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Power Comparison of Parametric and Nonparametric Linkage Tests
in Small Pedigrees
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When the mode of inheritance of a disease is unknown, the LOD-score method of linkage analysis must take into
account uncertainties in model parameters. We have previously proposed a parametric linkage test called “MFLOD,”
which does not require specification of disease model parameters. In the present study, we introduce two new
model-free parametric linkage tests, known as “MLOD” and “MALOD.” These tests are defined, respectively, as
the LOD score and the admixture LOD score, maximized (subject to the same constraints as MFLOD) over disease-
model parameters. We compared the power of these three parametric linkage tests and that of two nonparametric
linkage tests, NPLall and NPLpairs, which are implemented in GENEHUNTER. With the use of small pedigrees and
a fully informative marker, we found the powers of MLOD, NPLall, and NPLpairs to be almost equivalent to each
other and not far below that of a LOD-score analysis performed under the assumption the correct genetic parameters.
Thus, linkage analysis is not much hindered by uncertain mode of inheritance. The results also suggest that both
parametric and nonparametric methods are suitable for linkage analysis of complex disorders in small pedigrees.
However, whether these results apply to large pedigrees remains to be answered.

Introduction

The traditional LOD-score method of linkage analysis
is designed for the detection of a disease locus charac-
terized by a disease-gene frequency and three penetrance
parameters. The method is robust to minor misspecifi-
cation of disease-model parameters, is powerful for de-
tection of genes of major effect, and is applicable to
pedigrees of variable structure (Clerget-Darpoux 1986).
However, it is not directly applicable when the disease
model is unknown, as is the case for many common
heritable disorders. Several methods of “model-free”
linkage analysis have been proposed for these genetically
complex traits.

There are two broad classes of model-free methods
of linkage analysis. First, there are modifications of the
classic LOD-score method, in which gene frequencies
and penetrances are treated as nuisance parameters. The
common practice of conducting several LOD-score
analyses under a range of genetic models and of then
applying a simple adjustment to the largest LOD score
is an example of this approach (Hodge et al. 1997;
Greenberg et al. 1998). An extension of this method
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involves formally maximizing the LOD score over both
the recombination fraction and the disease-model pa-
rameters, to obtain the so-called “MOD score” (Risch
1984; Greenberg 1989; Hodge and Elston 1994; Rice
et al. 1995). The MOD score can be generalized to
account for locus heterogeneity, by means of maximiz-
ing over the proportion of families with linkage in ad-
dition to the other disease-model parameters.

One of the problems with the MOD score is that
its sampling distribution under the null hypothesis is
uncertain. This problem motivated the development
of the model-free LOD (MFLOD), in which the nu-
merator and denominator of the likelihood ratio are
separately maximized so that the resulting statistic
has a regular distribution (Curtis and Sham 1995).2x

The disease-model parameters are constrained to give
the population morbid risk as a rough adjustment for
ascertainment. A limited range of fully dominant and
recessive models is considered in order to reduce the
computational burden. When applied to a single
chromosomal location, the MFLOD was shown to be
a valid test with 1 df.2x

Although the MFLOD appears to give good power
for the detection of linkage in many circumstances, we
have noticed that, occasionally, its value is far less than
that of the admixture LOD score maximized over dis-
ease-model parameters, when the same constraints on
disease-model parameters are applied. Interestingly,
subjecting the disease-model parameters to these con-
straints has the desirable consequence that the resulting
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Table 1

The Four Genetic Models Used in Power Analysis

Model f2 f1 f0 q K c2 c1 c0

CR .50 .005 .005 .100 .01 .503 .090 .407
CD .50 .500 .005 .005 .01 .001 .501 .498
MG1 .80 .200 .050 .130 .10 .140 .468 .392
MG2 .45 .150 .050 .207 .10 .193 .493 .315

NOTE.— , , and are the probabilities of disease, given 2, 1,f f f2 1 0

and 0 copies of the disease alleles, respectively; q is the disease-allele
frequency; K is the population morbid risk; and , , and are thec c c2 1 0

probabilities, among affected individuals, of having 2, 1, or 0 copies
of the disease alleles.

Figure 1 Four different types of pedigree structure

maximized LOD score or maximized admixture LOD
score is approximately proportional to random var-2x

iables, as we show in the present study. We use the
notations “MLOD” and “MALOD” to denote the max-
imized LOD score and the maximized admixture LOD
score, over disease-model parameters subject to con-
straints that are the same as those for MFLOD. Since
their asymptotic distributions are approximately pro-
portional to random variables with few degrees of2x

freedom, we consider MLOD and MALOD to be po-
tentially attractive parametric tests of linkage when the
disease model is uncertain.

The second approach to model-free linkage analysis
is based on excessive sharing of marker alleles among
family members that are concordant for the disease phe-
notype. This nonparametric approach was initially de-
veloped as a method for analysis of affected sib pairs
(Suarez et al. 1978), and it has recently been extended
for use in pedigrees (Weeks and Lange 1988; Sandkujil
1989; Holmans 1993; Curtis and Sham 1994; Davies
et al. 1996). The latest of these methods are based on
test statistics known as “NPLall” (which measures ex-
cessive allele sharing among a set of affected pedigree
members) and “NPLpairs” (which measures excessive al-
lele sharing between pairs of affected relatives), and they
have been implemented in the GENEHUNTER pro-
gram (Kruglyak et al. 1996). The results of preliminary
power studies suggest that the NPLall and NPLpairs sta-
tistics are, in some situations, almost as powerful as the
LOD score calculated under the true disease model
(Kruglyak et al. 1996).

There has been little systematic evaluation of the per-
formance of parametric and nonparametric linkage tests
under a range of conditions, except in affected sib pairs
(Hodge 1998). In the present study, we attempt to com-
pare the power of parametric and nonparametric link-
age methods that are applicable to general pedigree and
multipoint data, under a range of genetic models and
pedigree structures.

Pedigrees and Methods

Pedigree Types

We considered four types of pedigree structures (fig.
1). Pedigree type 1 includes two affected siblings with
parents of unknown phenotype. Pedigree type 2 includes
three affected siblings with parents of unknown phe-
notype. Pedigree type 3 includes two affected siblings
and one unaffected sibling with parents of unknown
phenotype. Pedigree type 4 includes three generations in
which all family members are of unknown phenotype,
except for the youngest generation, which consists of
two sibships (who are first cousins to each other), one
of which has two affected members and the other of
which has one affected member and one unaffected
member. These four types of pedigrees were chosen to
investigate factors that may influence the relative per-
formance of the tests, such as the number of affected
and unaffected individuals and the presence or absence
of distantly related affected individuals.

Genetic Models

The four genetic models considered in the present
study were the common recessive (CR), common dom-
inant (CD), modest-genetic-effect (MG1), and minor-ge-
netic-effect (MG2) models. The values of the parameters
of these models are shown in table 1. These parameters
are such that, for the CR and CD models, the morbid
risk in the population (K) is .01, and, for the MG1 and
MG2 models, . Each model was considered un-K = 0.1
der two situations: locus homogeneity (with linkage be-
tween disease and markers in all families) and locus het-
erogeneity (with linkage between disease and markers
in 50% of families).

Genetic Markers

Since the aim of the present study was to compare
test statistics, we considered the simplest and most-
favorable case of recombination fraction (v) 0 between
a completely informative marker locus and the disease
locus. In practice, this meant that all the alleles among
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the founders of a pedigree were distinguishable from
each other. Marker genotypes were assumed to be
available for every member of the pedigree, so that
allele frequencies were irrelevant in the calculation of
likelihoods or nonparametric statistics.

Test Statistics

The test statistics compared are as follows: LOD (the
LOD score calculated under the true disease model),
ALOD (the admixture LOD score calculated under the
true disease model), MLOD, MALOD, MFLOD (Curtis
and Sham 1995), NPLall, and NPLpairs. LOD and ALOD,
which are calculated under the true disease model, are
included for comparison with the other, model-free tests.
In the calculation of MLOD, MALOD, and MFLOD,
the disease-model parameters are constrained to give the
specified K and to be either fully dominant or fully re-
cessive. These constraints imply that, of the parameters
q (disease-gene frequency), , , and (penetrances),f f f0 1 2

only remains free (Curtis and Sham 1995). For a pen-f1

etrance parameter and a fixed K, the other penetrancef1

parameters are given by and ,f = f f = 1 2 f (1 2 K)/K0 1 2 1

when , and by and ,f < K f = f f = (1 2 f )K/(1 2 K)1 2 1 0 1

when ; the disease-gene frequency q is given byf 1 K1

. Therefore, the only2 2q f 1 2q(1 2 q)f 1 (1 2 q) f = K2 1 0

free parameter associated with MLOD is , which isf1

allowed to vary between 0 and 1, with a null-hypothesis
value of . (2ln10)MLOD is therefore asymptoti-f = K1

cally with 1 df (see Appendix). Similar constraints2x

are applied to the MALOD statistic, which is then char-
acterized by two free parameters, the penetrance andf1

the admixture proportion a. These two parameters are
completely confounded under the null hypothesis (which
can be specified by either or ); however, con-f = K a = 01

sidering (2ln10)MALOD to be with 2 df should yield2x

a conservative test. The (2ln10)MFLOD statistic is as-
ymptotically with 1 df, since the only parameter that2x

is free in the numerator likelihood but is fixed (to 0) in
the denominator is likelihood a (Curtis and Sham 1995).
MFLOD also differs from MLOD and MALOD in that
it is the logarithm of a ratio of the joint likelihoods of
marker and disease phenotypes, rather than the loga-
rithm of a ratio of the conditional likelihoods of marker
phenotypes, given disease phenotypes. The definitions of
NPLall and NPLpairs are given elsewhere (Kruglyak et al.
1996).

Power Calculations

Power calculations were performed for each test sta-
tistic and each pedigree type. All possible marker-ge-
notype configurations of each family type were enu-
merated. For example, for an affected sib pair, each
sibling has four possible marker genotypes, so that
there are 16 possible marker-genotype configurations

for the sib pair as a whole. Each configuration was
subjected to likelihood calculations, by use of VI-
TESSE (O’Connell and Weeks 1995), and nonpara-
metric calculations, by use of GENEHUNTER (Krug-
lyak et al. 1996). Likelihoods were obtained for all
possible configurations, over a fine grid of values for

, under the null hypothesis ( ) and again underf v = .51

the alternative hypothesis ( ), for each of the fourv = 0
genetic models. These likelihoods provide the contri-
butions of the different marker-genotype configura-
tions to the expected values of the various parametric
statistics. Under the null hypothesis, all possible con-
figurations occur with equal probabilities. Under the
alternative hypothesis of linkage in all families, the
configurations occur with probabilities proportional
to their likelihoods under the assumption of complete
linkage. Under the alternative hypothesis of linkage
in 50% of families, the configurations occur with
probabilities that are 50:50 averages between equal
probabilities and those calculated under the assump-
tion that there is linkage in all families. These prob-
abilities were used to calculate the expected values of
the log likelihoods, the LOD scores, and the ALOD
scores, over a fine grid of values for , under the nullf1

hypothesis and the two alternative hypotheses (link-
age in 100% and in 50% of families). The maximum
expected LOD score over is the noncentrality pa-f1

rameter (per pedigree) of MLOD, and the maximum
expected admixture LOD score over and a is thef1

noncentrality parameter (per pedigree) of MALOD.
The difference in the maximum expected log likeli-
hood over and a and the maximum expected logf1

likelihood over (with a set at 0) is the noncentralityf1

parameter (per pedigree) of the MFLOD. For MLOD
and MFLOD, which have 1 df, the required sample
size for 90% power, at , is 26.76 divided byP = .0001
the noncentrality parameter per pedigree. For
MALOD, which may be regarded as having 2 df, the
required sample size for 90% power, at , isP = .0001
29.92 divided by the noncentrality parameter per
pedigree.

The means and standard deviations of the NPLall,
NPLpairs, LOD, and ALOD, over all possible marker-
genotype configurations, were calculated for the null hy-
pothesis and for the two alternative hypotheses. These
statistics are asymptotically normal, so that the required
sample size for a certain power and a certain significance
level can be expressed as a function of the means and
standard deviations under the null and alternative hy-
potheses. When the test statistic is scaled to have a mean
of 0 and variance of 1 under the null hypothesis, then
the required sample size for 90% power and .0001 sig-
nificance, when the mean and standard deviation under
the alternative hypothesis are m and v, is given by n =

.2Î[(3.719 1 1.282 v) /m]
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Table 2

Estimated Required Sample Sizes for 90% Power, at ,P = .0001
When There Is Complete Linkage to a Fully Informative Marker in
All Families

MODEL AND

FAMILYa

ESTIMATED REQUIRED SAMPLE SIZES, FOR

90% POWER, FOR

LOD NPLpair NPLall MLOD MALOD MFLOD

CR:
1 18 20 20 22 24 32
2 10 10 10 13 15 17
3 16 19 19 20 22 42
4 13 14 14 15 17 48
Mixed 15 16 17 18 20 34

CD:
1 50 52 52 51 57 51
2 16 18 18 20 22 20
3 44 52 52 45 50 72
4 7 9 7 10 11 13
Mixed 28 32 31 29 32 39

MG1:
1 285 285 285 312 348 311
2 80 80 80 91 102 94
3 245 312 312 275 307 352
4 124 131 132 145 162 280
Mixed 173 192 192 195 218 264

MG2:
1 626 626 626 677 755 675
2 199 199 199 224 250 224
3 582 641 641 636 710 1,022
4 300 309 315 342 382 771
Mixed 405 437 438 449 502 666

a “Mixed” refers to a mixture of pedigree types 1, 2, 3, and 4 in
the proportions 50%, 20%, 20%, and 10%.

We also performed power calculations for samples
consisting of a mixture of the four pedigree types. The
proportions of pedigree types 1, 2, 3 and 4 in a sample
were assumed to be .5, .2, .2, and .1, respectively. The
expected log-likelihood function of a mixture of pedigree
types is simply a weighted average of the log-likelihood
functions of the constituent pedigree types. Noncen-
trality parameters per pedigree and required sample sizes
for 90% power and .0001 significance, for MLOD,
MALOD, and MFLOD, were calculated from expected
log-likelihood functions.

Required sample sizes of the NPLall, NPLpairs, LOD,
and ALOD statistics, for a mixture of pedigree types,
were also calculated from their means and variances un-
der the null and alternative hypotheses. The mean and
variance of a mixture of four distributions are m =

and , where , , and4 4 2 2S p m v = S p (v 1 m ) 2 m p mi=1 i i i=1 i i i ii

are the mixing proportion, mean, and variance of thevi

ith distribution.

Validation of Asymptotic Sampling Distributions

Asymptotic significance and power depend on the ac-
curacy of the and normal approximations. To check2x

the validity of the tests, on the basis of the large-sample
theory, we generated random samples of pedigrees of
various possible marker-genotype configurations, from
the probability distribution of these configurations, un-
der the null hypothesis. The numbers of pedigrees in each
sample are such that, according to asymptotic theory, a
LOD-score test should have 90% power at .P = .0001
The different test statistics were calculated for 10,000
simulated samples, to provide empirical sampling dis-
tributions of the test statistics. These empirical distri-
butions were then compared with the corresponding the-
oretical or normal distributions, to see whether the2x

asymptotic or normal tests are accurate or whether2x

they are conservative or liberal.

Results

Table 2 shows the estimates of the numbers of pedigrees
required by the LOD, MLOD, MALOD, MFLOD,
NPLall, and NPLpairs tests for 90% power (at )P = .0001
under the four disease models (under the assumption of
locus homogeneity) for the four types of pedigrees (and
a mixture of families). As expected, LOD is the most-
efficient test. However, it is notable that the required
sample sizes of the model-free tests are, in general, not
much larger than those of LOD. Among the model-free
tests, NPLall, NPLpairs, and MLOD have slightly better
power than do MALOD and MFLOD. The patterns of
results, with regard to genetic model and pedigree struc-
ture, are as expected, with greater genetic-effect size and

larger pedigrees being more favorable for the detection
of linkage than are smaller genetic-effect size and smaller
pedigrees. For MG1 and MG2, pedigree type 2 (sibships
with three affected members) was the most efficient of
the four pedigree types.

Under an admixture model in which 50% of families
show linkage, a similar pattern of results emerges (table
3). Again, ALOD is the most-powerful test and is closely
followed by NPLall and NPLpairs and MLOD. It is per-
haps surprising that MALOD does not perform better
than MLOD. This may be due to the use of a conser-
vative null distribution ( distribution with 2 df) for2x

MALOD.
None of the test statistics was drastically conservative

or liberal (table 4). As expected, referring (2ln10)
MALOD to a distribution with 2 df leads to a con-2x

servative test. The large-sample-theory tests for LOD,
ALOD, NPLall, and NPLpairs tend to be somewhat liberal,
especially for pedigrees with multiple affected members
and for moderately large genetic effects. In contrast, the
asymptotic sampling distribution for MLOD appears to
be neither conservative nor liberal.
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Table 3

Estimated Required Sample Sizes for 90% Power, at ,P = .0001
When There is Complete Linkage to a Fully Informative Marker in
50% of Families

MODEL AND

FAMILYa

ESTIMATED REQUIRED SAMPLE SIZES, FOR

90% POWER, FOR

ALOD NPLpair NPLall MLOD MALOD MFLOD

CR:
1 74 92 92 84 94 119
2 35 45 45 44 48 63
3 65 87 87 77 84 172
4 44 57 57 56 58 157
Mixed 57 73 73 72 74 131

CD:
1 227 228 228 241 270 241
2 79 80 80 88 99 88
3 191 228 228 224 228 284
4 26 40 33 35 37 47
Mixed 111 138 133 133 134 149

MG1:
1 1,139 1,151 1,151 1,245 1,390 1,243
2 305 315 315 345 379 357
3 965 1,258 1,258 1,105 1,206 1,376
4 468 512 509 538 599 1,008
Mixed 663 764 763 755 841 1,041

MG2:
1 2,503 2,515 2,515 2,701 3,018 2,703
2 771 781 781 864 960 860
3 2,317 2,577 2,577 2,514 2,806 4,036
4 1,159 1,212 1,224 1,288 1,439 2,887
Mixed 1,585 1,739 1,740 1,761 1,964 2,675

a “Mixed” refers to a mixture of pedigree types 1, 2, 3, and 4 in
the proportions 50%, 20%, 20%, and 10%.

Discussion

The results of the present study show that uncertain
mode of inheritance is not a serious problem for linkage
analysis. In small pedigrees—such as those considered
here—both nonparametric (NPLall and NPLpairs) and par-
ametric (MLOD) tests performed almost as well as did
the LOD or ALOD statistics, for which the true genetic
model was assumed. If a nonparametric test is to be used
for a complex trait, however, then the conceptually and
computationally simpler NPLpairs test is almost as pow-
erful as the more-complicated NPLall, and it may be less
liberal in large pedigrees.

The poor performance of MFLOD, relative to MLOD
and MALOD, can be explained by the observation that
parameter estimates in the numerator of the likelihood
ratio in MFLOD are often quite far from the true values.
It appears that constraining the disease-model param-
eters to be compatible with the morbid risk in the pop-
ulation is not sufficient to produce realistic parameter
estimates for a minor locus. The estimate of is oftenf2

much larger than the true value. As a result, the test

statistic is obtained at the wrong region of the parameter
space, with consequent loss of power.

Use of the MLOD and MALOD, since they are ratios
of conditional likelihoods, enables one to obtain un-
biased estimates of the disease-model parameters. This
enables the statistics to be obtained from the correct
region of the parameter space, even for a gene of minor
effect. As expected, MLOD is superior to MALOD in
the absence of locus heterogeneity. More surprisingly,
even under substantial locus heterogeneity, MLOD re-
mains superior to MALOD. The reason for this is that,
since the penetrance and admixture are strongly con-
founded in small pedigrees, the extra degree of freedom
in MALOD may be redundant. Nevertheless, the overall
pattern of results favors the choice of MLOD as the
single best model-free parametric linkage test for small
pedigrees.

The results of the present study confirm that both
NPL statistics provide powerful tests for linkage when
marker information content is complete. Recently, Kong
and Cox (1997) have shown that the original NPL sta-
tistics are conservative when marker information is in-
complete, especially at positions between markers, re-
sulting in loss of power. They have proposed modified
NPL statistics that are not conservative and that, there-
fore, are more powerful for low levels of marker in-
formation content and positions between markers.
When marker information content is complete (as is
assumed in the present study), the modified NPL sta-
tistics have power equal to that of the original NPL
statistics. The modified NPL tests, which have been im-
plemented in GENEHUNTER-PLUS, are based on a
statistical model with a single parameter. It has been
shown that the nonparametric mean test for affected
sib pairs is equivalent to parametric LOD-score analysis
under a recessive model (Knapp et al. 1994). The
development of model-based nonparametric tests in
GENEHUNTER-PLUS is an important development
that brings parametric and nonparametric methods
closer together. Further work is necessary to examine
the advantages and disadvantages of alternative speci-
fications and parameterizations of the statistical model.

In the present study, we used a single, infinitely poly-
morphic marker to approximate a fully informative
multipoint analysis. We should point out that current
nonparametric methods, such as the NPL statistics in
GENEHUNTER or the modified NPL statistics in
GENEHUNTER-PLUS, are inherently suited to multi-
point analysis, since these statistics assess, at a test
position, the evidence for distortion in allele sharing
among affected relative pairs. Standard two-point par-
ametric methods use the recombination fraction be-
tween disease and marker as the parameter, whereas the
disease model is prespecified. The generalization of this
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Table 4

Proportion of Replicate Samples (of 10,000) Simulated under the Null Hypothesis
(Significant at )P ! .001

MODEL AND

FAMILYa

PROPORTION OF REPLICATE SAMPLES FOR

LOD ALOD NPLpair NPLall MLOD MALOD MFLOD

CR:
1 21 13 7 7 18 3 14
2 5 26 41 41 10 2 6
3 20 14 11 11 14 6 7
4 16 35 21 25 10 3 11

CD:
1 4 8 10 10 8 1 7
2 7 9 1 11 5 0 3
3 5 10 10 10 10 3 5
4 37 43 35 57 15 9 4

MG1:
1 5 6 5 5 2 0 1
2 22 14 22 22 8 1 6
3 8 12 7 7 5 2 5
4 12 12 12 17 9 1 7

MG2:
1 6 15 6 6 6 1 5
2 9 9 9 9 3 1 3
3 8 13 12 12 5 5 5
4 5 20 9 9 6 2 3

a “Mixed” refers to a mixture of pedigree types 1, 2, 3, and 4 in the proportions
50%, 20%, 20%, and 10%.

procedure to multipoint analysis is problematic, since
the recombination fraction ceases to be an effective pa-
rameter (Risch and Giuffra 1992). In GENEHUNTER,
the proportion of linked pedigrees provides an alter-
native parameter with which to assess the evidence for
a disease gene at a test location. The MLOD statistic
described in the present study would also provide an
alternative one-parameter test with which to assess the
evidence for a disease gene in a multipoint analysis. The
adoption of this statistic for multipoint parametric link-
age analysis would obviate the need for two-point par-
ametric linkage analysis, except to reduce computa-
tional burden in the initial stages of a genome scan.

A limitation of this study is that all the calculations
were based on a generalized single-locus model rather
than on an oligogenic or mixed model. Since complex
disorders are likely to be determined by multiple loci,
the single-locus model is biologically unrealistic. How-
ever, the generalized single-locus model is probably an

adequate approximation of an oligogenic model, when
one is trying to map one disease gene at a time, rather
than when one is trying to map two or more disease
genes simultaneously (Greenberg and Hodge 1989;
Greenberg 1990; MacLean et al. 1993). Another limi-
tation is that all our analyses have been performed on
small pedigrees. The behaviors of the different tests in
large pedigrees remain to be explored by means of an-
alytic or simulation studies.
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Appendix

Asymptotic Distributions of MLOD and MALOD under the Null Hypothesis

The MLOD and MALOD at a fixed map position, given a set of pedigree data, are defined as the maximum
LOD score and the maximum admixture LOD score, respectively, at that position, over a restricted set of trans-
missions models. The restriction of transmission models (described in Curtis and Sham 1995) involves, first, the
specification of K. A single major locus effect is parameterized as the gene frequency and penetrance vector q and
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, respectively. For each value of F, there is a unique value for q that yields the correct K. The set ofF = (f ,f ,f )0 1 2

models is further limited to those in the straight lines lying between (0,0,1) (Mendelian recessive) and (K,K,K) (null
effect) and between (K,K,K) and (0,1,1) (Mendelian dominant). All parameters p and F of the transmission model
can therefore be specified as functions of , which takes values between 0 and 1. For a given test position of thef1

disease locus, the log likelihood of the data set is a function of and a (the proportion of affected pedigrees inf1

which that locus exerts an effect). The test position is denoted as t, with implying that the disease locus isv = t
placed at the test position, relative to the marker or markers, and with implying that it is unlinked to anyv = .5
of the markers.

MLOD is the logarithm of the maximum over (from 0 to 1) of the quantity:f1

( ) ( )LR = P D, M; v = t, f /P D, M; v = .5, f1 1

( ) ( )=P M d D; v = t, f /P M1

( ) ( )=P M d D; v = t, f /P M d D; v = t, f = K ,1 1

which is the ratio of the conditional probabilities of observing the marker data, given the disease data under the
hypotheses of some genetic effect ( ) and null effect ( ). Since these hypotheses are nested, the asymptoticf ( K f = K1 1

distribution of 2ln(LR) (i.e., MLOD*2ln10) is approximately (two-tailed, since can be greater than or less2x f1 1

than K).
MALOD is the logarithm of the maximum over (from 0 to 1) of the quantity:f1

( ) ( )LR = P D, M; v = t, a, f /P D, M; v = 0.5, or a = 0, f1 1

( ) ( )=P M d D; v = t, a, f /P M1

( ) ( )=P M d D; v = t, a, f /P M d D; v = t, a = 0, or f = K1 1

Again, LR is the ratio of the conditional probabilities of observing the marker data, given the disease data, under
linkage and nonlinkage. The numerator is maximized over and a, with the null hypothesis represented byf f =1 1

and/or by . Because these two parameters are confounded under the null hypothesis, a test comparingK a = 0
2ln(LR) with a 50:50 mixture of and should be somewhat conservative.2 2x x2 0
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