated un-
der several different models of gene-environment and
gene-gene interaction.

Allele-Sharing Patterns with One Gene and One
Covariate

Let A denote that an individual is affected with a
disease, and assume that one binary covariate x and one
gene g affect the risk of disease. Under the assumption
that g is biallelic, with a high-risk and a low-risk allele,
let m denote the probability of disease for unexposed
individuals carrying two copies of the low-risk allele,
and let g be the risk difference associated with exposure
for such individuals. Let yj, denote the risk dif-j 5 1,2
ference associated with one or two copies of the high-
risk allele when the individual is unexposed , and(x 5 0)
let dj, represent the gene’s differential impactj 5 1,2
among the exposed . Define . A linear(x 5 1) y 5 d 5 00 0

model for an individual’s disease risk, conditional on his
or her gene and covariate and including a gene-environ-
ment interaction, can then be written as

P(AFg,x) 5 m 1 y 1 gx 1 d x . (1)j j

This model assumes additivity of the genetic and envi-
ronmental factors for disease risk. Alternatively, a lo-
gistic function (Lio and Morton 1997) for the proba-
bility of being affected could be used and would lead to
probabilities that always fall within the bounds of zero
and one, for any values of the parameters.

Assume that there is a specific chromosomal location
being examined, very close to a disease-susceptibility lo-
cus, so that the recombination fraction (v) is 0. For an
affected sib pair (individuals A1,A2) with known covari-
ate values , let the IBD status at this locationX 5 (x ,x )1 2

(measured by data from one or more markers) be de-
noted by , . The expected allele shar-IBD 5 k k 5 0,1,2
ing, zk(X), , at this location can be expressedk 5 0,1,2
as a function of the covariates. The dependence on X
implies that the observed allele sharing in the sample of
affected sib pairs can be expected to vary with the pair’s
covariate values, if the covariates affect the disease prob-
ability. For example, suppose that a sample of affected
sib pairs with breast cancer was collected and that the
sample was divided two groups: pairs in which both sibs
had onset at age !45 years and pairs in which both sibs
had onset at age 175 years. Since the pairs with the
earlier onset are more likely to be carrying a mutation
at BRCA1 or BRCA2, allele sharing (near one of these
loci) in the earlier-onset group would be expected to
deviate further from the null values. In fact, it might be
reasonable to expect a continuum for the expected allele-
sharing values, which approaches the null-hypothesis al-
lele-sharing values as the sib pair’s mean age at onset
increases.

The development of expressions for the expected allele
sharing resembles the approach of Suarez et al. (1978).
By Bayes’s rule,

z (X) 5 P(IBD 5 kFA ,A ,x ,x )k 1 2 1 2

P(A ,A Fx ,x ,IBD 5 k)P(IBD 5 k)1 2 1 25 , (2)
P(A ,A Fx ,x )1 2 1 2

where is the probability that an affectedP(A ,A Fx ,x )1 2 1 2

sib pair with a given set of covariates will be observed.
We assume that , so theP(IBD 5 kFx ,x ) 5 P(IBD 5 k)1 2

IBD status at an unlinked marker should not be depen-
dent on the covariates. The probability that an affected
sib pair will be observed, given the marker IBD status
k, can be written as

P(A ,A Fx ,x ,IBD 5 k)1 2 1 2

5 P(A Fx )P(A FA ,x ,x ,IBD 5 k)1 1 2 1 1 2

5 P(A Fg ,x )P(A Fg ,x )P(g ,g FIBD 5 k) , (3)O 1 1 1 2 2 2 1 2
g ,g :k1 2
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Table 1

Expected Patterns of Allele Sharing in Sib Pairs, with One Binary
Covariate and One Gene, Shown as a Function of Exposure-
Specific Penetrances fj

Model and
Exposure q f0 f1 f2 z0 z1 z2

A:
Neither sib .05 .05 .10 .30 .24 .50 .27
Both sibs .05 .20 .60 .19 .50 .31
One sib .22 .50 .28

B:
Neither sib .05 .05 .05 .05 .25 .50 .25
Both sibs .05 .20 .60 .19 .50 .31
One sib .25 .50 .25

C:
Neither sib .01 .05 .40 .05 .15 .49 .37
Both sibs .45 .80 .45 .23 .50 .27
One sib .20 .49 .30

D:
Neither sib .20 .424 .0424 .0042 .21 .50 .30
Both sibs .10 1.00 1.00 .17 .49 .34
One sib .37 .51 .12

NOTE.—The population frequency of the exposure does not affect
the results shown in this table but will, of course, affect the estimated
allele-sharing proportions in a sample of sib pairs with various
exposures.

where the summation is over all values of g1 and g2, the
genotypes of the first and second members of the pair,
which are possible, given the IBD status k. Given their
genotypes, the disease probabilities of the two sibs are
assumed to be independent, and the penetrances are
modeled by equation (1). As shown in Appendix A, ex-
plicit expressions for the expected allele sharing can be
obtained for this model with one covariate and one bial-
lelic gene, and they are functions of the parameters m,
yj, g, and dj.

The joint probability that an affected sib pair will be
observed is a function of the covariate values of the pair.
When the covariate has no effect, the expected allele
sharing is exactly that specified by Suarez (1978), and,
under the hypothesis that there is no disease gene linked
to the studied marker, the expected proportions of pairs
sharing (0,1,2) alleles IBD are (.25, .5, .25) for Men-
delian segregation patterns of the marker. For a single
binary covariate and a single gene, there could be as
many as three different patterns of allele sharing—for
sib-pair covariate values (0,0) (i.e., both sibs are unex-
posed), (0,1) or (1,0) (i.e., one sib is exposed, and the
other is not), and (1,1) (i.e., both sibs are exposed). For
a continuous covariate, the allele sharing will vary in a
way that depends on the penetrance function. Note that
random ascertainment of affected sib pairs will prefer-
entially sample high-risk exposure patterns.

The kinds of effects that measurable variables can
have on the allele-sharing patterns are illustrated in table
1. In model A, the exposure increases the disease pen-
etrance so that the probability of disease is higher for
exposed individuals carrying one or two high-risk alleles.
The expected allele sharing is shown for pairs in which
both sibs are unexposed, for pairs in which both sibs
are exposed, and for pairs in which only one sib is ex-
posed. Evidently, when both sibs are exposed and the
high-risk allele has a greater effect, the deviations from
the null-hypothesis allele sharing are more marked. For
mixed pairs, which have one exposed sib and one unex-
posed sib, the pattern of allele sharing is intermediate
between those for the unexposed and the exposed pairs.
In model B, the exposure is necessary in order for the
gene to have a deleterious effect. Pairs in which one sib
is exposed, like pairs in which both sibs are unexposed,
will, in this case, show absolutely no evidence for link-
age. Therefore, in unselected samples of sib pairs, under
this genetic model, the evidence for linkage will be
greatly diluted by the contribution of the two kinds of
sib pairs that will never demonstrate linkage. The third
model, C, is one with no gene-environment interaction
on an additive scale, although the exposure alters the
risk for all genotypes. In addition, overdominance is as-
sumed, so that the risk to heterozygotes is greater than
that to the two kinds of homozygotes. Again, all three
exposure patterns for the pair lead to allele-sharing es-

timates that fall within the boundaries of the plausible
triangle.

In all the models described so far (i.e., A–C), devia-
tions from the null-hypothesis allele-sharing values are
in the direction of excess allele sharing, so that 125%
of affected sib pairs are expected to share two alleles
IBD, and the expected sib-pair allele sharing falls within
the possible triangle designated by Louis et al. (1987)
and Holmans (1993). In fact, these possible-triangle
boundaries will always hold in the presence of quanti-
tative gene-environment interactions in which the size
of a genetic effect may be modified by the environment,
but the direction of the effect remains the same. How-
ever, the last model in table 1, model D, shows a strong
gene-environment interaction, in which the gene is pro-
tective in unexposed individuals but confers risk in the
exposed individuals. Although both the allele-sharing
patterns for unexposed pairs and those for exposed pairs
show excess allele sharing, the mixed pair demonstrates
less allele sharing than is expected under the null hy-
pothesis. Therefore, allele-sharing patterns outside the
possible triangle can occur when (a) an exposure changes
the direction of effect of the disease gene and (b) the
sample contains pairs in which the two sibs have dif-
ferent exposures.

Note that any heterogeneity model that assigns whole
families to different risk groups will lead to allele-sharing
estimates that are within the possible triangle, because
two sibs will never differ in their risk grouping. Note
also that, for all examples in the table, the expected



874 Am. J. Hum. Genet. 64:871–885, 1999

proportion sharing one allele IBD is close to .5. Risch
(1990) and Holmans (1993) have also noted that the
dominance variance component is small in most plau-
sible genetic models.

Affected-Sib-Pair Linkage Models with Covariates

If zj, , denotes the expected allele-sharing pro-j 5 0,1,2
portions for affected sib pairs, a test for linkage can be
obtained by taking the log ratio of (a) the likelihood of
the data when the expected allele-sharing proportions zj

have been estimated divided by (b) the likelihood under
the null-hypothesis allele-sharing values of (.25, .5, .25),

ˆ ˆ ˆL(z ,z ,z )0 1 2ˆ ˆ ˆLOD(z ,z ,z ) 5 log0 1 2 10 [ ]L(.25,.5,.25)

(Risch 1990). Multiplied by 2ln(10), this “LOD score”
has an expected distribution under no linkage, pro-2x2

vided that no constraints have been applied to the allele-
sharing estimates.

An extended specification of allele sharing, one that
allows the inclusion of covariates, leads to an extension
of this 2-df test for linkage (Greenwood and Bull 1997).
Let zj(x), , be the generalized expected IBD al-j 5 0,1,2
lele sharing as a function of some covariates x. Let xi

be a vector with rows for P covariates from pairP 1 1
i and with an intercept. A multinomial logistic model
for the allele-sharing proportions,

′exp(b x )j iz (x ) 5 ,j i ′ ′1 1 exp(b x ) 1 exp(b x )0 i 1 i

for and where , constrains the allelej 5 0,1,2 b 5 02

sharing zj to add to 1 for any xi.
Let mi denote relevant marker data for the ith affected

sib pair. Define to be the probabilityp 5 P(IBD 5 jFm )ij i i

of j alleles IBD for pair i at a particular location, given
the marker data, and let be the prob-a 5 P(IBD 5 j)j i

ability of j alleles being IBD under the null hypothesis
of no linkage. Conditional on the sampling of only af-
fected sib pairs and on their observed covariates, the
likelihood for the marker data for the ith sib pair can
be written, with use of Bayes’s rule, as (Kruglyak and
Lander 1995)

2
p P(m )ij iL(b ,b ) 5 z (x ) .O0 1 j i

aj50 j

Under the null hypothesis of no linkage, , (b 5 0 j 5jp

, ), and , . Hence,0,1 p 5 1, ) ,P b 5 log(a /a ) j 5 0,1j0 j 2

the expected allele sharing will be the null values (.25,
.5, .25) for all covariate values. Let . Then ther 5 p /aij ij j

likelihood under the null hypothesis is P(mi), and the
LOD score can then be written as

n 2

LOD(b ,b ) 5 log r z (x ) ,O O[ ]0 1 10 ij j i
i51 j50

for n affected sib pairs. When there is no linkage, 2ln(10)
LOD will be approximately x2 with df. This is2P 1 2
a two-tailed test that detects any departures from the
null-hypothesis allele-sharing values.

The probabilities pij can be estimated at any specific
location, from data on a set of markers, by a multipoint
method based on the work of Lander and Green (1987)
and implemented in Mapmaker/Sibs (Kruglyak and
Lander 1995). Estimation of the remaining parameters
is performed by an extended E-M algorithm. In the E
step, the expected allele-sharing proportions for pair i,

, are calculated for each pair, asz 5 P(IBD 5 jFm )ij i i

r z (x )ij j iz 5 .ij O r z (x )ij j i
j

In the M step, updated estimates of bj are obtained from
a multinomial logistic regression, with IBD status as the
outcome. The expected values zij are used as relative-
frequency weights that correspond to the contribution
of each sib-pair i to each possible IBD outcome j 5

. When there are more than two affected sibs in a0,1,2
family, an adjustment can be performed that equalizes
the contribution of each family. For example, each pair
could be treated as equivalent to 2/Ni independent ob-
servations, where Ni is the number of affected sibs
(Suarez and Van Eerdewegh 1984). Sib pair i would then
contribute to IBD outcome j, with weight 2zij /Ni. We
have not used this or any other weighting function for
multiple sib pairs, because under the null hypothesis such
weights lead to a biased distribution for likelihood-ratio
tests (Abel and Müller-Myhsok 1998; Greenwood and
Bull 1999).

Constraints on the Allele-Sharing Estimates in
Covariate Models

By evaluation of the expressions in Appendix A, in
the absence of gene-environment interaction (i.e., when

), it can be seen that the allele-sharing esti-d 5 d 5 01 2

mates are bounded by and (fig. 1) (Louisz 5 .5 z 5 2z1 1 0

et al. 1987; Risch 1990; Holmans 1993). Suarez et al.
(1978) gave expressions for allele sharing that were
based on the additive and dominant components of ge-
netic variance, and, under the assumption that these var-
iances must be nonnegative, these two boundaries also
follow. Assuming that corresponds to assumingz 5 .51
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Figure 1 The parameter space for allele sharing in affected sib
pair models. the possible triangle of Holmans (1993) is bounded by
unbroken lines. The horizontal line at corresponds to the as-z 5 .51

sumption of no dominance variance. The diagonal line at z 5 2z1 0

corresponds to no additive variance. The oblique dashed line corre-
sponds to the minmax-optimal test of Whittemore and Tu (1998).

that there is no dominance variance, and assuming that
is equivalent to assuming that there is no ad-z 5 2z1 0

ditive variance (when ). Holmans (1993) showedv 5 0
that an estimation method that constrains the zj’s to lie
within this possible triangle leads to increased power to
detect linkage, compared with a general model that left
the estimated allele-sharing proportions unconstrained.
Whittemore and Tu (1998) showed that each of these
boundaries corresponds to an efficient score test under
a particular genetic model: the means test, which is based
on , is optimal under an additive genetic modelz 1 0.5z2 1

(i.e., along the line where ). Similarly, the pro-z 5 .51

portions test, which is based on z2, is optimal when there
is a large dominance variance component, as is seen in
rare recessive traits.

The arguments that Risch (1990) and Holmans (1993)
made in favor of constraints are based on the genetic
model at a population level—that is, the risk to sibs in
the population, or the genetic variance in the population.
It follows from this line of argument that constraints in
models with covariates should apply to the population
from which families are selected. For example, when a
covariate such as an environmental factor is considered,
especially if there is a gene-environment interaction, it
may be more reasonable to apply the constraint to the
whole sample, since the assumptions about the expected
variances in the population might not apply in a par-
ticular exposure subgroup. On the other hand, if a covar-
iate indicates membership in ethnic groups, then the con-
straints could be applied within each ethnic group

separately, since different genes may confer risk in dif-
ferent groups, and the ethnic groups could be considered
different populations.

Therefore, new approaches to constrained estimation
are required for models with covariates, and the power
of such approaches requires investigation. Three ap-
proaches are proposed for investigation.

1. Average Constraints

The population-based arguments for constraints can
be interpreted to mean that the expected value of the
constrained allele-sharing estimates must fall within the
plausible region, where expectation is taken over the
covariate distribution of the population of affected sib
pairs. The average-constraint method is proposed to sat-
isfy this requirement. However, since the covariate dis-
tribution is usually unknown, a feasible way to apply
such a constraint is to sum over the observed covariate
distribution in the sample of affected sibs. Therefore, the
two bounds on the allele-sharing estimates become

and . Lagrange1 n n nS z (x ) 5 0.5 2S z (x ) 5 S z (x )i51 1 i i51 0 i i51 1 in

multipliers are added to the LOD-score equations, to
estimate the constrained IBD allele-sharing values. For
example, the average-constrained estimates for no dom-
inance variance would be obtained by maximization of

n 2

∗LOD (b ,b ) 5 log r z (x )O O0 1 10 ij j i[ ]i51 j50

n

1l [z (x ) 2 0.5] .O 1 i
i51

The algorithm of Holmans (1993) can be adapted to
decide when the average constraints should be applied,
by examining the mean allele sharing over all the sib
pairs, Sizj(xi)/n, for , and then forcing these meansj 5 0,1
to lie either on one of the boundaries or at the null
hypothesis, by use of Holmans’s sequential method for
the application of constraints. The df of the test for
linkage would be reduced by 1 if one average constraint
is used and would be reduced by 2 if the mean allele
sharing is constrained to the null hypothesis. Note that,
with covariate models, the mean could be constrained
to the null hypothesis, although, for any specific covari-
ate value, the allele-sharing estimates might not be (.25,
.5, .25). Average constraints can be applied to a model
containing any number of covariates of any type.

2. Subgroup-Triangle Constraints

If all covariates are categorical, then the usual con-
straints for models without covariates can be applied in
each of the subgroups defined by the covariates, and the
LOD scores can then be summed across the subgroups.
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Suppose that there are S subgroups. There would be 2S
df associated with unconstrained allele sharing in a
model with covariates (including all appropriate inter-
action terms), and in a constrained model the df would
be between 0 and 2S. Subgroup constraints can be ap-
plied to models with continuous covariates if the con-
tinuous covariate is categorized into a small number of
disjoint groups.

3. Simultaneous-Boundary Constraints

A third approach can be thought of as constraining
the allele sharing to one of the boundaries, for each value
of the covariates. In essence, this corresponds to a covari-
ate model that has only df, instead of df.P 1 1 2P 1 2
In figure 1, no dominance variance corresponds to the
horizontal line at . A boundary constraint can bez 5 .51

defined that forces always, and the binomialz (x ) 5 .51 i

“log-likelihood” used for estimation of the covariate ef-
fects (inside the E-M algorithm) becomes

n

∗∗LOD (b ) 5 {z log[z (x )]O0 i0 0 i
i51

1z log[0.5 2 z (x )]} ,i2 0 i

where

′exp(b x )0 iz (x ) 50 i ′2 1 2 exp(b x )0 i

and z1(xi) is fixed at .5. The E step remains unchanged.
Another simultaneous-boundary constraint can be de-

fined by assuming that there is no additive variance; this
model will force all allele-sharing estimates to fall on
the line described by (for details, see Ap-z (x ) 5 2z (x )1 i 0 i

pendix B). Furthermore, a third simultaneous-boundary
constraint can be defined by use of the minmax-optimal
test of Whittemore and Tu (1998), where z (x ) 51 i

(Appendix B; see the dashed line in0.335 1 0.58z (x )0 0

fig. 1). Although this line falls within the possible triangle
and not on an edge, the concept and the estimation ap-
proach are very similar to those for the other two si-
multaneous-boundary constraints, in that, for any value
of xi, the allele-sharing estimates are forced to fall on
this line. These simultaneous-boundary approaches can
be used for any number or combination of covariates.
Unlike the other two constraint methods, no decision is
made, during the estimation process, about which
boundary is appropriate. A single boundary constraint
is chosen in advance and is then applied to all the data
and for all covariates.

Although the unconstrained LOD scores, when mul-
tiplied by 2ln(10), have an asymptotic x2 distribution
under the null hypothesis, the constrained test statistics

may not be x2 distributed, because the allele-sharing es-
timates have different df values, depending on the con-
straints applied. In particular, the estimates obtained by
either the average-constraint method or the subgroup-
constraint method will not have a x2 distribution. Hol-
mans (1993) discussed the distribution of affected-sib-
pair tests in constrained models without covariates and
showed that the distribution (which is a mixture of x2

distributions with 1 and 2 df) depends on the probability
that the estimates will fall into different regions of figure
1. In models with covariates, the theoretical distribution
will depend on the unknown distributions of the covari-
ates. Therefore, we recommend the use of Monte Carlo
(simulated) P values to assess the significance of linkage
tests under these constrained models.

The simultaneous boundary–constraint methods,
however, will lead to a LOD-score test that does have
an asymptotic x2 distribution. As long as the estimated
allele sharing is allowed to fall anywhere on the chosen
boundary, even outside the possible triangle, these tests
for linkage are expected to follow a distribution for2xP

P covariates. For families consisting of no more than
one affected sib pair, asymptotic significance values
could be obtained for these models. However, since mul-
tiple affected sibs per family can lead to dependence
between sib pairs, especially for incompletely informa-
tive markers (Kong et al. 1997), it may be preferable to
use simulated P values for all significance testing.

When subgroups are of intrinsic interest, then the
LOD scores can be examined for each subgroup sepa-
rately. Within each subgroup, constraints can be applied
by use of an appropriate method. For example, if the
covariate is ethnicity, then Holmans’s constraint method
can be applied within each ethnic group. Suppose that
there are two covariates, ethnicity and mean age at onset.
Then, within each ethnic group, a choice can be made
as to which constraint method would be appropriate for
a model containing mean age at onset. Testing for link-
age within each subgroup, however, will make the prob-
ability that at least one subgroup test is significant, in
the absence of linkage, higher than the nominal type I
error rate. In this situation, simulation methods can be
used to control type I error and to obtain adjusted P
values for the linkage tests.

Simulation Study

Design/Methods

Simulations were undertaken to evaluate the perform-
ance of the extended affected-sib-pair model with covari-
ates and constraints. Nuclear families with at least two
children were generated under the assumption of ran-
dom mating and no segregation distortion. The number



Greenwood and Bull: Affected-Sib-Pair Models with Covariates 877

of sibs was based on the truncated geometric distribution
, for , and d was cho-22kP(s 5 k) 5 d(1 2 d) k 5 2,3,) ,9

sen to be .45. The family was ascertained through a
proband of age 20 years. This individual’s birth order
in the family was randomly chosen from the numbers 1
through s, where s is the number of children in the family.
Then ages for the older sibs were created by consecutive
addition of 2 years to the proband’s age; ages for
younger sibs were calculated by consecutive subtraction
of 2. This method of assignment of ages led to a mini-
mum possible age of 4 years and to a maximum possible
age of 36 years. One fully informative marker was cre-
ated in the parents, and the alleles were segregated ran-
domly to all offspring. A disease gene was assumed to
be linked to this marker, with . For various modelsv 5 0
for the probability of disease (described below), the af-
fection status was determined for all children in a family.
Then the affected offspring in families with at least two
affected children were retained for analysis. The models
that were used to generate the data included a single-
major-gene model, a quantitative gene-environment in-
teraction, and a qualitative gene-gene interaction.

Simulated Model 1: A Single Major Gene Affecting
Age at Onset, with No Environmental Factors

A single gene acting in a dominant manner was as-
sumed to increase the risk of disease and to lower the
age at onset, compared with noncarriers of the gene.
The lifetime risk of disease for carriers was assumed to
be .90, and that for noncarriers was assumed to be .12,
and the disease allele was assumed to have a population
prevalence of .003 (similar to the lifetime disease prob-
ability and allele frequency of BRCA1, in linkage
studies). Given that an individual was randomly assigned
to be susceptible to disease, the age at onset was gen-
erated from a normal distribution with an SD of 4 years
and a mean of 23 years in carriers and 28 years in non-
carriers. (These ages are reasonable, in light of the ob-
served ages of the sibs in the generated data, and are
not meant to be realistic for breast cancer data). Indi-
viduals who were younger than their generated age at
onset were considered to be unaffected. For each family
with at least two affected children, two continuous co-
variates were calculated: the mean age at onset and the
maximum age at onset, of all affected children in the
family. In addition, a categorical covariate was created
that was 1 when the mean age at onset was <23 years
and that was 0 otherwise. Fifty families with at least
two affected children were ascertained for each data set.

Simulated Model 2: Quantitative Gene-Environment
Interaction

Sibs were randomly “exposed,” with probability .5,
to an environmental agent; no intrafamilial clustering

was assumed for the exposure. Within this structure, two
different models for gene-environment interaction were
assumed. In each case, the age at onset among suscep-
tible individuals was assumed to be normally distributed,
with a mean of 25 years and an SD of 4 years. One
hundred families with at least two affected children were
ascertained, and the frequency of the high-risk allele was
assumed to be .2.

Model 2a.—In unexposed individuals the linked dis-
ease-susceptibility gene has no effect, but in exposed in-
dividuals the gene acts in a mainly recessive manner. The
lifetime risks of disease were assumed to be .05 for non-
carriers and unexposed gene carriers, .20 for exposed
heterozygous carriers, and .60 for exposed homozygous
carriers (equivalent to model B in table 1).

Model 2b.—The effect of the linked gene is present
in both exposed and unexposed individuals, but the ge-
netic effect is stronger among the exposed. The lifetime
risks of disease were assumed to be .05 for noncarriers
(either exposed or unexposed), .10 for unexposed het-
erozygous carriers, .20 for exposed heterozygous carri-
ers, .30 for unexposed homozygous carriers, and .60 for
exposed homozygous carriers (equivalent to model A in
table 1).

For each model, two binary covariates were created.
One of them indicated whether the sibs were concor-
dantly exposed, and the other indicated whether only
one sib was exposed.

Simulated Model 3: Qualitative Gene-Gene Interaction

A measured (unlinked) common gene lowers age at
onset but does not affect lifetime risk, and an unknown
rare (linked) gene lowers age at onset and increases the
disease risk substantially. However, no individuals car-
rying both genes are in the sample. This might occur if,
for example, the presence of both genes was lethal. The
rare gene has an allele frequency of .05 and lifetime
penetrances of .05, .30, and .80 for carriers of zero, one,
and two copies, respectively. The common gene is as-
sumed to have an allele frequency of .30. If a sib were
randomly chosen to get the disease during his or her
lifetime (with these penetrance values being assumed),
then the age at onset was generated from a normal dis-
tribution with a mean of 28 years (SD of 4 years) for
an individual carrying neither gene but with a mean of
24 years for an individual carrying one of the two genes.
One binary covariate was created that indicated whether
the sib pair was discordant or concordant for the pres-
ence of the measured common gene. One hundred fam-
ilies were generated.

For each simulated data set, linkage tests using the
likelihood-ratio LOD scores presented above were cal-
culated with and without covariates, under each of the
possible constraint methods. To evaluate the distribution
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Table 2

LOD Scores and Power for Simulated Model 1, a Single-Gene Model with Earlier Age at Onset in Carriers

CONSTRAINT METHOD AND COVARIATE(S)a

MEAN

LOD

SCORE df

5% POWERb 1% POWERb

Empirical x2 Empirical x2

Unconstrained models:
No covariates 2.20 2 .70 .71 .42 .50
Age at onset <23 years 3.40 4 .72 .77 .40 .57
Maximum age at onset 3.22 4 .73 .75 .42 .54
Mean age at onset 3.50 4 .77 .79 .50 .59

Boundary-constrained tests with no dominance variance:
No covariates 1.97 1 .74 .76 .49 .60
Age at onset <23 years, simultaneous-boundary constraint with no dominance variance 2.94 2 .82 .85 .56 .69
Maximum age at onset, simultaneous-boundary constraint with no dominance variance 2.79 2 .83 .84 .57 .69
Mean age at onset, simultaneous-boundary constraint with no dominance variance 3.08 2 .87 .89 .67 .73

Triangle constraint:
No covariates 1.94 1.4 .72 NA .46 NA
Age at onset <23 years, subgroup-triangle constraint 2.93 2.3 .80 NA .53 NA
Age at onset <23 years, average-triangle constraint 2.88 3.2 .67 NA .43 NA
Mean age at onset, average-triangle constraint 2.99 3.2 .71 NA .49 NA

Other constraints:
No covariates, no additive variance 1.26 1 .53 .56 .30 .33
Mean age at onset, no additive variance, simultaneous-boundary constraint 1.88 2 .58 .58 .32 .38
No covariates, minmax-optimal constraint 1.78 1 .71 .73 .45 .53
Mean age at onset, minmax-optimal simultaneous-boundary constraint 2.61 2 .82 .80 .53 .57

a Estimates did not converge, in at least one estimation method, for 7/500 linked simulated data sets when the binary covariate for age at
onset <23 years was used; these data sets were excluded from the summaries. For maximum age at onset, 21/500 linked data sets were excluded
because of nonconvergence; for mean age at onset, 34/500 linked data sets were excluded.

b NA 5 not applicable.

of the linkage tests under the null hypothesis, for each
model a set of 5,000 simulations was undertaken in
which the disease-susceptibility locus of interest was un-
linked to the marker. Percentiles of the distributions of
the LOD scores from these unlinked runs were used to
evaluate the performance of the tests under linkage, for
both 5% type I error and 1% type I error. The power
of the different constraint methods was assessed by com-
parison of the percentage of the linked data sets in which
the tests for linkage exceeded the chosen percentiles of
the null distribution. For test statistics that should have
a x2 distribution (for independent sib pairs), the asymp-
totic power is also given.

Results

Tables 2–4 present the results of the simulations for
the three generating models. In each case, 500 simulated
data sets were created in which there was linkage to the
marker locus, and 5,000 data sets without linkage were
generated to evaluate the empirical power. For some es-
timation methods, the E-M algorithm did not converge
in every case; data sets for which this occurred were then
excluded from the summaries for all estimation methods.
Good starting values specific to the generating model
and the estimation method increased the convergence
rates, but it was not feasible to alter starting values in-

dividually for each simulated data set to attempt to find
a converged solution. For model 1, the age-at-onset
model, !7% of the data sets had to be excluded from
the summaries. For model 2a, 16% of the linked data
sets were excluded; for model 2b, 2%; for model 3,
almost 30%. In all cases, it was in the models with
covariates that the convergence problems occurred, and
it was the simultaneous boundary–constraint methods
that were the most difficult. Convergence with the min-
max-optimal method proved to be particularly difficult,
and so the summary statistics were recalculated, with
this method’s results being ignored. Then, only 9% of
the data sets were excluded from model 2a, and 16%
were excluded from model 3. The average LOD scores
and empirical powers were in close agreement, between
the summaries that did or did not include the minmax-
optimal results.

In all tables, the df value refers to the number of pa-
rameters estimated. For the models using the possible-
triangle constraints, different numbers of parameters are
estimated in different data sets, and the df value reported
is the average over the simulations. The results discussed
focus on the estimates obtained by use of the empirical
null distribution and 5% power.

Effects of Inclusion of Covariates in Models

Table 2 shows LOD scores and empirical power es-
timates for the single-gene model in which age at onset
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Table 3

LOD Scores and Power for Simulated Model 2

CONSTRAINT METHOD AND COVARIATES

MEAN

LOD
SCORE df

5% POWER 1% POWER

Empirical x2 Empirical x2

Model 2a:a

Unconstrained models:
No covariates .99 2 .25 .28 .09 .11
Two covariates for pair exposure 2.21 6 .27 .27 .11 .13

Constrained models:
No covariates, no dominance variance .77 1 .32 .33 .11 .17
Two covariates, simultaneous-boundary constraint with no dominance variance 1.56 3 .36 .36 .18 .18
No covariates, triangle constraint .87 1.2 .34 NA .14 NA
Two covariates, average-triangle constraint 1.89 5.0 .29 NA .11 NA
Two covariates, subgroup-triangle constraint 1.50 2.7 .36 NA .13 NA
No covariates, minmax-optimal constraint .76 1 .30 .33 .10 .17
Two covariates, minmax-optimal constraint 1.45 3 .32 .32 .13 .14

Model 2b:b

Unconstrained models:
No covariates 1.47 2 .42 .48 .13 .26
Two covariates for pair exposure 2.42 6 .30 .34 .12 .16

Constrained models:
No covariates, no dominance variance 1.25 1 .55 .57 .27 .34
Two covariates, simultaneous-boundary constraint with no dominance variance 1.73 3 .42 .43 .20 .23
No covariates, triangle constraint 1.32 1.4 .56 NA .22 NA
Two covariates, average-triangle constraint 2.05 5.2 .35 NA .16 NA
Two covariates, subgroup-triangle constraint 1.93 3.5 .51 NA .22 NA
No covariates, minmax-optimal constraint 1.23 1 .54 .54 .26 .33
Two covariates, minmax-optimal constraint 1.72 3 .44 .42 .20 .20

a Estimates did not converge for at least one estimation method, for 82/500 data sets simulated under linkage. When the minmax-optimal
method was not estimated, only 45/500 data sets experienced convergence problems.

b Estimates did not converge for 12/500 simulated linked data sets.

is reduced in carriers. Three different covariate models
were fitted to the same data—one with the mean age at
onset in the affected sibs in each family, one with max-
imum age at onset, and one with a dichotomous variable
for mean age at onset <23 years. The disease gene for
the age-at-onset model had a large effect, and power
was quite good in all models. Including either the max-
imum age-at-onset covariate or the dichotomous age-at-
onset covariate for this model improved power nonsig-
nificantly (2%–3%) for the unconstrained model, but
the covariate for mean age at onset significantly (P !

, for comparison of the two proportions) increased.01
the power to detect linkage. When no dominance vari-
ance was assumed, the covariate for mean age at onset
again increased power more than did the other covari-
ates. In fact, the covariate for mean age at onset was the
best choice for age-at-onset coding for any constraint
method. This was probably due to the model used to
generate the data, in which the age at onset was assumed
to be normally distributed with a downward shift in the
mean for carriers of the disease-susceptibility gene. The
analysis of a different generating model might require a
different parameterization of the age-at-onset covariate.

Table 3 shows results for the quantitative gene-ex-
posure interaction in simulated models 2a and 2b (these

correspond, respectively, to models B and A in table 1).
For a necessary exposure (model 2a in the top half of
table 3), the power is low. In the section on expected
allele sharing with one covariate and one gene, it was
shown that, for a necessary exposure, only the sib pairs
in which both individuals are exposed will have expected
allele sharing that deviates from that of the null hy-
pothesis (table 1). The simultaneous-boundary con-
straint, which assumes that there is no dominance var-
iance in any of the three covariate groups, gives an
empirical power of 36%, which is not significantly
higher than the power of 32% for a model with no
covariates and with no dominance variance assumed.
The use of covariates, however, will estimate allele shar-
ing in the three subgroups and could therefore show
which subgroup is contributing most to the evidence for
linkage.

In the bottom of table 3, the disease-susceptibility gene
has an effect in both exposure groups, but the impact
is more pronounced among the exposed individuals.
Here the models with covariates have lower power than
is seen in the models without covariates, when the con-
straint method is the same. Essentially, the gene-envi-
ronment interaction is only a small quantitative one, and
all groups show similar evidence for linkage. Under these
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Table 4

LOD Scores and Power for Simulated Model 3, with a Covariate for Concordance at the Measured Common Gene

CONSTRAINT METHOD AND COVARIATESa

MEAN

LOD

SCORE df

5% POWER 1% POWER

Empirical x2 Empirical x2

Unconstrained models:
No covariates 1.57 2 .51 .50 .27 .27
With covariate 2.62 4 .58 .61 .34 .41

Constrained models:
No covariates, no dominance variance 1.37 1 .64 .66 .35 .39
With covariate, simultaneous-boundary constraint with no dominance variance 2.18 2 .68 .72 .45 .50
No covariates, triangle constraint 1.42 1.4 .68 NA .38 NA
With covariate, average-triangle constraint 2.28 3.3 .62 NA .38 NA
With covariate, subgroup-triangle constraint 1.89 1.8 .64 NA .38 NA
No covariates, no additive variance .93 1 .43 .44 .23 .23
With covariate, no additive variance 1.58 2 .49 .52 .25 .30

a When the minmax-optimal method was not estimated, estimates did not converge for at least one of the other estimation methods, for
78/500 data sets simulated under linkage.

conditions, the tests with covariate effects and additional
df generally do not perform as well as tests in models
with no covariates.

In table 4, a model with a strong qualitative gene-gene
interaction was used to generate the sib-pair data. Many
data sets experienced convergence problems; the results
in table 4 are based on a simulation in which the min-
max-optimal method was not estimated. However,
power estimates were very similar when data sets were
excluded when the minmax-optimal method did not
converge, so the data sets that were excluded do not
strongly affect the power relationships. For an uncon-
strained model, there is an increase in power, from 51%
to 58% ( ), when the covariate is included. WhenP 5 .04
no dominance variance is assumed, there is a nonsig-
nificant increase in power, from 64% to 68%, when the
covariate for concordance is included. So the covariate
for concordance at the measured common gene has some
effect, but it does not explain a large proportion of the
allele-sharing variability.

Subgroup Testing

Table 5 shows the results for linkage tests conducted
in specific covariate-defined subgroups of the data. Al-
though the apparent power to detect linkage can be
higher in certain subgroups than in the overall sample,
this power may be artificially inflated if all subgroups
are tested individually for linkage, since the probability
of a type I error increases when several groups are ex-
amined. The second to the last column of table 5, there-
fore, shows empirical power estimates that have been
corrected for the expected inflation in type I error. From
the unlinked simulations, the maximum LOD score was
calculated across the subgroups defined by the covari-
ates. Then the linked-subgroup LOD scores were com-
pared with the empirical distribution of the maxima. For

each of the simulated models, the corrected empirical
power estimates are 7%–10% lower than the uncor-
rected estimates. Therefore, if the subgroup with the
strongest linkage were known in advance, better power
could be obtained by examination of only that subgroup.
However, if all subgroups are examined during the
search for linkage, better or equivalent power can be
obtained by use of a covariate model with an appropriate
constraint than by a search of all subgroups one by one
(see the last column of table 5).

Effect of Constraints on Models with Covariates

In all the simulations performed here, the simulta-
neous boundary–constraint methods that either assumed
no additive variance or used the minmax opti-
mal–constraint line performed quite poorly and had
power lower than that of the boundary-constraint meth-
ods that assumed no dominance variance. For this rea-
son, the tables present only a few results from these two
constraint methods. For illustration, the bottom sections
of tables 2–4 show a few of the power estimates obtained
by these methods.

In table 2, application of the triangle constraint had
a negligible effect on power in the model with no covari-
ates, probably because the gene had a strong effect, and
hence the allele-sharing estimates were almost always
within the possible triangle. However, the average tri-
angle–constraint method did not perform well and had
power lower than that of the corresponding unconstrai-
ned covariate model. The subgroup triangle–constraint
method improved power significantly and performed
very well (with the covariate for age at onset <23 years,
power [at 5%] increased from 72% to 80%), but the
best power was obtained by application of the simul-
taneous-boundary constraint of no dominance variance,
which improved the power by >12%–17% (depending
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Table 5

Subgroup Tests for Group with Strongest Evidence for Linkage, from Simulated Models 1–3

CONSTRAINT METHOD

MEAN

LOD
SCORE df

5% SUBGROUP POWER
5% POWER

WITH

COVARIATESUsual
Corrected for

Multiple Testing

Model 1, with mean age at onset <23 years:
Unconstrained 2.88 2 .80 .72 .72
No dominance variance 2.65 1 .88 .80 .82
Triangle constraint 2.66 1.4 .85 .79 .80a

Model 2a, with exposure necessary and both sibs exposed:
Unconstrained 1.36 2 .37 .30 .27
No dominance variance 1.12 1 .47 .38 .36
Triangle constraint 1.20 1.4 .50 .38 .36a

Model 3, with sibs concordant for second gene:
Unconstrained 2.03 2 .66 .56 .58
No dominance variance 1.82 1 .77 .65 .68
Triangle constraint 1.83 1.4 .76 .64 .64a

The last column shows the power from an overall model with covariates and the appropriate constraint.
a Estimates obtained by use of subgroup-triangle constraints with covariates.

on the covariate) over that of the unconstrained model
with no covariates ( ).P ! .0001

The simultaneous boundary of no additive variance
tended to give very poor power. This is not surprising,
since, in the unconstrained model with no covariates,
the allele sharing for z1 was estimated to be .497, almost
.5. It follows, therefore, that the minmax opti-
mal–constraint method had power intermediate between
those of the two other simultaneous-boundary methods.

In table 3, for model 2a, again the best power is ob-
tained by fitting of the simultaneous-boundary method
assuming no dominance variance (with covariates for
pair exposure), but the subgroup triangle–constraint
method does just as well. However, for model 2b, the
triangle-constraint method without covariates performs
as well as the model assuming no dominance variance
and without covariates. As discussed above, the covari-
ates do not help the power for this example, because
they have such a small effect. However, the appropriate
constraint method can dramatically improve power,
compared with that of the unconstrained models.

The allele-sharing patterns estimated in simulated
models 2a and 2b (shown in table 6) are very similar to
the expected patterns seen, in table 1, for a single gene
and a single exposure variable, despite the introduction
of a range of ages and an age-at-onset distribution. For
example, for simulated model 2a, when the exposure is
necessary for increased risk, when only one sib is ex-
posed, the mean allele-sharing estimates are (.25, .49,
.25), which are very close to the expected, null-hypoth-
esis values. In all subgroups, , so assuming thatẑ ≈ .51

there is no dominance variance is a better strategy than
either constraining the estimates to the minmax-optimal
line or assuming that there is no additive variance. Also,
the low power to detect covariate effects in simulated

model 2b could have been deduced from table 1 by com-
parison of the expected allele-sharing values for exposed
individuals versus those for unexposed individuals.

In table 4, assuming that there is no dominance var-
iance leads to a dramatic improvement in power of the
model with no constraints and no covariates (from 51%
to 64%, for 5% type I error). However, the power for
the triangle constraints of Holmans (1993) is even better
(although not significantly better), at 68%, which is as
good as the simultaneous-boundary method of no dom-
inance variance with the covariate for concordance. In
the subgroup of sib pairs that are discordant for their
exposure to the second gene, the unconstrained allele-
sharing estimates are , well out-ˆ ˆ ˆ(z ,z ,z ) 5 (.35,.46,.19)0 1 2

side the possible triangle, although allele sharing for the
concordant sib pairs falls within the triangle (.13, .49,
.37). The discordant pairs are, however, relatively rare
in the sample (∼12% of all pairs). This was responsible
for the occasional difficulties when the parameters of the
covariate models were estimated, and it also means that
the overall LOD scores are mainly based on allele-shar-
ing estimates for concordant pairs. If these discordant
pairs were more common in the sample, the models with
covariates could be expected to have much better power
than is seen for the models without covariates. In both
subgroups, the estimated value of z1 is near .5, and there-
fore the simultaneous-boundary constraint assuming no
dominance variance is again a good choice of constraint
method.

Although empirical significance levels were used to
compare all the results reported here, it is worth noting
again that the simultaneous-boundary methods lead to
linkage tests that are asymptotically x2 for independent
sib pairs and that, therefore, asymptotic significance lev-
els can be obtained for these tests when there are only
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Table 6

Unconstrained Allele-Sharing Estimates from the Simulations Based on Simulated
Models 2a and 2b, with Quantitative Gene-Environment Interaction

Subgroup ẑ0 ẑ1 ẑ2

Simulated model 2a: exposure necessary for increased risk:
Both sibs unexposed .245 .481 .274
One sib exposed .253 .493 .254
Both sibs exposed .170 .488 .342

Simulated model 2b: exposure-increased risk:
Both sibs unexposed .208 .481 .311
One sib exposed .191 .490 .319
Both sibs exposed .172 .487 .341

NOTE.—These models correspond to models B and A, respectively, in table 1.

two affected sibs per family. In these simulations, how-
ever, there were multiple affected sibs per family. The
dependence between familial sib pairs leads to the in-
flated power estimates seen when the x2 distribution is
assumed (Kong et al. 1997; Abel and Müller-Myhsok
1998). The inflation of the test statistics becomes more
severe in the tail of the distribution, and therefore the
agreement between the empirical and asymptotic power
estimates is poorer when 1% type I error is used.

Discussion

Models for affected-sib-pair analyses with covariates,
with and without constraints, have been presented, and
three new constraint methods have been proposed and
evaluated. As in any multiple-regression model, covari-
ates must be chosen and formulated, and this requires
some knowledge of the epidemiology of the disease un-
der study, in order to be fully effective. In general, any
covariates that assign whole families into groups will
always lead to either null or excess allele sharing between
affected sibs, because such covariates will never differ
between sibs in the same family. Models with no covari-
ates, in this case, will often do as well as or better than
covariate models, because they have fewer df. Never-
theless, in some situations, such as that in the first sim-
ulated example, covariates will improve power, and like-
lihood-ratio tests can be used to identify sib pairs with
especially strong evidence for linkage. If there are good
a priori reasons to expect the penetrances to vary with
a continuous covariate, then a model that allows allele
sharing to vary, in a smooth fashion, with a parameter
such as age at onset (i.e., a model with no intercept) can
have substantially improved power to detect linkage.

In general, using a constrained model improves the
power of the analysis. The results here agree with those
in Holmans’s (1993) paper, which showed that a con-
strained model should be more powerful than one with-
out any constraints. In fact, this is always true for models
without covariates, although, in the models that we have

investigated, application of the constraint of no domi-
nance variance gave better power than was seen for the
triangle constraints. For models with covariates, the ef-
fect of constraints is a function of the allele sharing in
the subgroups defined by the covariates. When all sub-
groups of sib pairs show either excess allele sharing or
null allele sharing, constraints continue to improve the
power to detect linkage.

When there is more than one covariate, some com-
bination of the three constraint methods (average, tri-
angle subgroup, and simultaneous boundary) would be
possible. For example, with one continuous covariate
and one categorical covariate, the average constraint
could be applied within the subgroups defined by the
second covariate. Alternatively, different boundary con-
straints could be used if it is anticipated that a gene might
act recessively in one group but additively or dominantly
in another group. This might be plausible if the grouping
factor were a candidate gene thought to interact with
the gene under study. However, caution must be used
before assumptions about the mode of inheritance of the
disease within subgroups are made. Affected-sib-pair
methods are attractive because little needs to be assumed
about the genetic model. Even if there are some data to
support a dominant or recessive mode of inheritance, it
is unlikely that there are good-quality data to support
different modes of inheritance in covariate subgroups.

Whittemore and Tu (1998) defined a minmax-optimal
1-df test for linkage in affected sib pairs. They obtained
allele-sharing estimates that fall on a line going through
both the null-hypothesis point and point (0, .355); this
line of constraint is closer to the no-dominance-variance
line in figure 1 than to the other, no-additive-variance
boundary. We implemented this boundary constraint,
and it performed adequately, but, in the simulations ex-
amined, we found that it did not perform quite as well
as the boundary constraint with . All the simu-z 5 .51

lations that we examined gave unconstrained allele-shar-
ing estimates for z1 that are very close to .5 and that
therefore had large additive variance relative to their
dominance variance. Hence, for these models, the first
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boundary constraint is optimal. This minmax-optimal
line can be expected to perform adequately for rare re-
cessive traits as well as in additive models, and our re-
sults confirm that the cost, in power, to achieve good
properties overall is not too high. However, real genetic
models with small additive variance may be rare. Lunetta
and Rogus (1998) showed that, in the full-parameter
space, there is only a very small region where a model
with triangle constraints would have better power than
is provided by a model with no dominance variance; the
boundary constraint with no dominance variance tends
to do better than the triangle constraints, in almost all
the models examined in the present study.

Covariate models can be especially useful when there
is gene-environment interaction and when some sibs dif-
fer in their environmental exposures. In this case, the
allele sharing between sibs who have different exposures
can fall outside the possible triangle, and the covariate
models will find this heterogeneity, if such discordant
pairs are sufficiently frequent. An advantage of the si-
multaneous-boundary constraints is that the estimates
obtained are allowed to fall outside the possible triangle.
Therefore, the allele sharing will be appropriately esti-
mated even in the presence of gene-environment inter-
actions producing unusual patterns of allele sharing.

For a real data set, simulated tests of significance for
these LOD scores can be obtained by random reassign-
ment of the marker alleles to the sibs in the family. If
the parents are typed, then the random allele segregation
simply involves choosing one allele to be transmitted
from each parent. For untyped parents, the information
in the sibship would have to be used to reconstruct pa-
rental marker data as far as possible; this partial infor-
mation, together with marker-allele frequencies, could
then be used to generate marker data on the sibs, con-
ditional on the number of distinct alleles observed, so
that the simulated data remain just as informative as the
real data. Significance levels can be estimated by re-
peating this random process many times and then count-
ing the number of times that the simulated test statistic
exceeds the test statistic obtained from the real data.

The model-based LOD-score method of analysis, be-
cause it assumes a particular genetic model, implicitly
leads to allele sharing that satisfies the constraints. The
software Mapmaker/Sibs, by Kruglyak and Lander
(1995), fits either a triangle constraint or a boundary
with that is further constrained so thatz 5 .5 z <1 0

, and the parameterization of Olson (1995) con-.25
strains the genetic variances to be positive. However,
there is some evidence that routine application of con-
straints may not be ideal. Knapp (1996) found a genetic
model in which a deficit of allele sharing is seen in af-
fected sib pairs. Clerget-Darpoux and Babron (1997)
found that the allele sharing in one subgroup can fall
outside the triangle. They indicated that covariates,

stratification, or increased death rates can lead to ap-
parent contradictions in the allele sharing. Automatic
application of subgroup constraints can obscure the fact
that the allele sharing has occurred outside the triangle.
The unconstrained estimates of allele sharing should be
carefully examined before constrained models are used,
and any unusual patterns should be noted and explored.

Availability of SAS/IML Macro

An SAS/IML macro (SAS Institute 1988) capable of
estimating the constrained and unconstrained affected-
sib-pair models with covariates is available from the cor-
responding author.
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Appendix A

Expressions for IBD Allele Sharing, with One Covariate

For a biallelic disease-susceptibility gene, under the
assumption of random mating and no sex-specific ef-
fects, there are six distinct mating types for a single gene
(Suarez 1978). Let q be the frequency of the high-risk
disease allele. For example, the probability of a mating
when one parent carries one high-risk disease allele and
the other carries none occurs with probability 4q(1 2

. Let the subscripts “1” and “2” to x and g denote3q)
the covariate and genotypic values for sib 1 and sib 2,
respectively. However, let the subscripts to the param-
eters yj and dj, , refer to the effect that one or twoj 5 1,2
high-risk alleles have on the disease probability. After
summation over the mating types, the probability that
the sib-pair disease genotypes, conditional on IBD status,
will be observed, , is shown in table A1,P(g ,g FIBD 5 k)1 2

for a marker with . The ordered genotype (g1,g2)v 5 0
shows the number of high-risk disease alleles in sibs 1
and 2, respectively. Because the covariate values can dif-
fer between the members of the pair, the probability that
a pair with ordered genotype (0,1) will be observed is
distinguished from the probability that (1,0) will be ob-
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served, etc. The ordering has no biological relevance,
but it is necessary to distinguish both the genotype and
covariate patterns within the sib pair. For example,
( , , , ) is distinct from (g 5 0 g 5 1 x 5 0 x 5 1 g 51 2 1 2 1

, , , ).0 g 5 1 x 5 1 x 5 02 1 2

On the basis of equation (3), the probability that an
affected sib pair will be observed, given IBD status and
covariates x1,x2, can be calculated by summation of the
entries in the columns of table A1, multiplied by the two
relevant disease probabilities from equation (1). Then
the allele-sharing probabilities are obtained by use of
equation (2). Let ,D 5 m 1 y 1 gx 1 d x C 5 m 11 1 1 1

, , andy 1 gx 1 d x B 5 m 1 y 1 gx 1 d x A 51 2 1 2 2 1 2 1

. In fact, D is the probability of dis-m 1 y 1 gx 1 d x2 2 2 2

ease for the first sib with one high-risk disease allele,
and C is the probability for sib 2 with one high-risk
allele. Similarly, B and A are the disease probabilities for
sibs 1 and 2, respectively, with two high-risk alleles.
Furthermore, define and , theE 5 m 1 gx F 5 m 1 gx2 1

disease probabilities for sibs 2 and 1, respectively, with
no high-risk alleles. Let

4 3DEN 5 (1 2 q) EF 1 2q(1 2 q) (FC 1 DE)
2 212q (1 2 q) (AF 1 BE)
2 2 31 4q (1 2 q) CD 1 2q (1 2 q)(AD 1 BC)

4 31q AB 1 2(1 2 q) EF
21 2q(1 2 q) (CF 1 DE) 1 4q(1 2 q)CD

2 31 2q (1 2 q)(AD 1 BC) 1 2q AB
2 21 (1 2 q) EF 1 q AB .

Hence, the expected allele sharing can be written, in
terms of the penetrance-model parameters, as

4 3z 5 [(1 2 q) EF 1 2q(1 2 q) (CF 1 DE)0

2 21q (1 2 q) (FA 1 BE)
2 2 31 4q (1 2 q) CD 1 2q (1 2 q)

4#(AD 1 BC) 1 q AB]/DEN ,
3 2z 5 2[(1 2 q) EF 1 q(1 2 q) (CF 1 DE)1

1q(1 2 q)CD
2 31 q (1 2 q)(AD 1 BC) 1 q AB]/DEN ,

2 2z 5 [(1 2 q) EF 1 2q(1 2 q)CD 1 q AB]/DEN .2

When , , and , the estimated alleled 5 0 d 5 0 g 5 01 2

sharing is equivalent to that reported by Suarez et al.
(1978), although differently parameterized; in their
work, , , and . If butf 5 m f 5 m 1 y f 5 m 1 y g 1 00 1 1 2 2

, , then there is an environmental effect, butd 5 0 j 5 1,2j

no gene-environment interaction, on the additive scale.

Table A1

, for Disease Gene orP(g ,g FIBD 5 k)1 2

Nearby Marker

(g1,g2)

P, Given IBD 5

2 1 0

(0,0) 2(1 2 q) 3(1 2 q) 4(1 2 q)
(0,1) 0 2q(1 2 q) 32q(1 2 q)
(1,0) 0 2q(1 2 q) 32q(1 2 q)
(0,2) 0 0 2 2q (1 2 q)
(2,0) 0 0 2 2q (1 2 q)
(1,1) 2q(1 2 q) q(1 2 q) 2 24q (1 2 q)
(1,2) 0 2q (1 2 q) 32q (1 2 q)
(2,1) 0 2q (1 2 q) 32q (1 2 q)
(2,2) q2 q3 q4

Appendix B

Simultaneous-Boundary Constraints

Under the assumption of no additive variance, the
allele-sharing estimates can be constrained to fall on the
line , by use of the following altered multinomialz 5 2z1 0

likelihood within the M step of the E-M algorithm:

n

∗∗LOD (b ) 5 {z log[z (x )]O0 i0 0 i
i51

1z log[2z (x )] 1 z log[1 2 3z (x )]} ,i1 0 i i2 0 i

where

′exp(b x )0 iz (x ) 5 .0 i ′3 1 3 exp(b x )0 i

The line formed by corresponds toz 5 0.355 1 0.58z1 0

the minmax-optimal test of Whittemore and Tu (1998)
and is depicted as the dashed line in figure 1. A third
simultaneous-boundary constraint can be defined by
constraining all allele-sharing estimates to fall on this
line. The altered likelihood for the M step becomes

n

∗∗LOD (b ) 5 {z log[z (x )]O0 i0 0 i
i51

1 z log[0.335 1 0.58z (x )]i1 0 i

1z log[0.645 2 1.58z (x )]} ,i2 0 i

where

′0.645 exp(b x )0 iz (x ) 5 .0 i ′1.58[1 1 exp(b x )]0 i
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In both cases, the E step of the E-M algorithm remains
unchanged from that in the unconstrained models.
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