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COL5A1 Haploinsufficiency Is a Common Molecular Mechanism
Underlying the Classical Form of EDS
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We have identified haploinsufficiency of the COL5A1 gene that encodes the proa1(V) chain of type V collagen in
the classical form of the Ehlers-Danlos syndrome (EDS), a heritable connective-tissue disorder that severely alters
the collagen-fibrillar structure of the dermis, joints, eyes, and blood vessels. Eight of 28 probands with classical
EDS who were heterozygous for expressed polymorphisms in COL5A1 showed complete or nearly complete loss
of expression of one COL5A1 allele. Reduced levels of proa1(V) mRNA relative to the levels of another type V
collagen mRNA, proa2(V), were also observed in the cultured fibroblasts from EDS probands. Products of the two
COL5A1 alleles were approximately equal after the addition of cycloheximide to the fibroblast cultures. After
harvesting of mRNAs from cycloheximide-treated cultured fibroblasts, heteroduplex analysis of overlapping reverse
transcriptase–PCR segments spanning the complete proa1(V) cDNA showed anomalies in four of the eight probands
that led to identification of causative mutations, and, in the remaining four probands, targeting of CGArTGA
mutations in genomic DNA revealed a premature stop at codon in one of them. We estimate that approximately
one-third of individuals with classical EDS have mutations of COL5A1 that result in haploinsufficiency. These
findings indicate that the normal formation of the heterotypic collagen fibrils that contain types I, III, and V collagen
requires the expression of both COL5A1 alleles.

Introduction

The Ehlers-Danlos syndromes (EDSs) are a group of in-
herited disorders with common characteristics of joint
laxity and varying degrees of dermal fragility (Barabas
1967; Beighton 1992; Steinmann et al. 1993; Byers
1995). The classical form of Ehlers-Danlos syndrome
(types I [MIM 130000] and II [130010]) is characterized
by joint laxity, fragile and hyperextensible skin, poor
wound healing, and autosomal dominant inheritance.
Dermal scars after trauma are thinned and atrophic and
may stretch considerably after primary repair. Approx-
imately half the individuals affected with classical EDS
have a history of premature birth due to rupture of fetal
membranes.

Ultrastructural studies of the skin in patients with
classical EDS show evidence of abnormal fibrillogenesis
of the heterotypic collagen fibrils that contain types I,
III, and V collagens (Vogel et al. 1979). In these studies,
the collagen fibrils have a mean diameter increased by
13%–40% and show a higher degree of variability in
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width and shape than is seen in control collagen fibrils.
Approximately 5% of the fibrils, referred to as “cau-
liflowers,” are five to six times wider than normal and
are highly irregular in shape (Hausser and Anton-Lam-
precht 1994).

Linkage studies have excluded type I collagen genes
in several pedigrees with classical EDS (Sokolov et al.
1991; Wordsworth et al. 1991). However, mutations
resulting in classical EDS have been identified in two of
the genes that code for type V collagen—COL5A1 (To-
riello et al. 1996; Nicholls et al. 1996; Wenstrup et al.
1996; De Paepe et al. 1997; Burrows et al. 1998; Giunta
and Steinmann 2000) and COL5A2 (Michalickova et
al. 1998; Richards et al. 1998)—in a few families. De-
letion of exon 6 from the mouse col5a2 gene, which
removes the N-proteinase cleavage site, also produces
a phenotype that resembles classical EDS (Andriko-
poulos et al. 1995). The COL5A1 gene encodes the
proa1(V) chain, and the COL5A2 gene encodes the
proa2(V) chain of type V collagen. The COL5A3 gene,
which, to date, has not been linked to any disease phe-
notype (D. Greenspan, personal communication) en-
codes the proa3(V) collagen gene (Imamura et al. 2000).

Type V collagen was first identified in human placenta
but subsequently was found in virtually all tissues where
type I collagen is expressed. There are several isoforms
of type V collagen that differ in the type and ratios of
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constituent chains. The most abundant and most widely
distributed isoform is a1(V)2a2(V) (Sage et al. 1981);
an a1(V)3 homotrimer has been reported and may be
most abundant in fetal tissues (Moradi-Ameli et al.
1994). Type V collagens containing a3(V) chains—
a1(V)a2(V)a3(V)—are present in uterine (Abedin et al.
1981), placental (Rhodes and Miller 1981), skin (Brown
et al. 1978; Brown and Weiss 1979; Woodley et al.
1987), and synovial tissue (Brown and Weiss 1979; Sage
and Bornstein 1979; Ashhurst et al. 1991) but not in
bone (Niyibizi and Eyre 1989), placental membranes
(Rhodes and Miller 1981) or corneal fibroblasts (Poschl
and von der Mark 1980). Type V collagen chains also
form heterotypic molecules with type XI–collagen
chains. Trimers with chain composition a1(XI)2a2(V)
have been identified in bovine vitreous humor (Mayne
et al. 1993), a1(XI) and a2(V) chains are coexpressed
in noncartilagenous tissues of developing mice (Andri-
kopoulos et al. 1992; Lui et al. 1995; Yoshioka et al.
1995a, 1995b; Sponseller et al. 1997; Moursi et al.
1997), and measurements of individual chain ratios in-
dicate that the highly homologous a1(V) and a1(XI)
chains may coform an a1(V)a1(XI)a2(V) trimer in bone
and cartilage (Niyibizi and Eyre 1989). Thus, a1(V)
collagen chains are present in a complex pattern of stoi-
chiometric ratios in several tissues, each of which may
have differing capacities for dosage compensation when
the number of available proa1(V) chains is reduced.

Several studies have reported a low yield of COL5A1
and COL5A2 mutations in families and individuals with
classical EDS (De Paepe and Nuytinck 1998; Michal-
ickova et al. 1998). One reason for the latter obser-
vation is that another locus for classical EDS is likely
to be present in families that are discordant for linkage
to COL5A1 and COL5A2 (Greenspan et al. 1995; Wen-
strup et al. 1996). Another reason is that haploinsuf-
ficiency of COL5A1 or COL5A2 may be present but
not detectable by the cDNA-based mutation-detection
methods used in the studies reported thus far. Several
lines of evidence suggest that haploinsufficiency of
COL5A1 can produce classical EDS. First, gross inter-
ruption of the COL5A1 gene, reported in one case, pro-
duced classical EDS (Toriello et al. 1996). Second, the
reported primary structure changes in the carboxyl-ter-
minal propeptide of the pro-a1(V) chain in several fam-
ilies with classical EDS were likely to prevent the mutant
chains from being included in trimeric type V collagen
molecules (Wenstrup et al. 1996; De Paepe et al. 1997).

In the present study, we show that haploinsufficiency
of COL5A1 is a common cause of classical EDS. Ap-
proximately 30% of individuals who were informative
for polymorphisms in the 3′-untranslated region (3′

UTR) had only one of the two COL5A1 alleles repre-
sented in cDNA prepared from their cultured dermal
fibroblasts. The amount of mRNA derived from the

underrepresented allele was significantly elevated by the
addition of cycloheximide to the cultures. The cyclo-
heximide treatment enabled mutation analyses to be un-
dertaken on amplified cDNA products that contained
approximately equal amounts of the two allelic prod-
ucts. Analyses of cDNA and genomic DNA identified
five individuals who were heterozygous for COL5A1
null mutations.

Subjects, Material, and Methods

Clinical Material

The study population of 59 probands fulfilled the clin-
ical criteria either for EDS types I or II, according to the
1988 Berlin Classification (Beighton et al. 1988), or for
the classical form, according to the 1997 Villefranche
Nosology conference (Beighton et al. 1998). In brief, all
individuals had generalized joint hypermobility, hyper-
extensible dermis, widened and atrophic scars, and a
family history consistent with autosomal dominant
transmission or new dominant mutation. Included in the
clinical material were seven pedigrees that contained at
least five matings. Cultured dermal fibroblasts were ob-
tained from at least one affected individual, and genomic
DNA was obtained from other family members.

Null-Allele Detection

Expression of the COL5A1 alleles was determined by
use of the 3′ UTR BstUI and DpnII polymorphisms and
methods described by Greenspan and Pasquinelli (1994).
Passaged fibroblasts (12,700 cells/cm2) were grown to
confluence in Dulbecco’s modified Eagle Medium con-
taining 10% fetal calf serum, 2 mM L-glutamine (BDH
Chemicals), 1 # antibiotic/mycotic (Gibco BRL), and
50 mg ascorbate/ml. Total cellular RNA was extracted
and cDNA was prepared by standard methods, except
that first-strand cDNA synthesis was performed in the
presence of 10% dimethyl sulfoxide.

RFLP analysis with the endonucleases BstUI and
DpnII was performed as described by Greenspan and
Pasquinelli (1994). The analysis was performed initially
on genomic DNA, to determine the genotype of each
patient with EDS, and subsequently on cDNA. The di-
gestion products were resolved on nondenaturing 10%
PAGE (Bio-rad) gels or 3% agarose (Nusieve) gels,
visualized by ethidium-bromide staining and photo-
graphed by means of Polaroid Polapan 667 film.

When one COL5A1 transcript was absent or sub-
stantially reduced, cycloheximide (Sigma Chemical) was
added to fibroblast cultures at 1 mg/ml of medium for
4 h, to stabilize mRNA (Carter et al. 1995). Total cellular
RNA was extracted, and BstUI and DpnII RFLPs were
determined on the basis of reverse transcriptase–PCR
(RT-PCR) products, by the methods described above.
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Quantitation of mRNA

Quantitation of the relative amounts of the proa1(V)
and proa2(V) mRNA produced by cultured dermal fi-
broblasts was undertaken by the ribonuclease-protection
assay (RPA) (RPA III; Ambion Scientific). Cycloheximide
was not added to these cultures. RPA probes were orig-
inated by PCR amplification of first-strand cDNA, and
in vitro transcription of these amplified PCR fragments
incorporated, at its 3′ end, the sequence of the T7 phage
polymerase promoter. GADPH mRNA was used as an
internal reference. The primer pairs for the probes were
a1(V), (5′-GAATGGCGAGAACTACGTGGAC-3′) and
(5′-CGCCTAATACGACTCACTATAGGGAGGGAGC-
ATCCTTGGTTAG-3′); a2(V), (5′-CGGACCCAGGGG-
TTCATGC-3′) and (5′-GGATGCTAATACGACTCAC-
TATAGGGAGGCGTGGTACACTGGATGGG-3′); and
GAPDH, (5′-GGTCGTATTGGGCGCCTGGTCACCA-
GGGCT-3′) and (5′-CCCAGTGATGGCATGGATGT-
GGTCATGAG-3′).

Amplified DNA either was used directly in the tran-
scription reaction or was concentrated before use by eth-
anol precipitation and gel purification. Amplified DNA
(40–50 ng) was transcribed by T7 RNA polymerase in
the presence of 32[P]-UTP, by reagents for in vitro tran-
scription (Ambion Scientific). Total cellular RNA (2.5
or 5 mg) and 2 fmol of each labeled probe were used for
each assay, according to the manufacturer’s instructions.
Hybridization was performed at 567C for 18 h and was
followed by RNase digestion, using a 1:100 dilution of
RNase A/T1, at 377C for 30 min. Protected fragments
were separated on a 5% polyacrylamide/8 M urea gel
and were detected by exposure either to X-omat (Kodak)
for 18 h at 2807C with an intensifying screen or to a
phosphor screen (Molecular Dynamics). Films were
scanned and evaluated by the Pharmacia GSXL system.
Phosphor images were scanned in the STORM820 sys-
tem and were evaluated by ImageQuant software.

Mutation Analysis

Heteroduplex analyses of overlapping proa1(V)
cDNA PCR products prepared from cycloheximide-sup-
plemented cultures were performed (Korkko et al. 1998).
Targeted analyses of genomic DNA, for point mutations
of Arg (CGA) codons to premature-termination codons
(TGA) and for deletions or insertions in CCCCCT se-
quences, also was performed.

Seven overlapping PCR products spanning the a1(V)
cDNA were amplified from patient and control cDNAs
prepared from cycloheximide-treated fibroblast cultures
(fig. 4A). The sequences of the primers were selected on
the basis of the published a1(V) cDNA sequence (Green-
span et al. 1991) (GenBank accession number M76729).
The PCR products (5 ml) were analyzed for size variants
and heteroduplexes, by electrophoresis on a nondena-

turing 5% polyacrylamide gel (Bio-Rad). The products
were visualized by ethidium bromide staining and were
photographed by means of Polaroid Polapan 667 film.

Mutations involving conversion of the Arg codon
CGA in COL5A1 exons 2, 16, 27, 33, 40, 43, 48, and
55 to the premature-translational termination codon
TGA were sought after genomic PCR amplification using
primers corresponding to published exon-flanking se-
quences (Takahara et al. 1995). Point mutations of CGA
to TGA were sought in exons 40, 43, and 48 after di-
gestion of the purified PCR products with DdeI, which
recognizes the CTNAG sequence. The Arg mutation was
sought in exons 16, 27, and 55 after digestion with TaqI,
which recognizes the TCGA sequence. The digestion
products were resolved on nondenaturing 10% PAGE.
Exons containing abnormal digestion products were se-
quenced. Direct sequencing of exons 2 and 33 was un-
dertaken to detect the mutation, since these exons lacked
suitable restriction sites.

Single-base insertions or deletions in CCCCCT se-
quences also were targeted. Forward-and-reverse primer
pairs were designed to amplify exons 12, 15, 30, 36, 39,
41, 43, 46, 48, 50, 52, and 59 which contained the
CCCCCT sequence, and PCR amplification was per-
formed as described above. Mutation analysis of the
targeted CCCCCT sequences was performed by se-
quencing of the gel-purified PCR products.

DNA Sequencing

The polymorphic regions of the 3′ UTR region of 1(V)
cDNA and COL5A1 were sequenced after fibroblasts
were cultured in the absence and presence of cyclohex-
imide. The 1(V) cDNA PCR products showing size var-
iants, as well as their corresponding COL5A1 exons and
exon/intron junctions, were sequenced in patients EDS8,
EDS43, EDS56, and EDS82. Similarly, exon 27, which
showed an abnormal TaqI restriction pattern, consis-
tent with a CGArTGA mutation, was sequenced in pa-
tient EDS53. The primers were designed on the basis of
the published DNA sequence (Greenspan et al. 1991;
Takahara et al. 1991, 1995). Gel-purified cDNA (150
ng) or genomic DNA (200 ng) PCR products were used
for fluorescent-dye terminator cycle sequencing with a
Thermo Sequenase Cy 5 Dye Terminator Kit and a
Thermo Sequenase Cy5.5 Dye Terminator Cycle Se-
quencing Kit (Amersham Pharmacia Biotech).

Results

Null COL5A1 Alleles

Of 59 probands with classical EDS, 30 (51%) were
heterozygous for the BstUI polymorphism and 24 (40%)
were heterozygous for the DpnII polymorphism (fig. 1).
Overall, 61% of individuals were heterozygous for one
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Figure 1 Detection of COL5A1 haploinsufficiency. Top,Representative BstUI (upper gel) and DpnII (lower gel) digestions of PCR-amplified
genomic (lanes g) or cDNA (lanes c) segment from the 3′ UTR of COL5A1 in a control and three probands with classical EDS. Numbers on
the right show the sizes of the predicted restriction fragments. EDS82 is 1/1 for the BstUI site, resulting in 316-bp and 271-bp fragments after
BstUI digestion, and is 1/2 for the DpnII polymorphism; there is loss of the DpnII1 allele in amplified cDNA, with loss of the 418-bp and
194-bp fragments. EDS83 is 2/2 for the BstUI site and 1/2 for the DpnII site, with loss of the DpnII1 allele. EDS45 is BstUI 1/2 and DpnII
1/2 and shows loss of the BstUI1/DpnII2 allele. Bottom, cDNA and genomic map of COL5A1, showing locations of PCR primers (blackened
circles) in the 3′ UTR that bracket the DpnII and BstUI polymorphic sites.

or both polymorphisms, in agreement with the hetero-
zygosity frequencies reported by Greenspan and Pas-
quenelli (1994). Of 28 heterozygous cell strains for
which both genomic DNA and cultured cells were avail-
able, 8 (EDS8, EDS39, EDS45, EDS53, EDS56, EDS81,
EDS82, and EDS83) showed complete or nearly com-
plete loss of an BstUI and/or DpnII allele (fig. 1). In each
case, the RFLP band missing after BstUI or DpnII di-
gestion of RT-PCR products was restored after incu-
bation of fibroblasts with cycloheximide (fig. 2).

The proa1(V):proa2(V) mRNA ratios were measured
by RPA, to confirm the reduction of proa1(V) mRNA
levels in EDS fibroblasts showing complete or near-com-
plete loss of one COL5A1 allelic product. The ratios
were determined in 12 control fibroblast cell lines, 7

classical EDS cell lines with RFLP evidence of haploin-
sufficiency, 14 classical EDS cell lines informative for
either RFLP but without haploinsufficiency, and 12 clas-
sical EDS cell lines homozygous for both RFLPs and
therefore uninformative for loss of a COL5A1 allele (fig.
3). As a group, control cells and classical EDS cell strains
in which haploinsufficiency was excluded had a similar
range of proa1(V):proa2(V) ratios (0.59–1.11). EDS
cells in which RT-PCR analysis showed haploinsuffi-
ciency had proa1(V):proa2(V) ratios of 0.32–0.53. A
group of EDS cell lines that were uninformative for the
BstUI and DpnII polymorphisms, which were likely to
be heterogeneous with respect to COL5A1 haploinsuf-
ficiency, exhibited a range of proa1(V):proa2(V) ratios
that spanned the values of the known COL5A1-deficient
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Figure 2 Restoration of mRNAs from mutant COL5A1 alleles,
after incubation of cultured classical EDS fibroblasts with cyclohexi-
mide (CHX). Top, DpnII digestion of PCR-amplified genomic (lane g)
DNA and RT-PCR (lanes c) products, with (1) and without (2) CHX
from proband EDS43. The DpnII2 allele is significantly reduced in
the CHX2 lane (white arrow) and is restored in the CHX1 lane.
Bottom, DNA sequence of DpnII site in 3′ UTR from proband EDS43.
The arrow points to the polymorphic C/T site present in genomic DNA
of proband EDS43; only T is present in the CHX2 RT-PCR products,
and C/T heterozygosity is restored in CHX1 cells.

Figure 3 Histogram showing scanned proa1(V):proa2(V) ratios
in 12 control fibroblast cell lines; in 7 classical EDS fibroblast cell lines
with evidence of haploinsufficiency (1/2); in 14 classical EDS fibro-
blast cell lines informative for either BstUI or DpnII, without loss of
a COL5A1 allele (1/1); and in 12 uninformative classical EDS fibro-
blast cell lines.

and -nondeficient cell lines (0.38–0.97). Measured
proa1(V):proa2(V) ratios generated by RPA do not nec-
essarily reflect molar ratios of proa1(V):proa2(V) m-
RNAs, which depend on the efficiency of labeling for
each probe and on the efficiency with which each probe
protects the complementary RNA segment.

Characterization of Mutations Leading to
Haploinsufficiency

Mutation analysis was undertaken in eight classical
EDS cell strains with apparent loss of one COL5A1 al-
lelic product and reduced proa1(V):proa2(V) mRNA

ratios. The cultures were treated with 1 mg cyclohexi-
mide/ml, for 4 h prior to harvest. All eight EDS cell lines
with apparent haploinsufficiency in the absence of cy-
cloheximide showed the two COL5A1 alleles in ap-
proximately equal amounts after cycloheximide treat-
ment (fig. 2). The proa1(V) mRNAs stabilized by
cycloheximide were utilized for mutation detection.

Seven overlapping PCR-amplified cDNA fragments,
spanning the entire 5,514-bp coding sequence of
proa1(V) cDNA, were examined for apparent altera-
tions in molecular weight after PAGE was performed fig.
4A). Abnormally sized PCR products were observed in
four patients (fig. 4B). In proband EDS82, a G11rT
transversion resulted in an in-frame exclusion of all 168
bp encoded by exon 2 (table 1). The abnormal 580-bp
PCR product shown in figure 4B lacks the 168 bp en-
coded by exon 2. In proband EDS43, a G11rA transition
in intron 28 resulted in the inclusion of the 5′ 178 bp
of intron 28, which caused a frameshift and premature
stop codon. The 178-bp sequence immediately preceded
a GT dinucleotide that provided an alternative splice-
donor site in intron 28. The abnormal cDNA PCR prod-
uct of 500 bp shown in figure 4B was found, by sequence
analysis, to contain the 178-bp insertion. In proband
EDS8, a deletion of a GA dinucleotide in exon 47 (nu-
cleotides [nt] 3957–3958 or 3959–3960 of the cDNA
sequence) resulted in a frameshift and a premature stop
codon. In proband EDS56, an insertion of a TG dinu-
cleotide in exon 52 resulted in a frameshift and a pre-
mature stop codon. Electrophoretic analysis of the
cDNA segments containing splice-junction mutations
(EDS82 and EDS43) contain higher-molecular-weight
fragments (30 kb and 1.7 kb, respectively) that are pre-



Figure 4 Heteroduplex analysis of proa1(V) cDNA. A, Seven overlapping fragments, labeled “1”–“ 7,” that span the entire proaa1(V)
cDNA were amplified from patient cDNA by means of the corresponding seven sets of primers. Nucleotide positioning of primers was according
to Greenspan et al. (1991). Fragment 1, 5′ UTR exon 4 (signal peptide to N propeptide.); fragment 2, exons 4–15 (N propeptide to helix);
fragment 3, exons 9–28 (helix); fragment 4, exons 23–41 (helix.); fragment 5, exons 39–52 (helix); fragment 6, exons 48–60 (helix); fragment
7, exon 66 3′ UTR (helix to stop). B, PAGE of molecular-weight variants and heteroduplexes, after PCR of a1(V) cDNA fragments prepared
from cultured fibroblasts exposed to cycloheximide. Each panel includes a GeneRuler 1-kb DNA ladder (MBI Fermantas), as well as control
and patient PCR products, after 5% PAGE and ethidium bromide staining. Panel a, Patient EDS82. In addition to the expected, 750-bp PCR
product, there were migrating fragments that had apparent sizes of 30 kb and 580 bp. Panel b, Patient EDS43. Nested PCR products of fragment
4 showed products that had apparent sizes of 1.7 kb and 500 bp, in addition to the expected, 323-bp fragment size. Panel c, Patient EDS8.
This patient had both the expected, 995-bp fragment size and another fragment with an apparent size of 1,100 bp. Panel d, Patient EDS56.
This patient had both the expected, 841-bp product and an unexpected product with an apparent size of 880 bp.
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Figure 5 Cosegregation of COL5A1 mutations and EDS in ped-
igrees. Top, G11rA substitution found in EDS43 (arrow), which is
present in affected individuals but not in unaffected individuals. Bot-
tom, 2-nt insertion at position 4332, found in patient EDS56 (arrow)
and also present in I-1 and III-1 but absent in III-2.

Table 1

Patients with EDS Type I with COL5A1 Mutations

PATIENT

CHANGE IN

Genomic DNAa cDNAb Proteinc

EDS8 Exon 47 deletion of GA at nt 38
or 40c

nt 3957 or nt 3959 deletion of GA Frameshift and a premature stop codon at
amino acid 1265

EDS43 Intron 28 G11rA nt 2660 insertion of 178 nt from intron 28 Frameshift and a premature stop codon at
amino acid 840

EDS56 Exon 52 insertion of TG at nt 35c nt 4332 insertion of TG Frameshift and a premature stop codon at
amino acid 1488

EDS82 Intron 2 G11rT nt 339 deletion of 168 nt Deletion of amino acids 38–92
EDS53 Exon 27 C43Tc C2603T R792X

a Nucleotides are numbered from 5′ nt of exon.
b Nucleotides are numbered according to Greenspan et al. (1991).
c Amino acids are numbered from the first methionine of the signal peptide.

sumed to be heteroduplexes that contain one strand con-
taining normal sequence and another strand containing
the abnormal splice form. Sequence analysis of the prod-
ucts of multiple cDNA PCR reactions did not provide
evidence of other splicing products in either proband
EDS43 or proband EDS82.

In the eight cell strains with genetic evidence of hap-
loinsufficiency, CGA codons in exons 2, 16, 27, 33, 40,
43, 48, and 55 were examined for CrT transitions that
lead to Argrpremature-stop-codon mutations. In pro-
band EDS53, a TaqI restriction site was lost because of
a CrT transition, in exon 27, that created a stop at
codon 792 (not shown). The exons containing the
CCCCCT sequence (exons 12, 15, 30, 36, 39, 41, 43,
46, 48, 50, 52, and 59), which is reported to predispose
to single-nucleotide insertions or deletions in the ho-
mologous COL1A1 and COL2A1 genes, were amplified
and sequenced. No mutations of this type were
identified.

Of the eight probands with classical EDS with com-
plete or nearly complete haploinsufficiency of COL5A1,
the mutations were localized and sequenced in only five
cases and were not localized or sequenced in the re-
maining three cases. Two probands (EDS43 and EDS56)
were members of pedigrees in which classical EDS seg-
regated as an autosomal dominant trait (fig. 5) The
G11rA transition identified in proband EDS43 also was
identified in the eight other affected family members.
Proband EDS56 is a member of a pedigree in which
classical EDS has been shown to cosegregate with one
COL5A1 allele (Wenstrup et al. 1996). The GT-dinu-
cleotide insertion in exon 52 was identified in two other
affected family members and was absent in an unaffected
family member.

Discussion

This report has summarized investigations into the prev-
alence of COL5A1 haploinsufficiency in a series of 59

probands with classical EDS. Classical EDS represents
a combination of the gravis (EDS I) and the mitis (EDS
II) forms of EDS, from earlier classifications, forms that
were grouped together because they can be allelic dis-
orders and because both phenotypes can occur as a range
of phenotypic variation within a single family (Beighton
et al. 1988; Burrows et al. 1996).

Approximately 30% of individuals who were hetero-
zygous for either of two RFLPs expressed in the 3′ UTR
of COL5A1 had markedly reduced or absent expression
from one COL5A1 allele. Quantitation of proa1(V)
mRNAs by RPA confirmed that cells with genetic evi-
dence of haploinsufficiency had diminished expression
of COL5A1, compared with controls and classical EDS
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cells in which COL5A1 haploinsufficiency was ex-
cluded. Nonsense-mediated mRNA decay is the likely
mechanism that would account for the loss of the ab-
normal allelic product observed in the four probands
(EDS8, EDS43, EDS56, and EDS53) with mutations
that would be expected to yield stop codons (Leeds et
al. 1992; Pulak and Anderson 1993; Belgrader et al.
1994). Similar types of mutations had been reported to
be common causes of haploinsufficiency in the COL1A1
and COL2A1 genes in osteogenesis imperfecta and
Stickler syndrome, respectively (Willing et al. 1993,
1994). Cycloheximide, a potent inhibitor of protein syn-
thesis, also stabilizes labile RNAs, through a serine/thre-
onine phosphorylation-dependent action, on the 3′

UTR, that is independent of its action as a protein-
synthesis inhibitor (Rao and Mufson 1993; Ohh and
Takei 1995), making it an ideal component in the iden-
tification of mutations underlying null alleles.

The splice-donor mutation of intron 2 in proband
EDS82 yielded an in-frame spliced product that lacked
the exon 2 encoded sequence. We detected no other
spliced products—and, in particular, no product that
would be expected to yield a stop codon. Similar splic-
ing mutations in COL5A1, COL5A2, and other fibrillar-
collagen genes usually have resulted in expression of the
mutant allele. The reason for the instability of the in-
correctly spliced allele in proband EDS82 was not
determined.

The observed increase in COL5A1 mRNA from the
mutant allele that was produced by cycloheximide treat-
ment of cultured fibroblasts should enable any of the
standard cDNA-based mutation-detection systems to be
used. Heteroduplex analysis was found to be a simple
method for detection of abnormal PCR fragments in
patients shown to have insertions or deletions, but this
method probably is too insensitive to detect point mu-
tations. For example, no heteroduplexes were detected
in proband EDS53, in whose helical coding region there
was a point mutation leading to a stop codon. Analysis
of overlapping cDNA PCR products by the protein-
truncation test may provide a useful alternate mutation-
screening method, since premature stop codons resulted
from the COL5A1 mutations in four of the five pro-
bands in whom mutations were determined. Alterna-
tively, complete cDNA sequence analysis may be an ef-
ficient screening method if high-throughput systems are
available, in cases in which the mutant message is sta-
bilized by cycloheximide.

This report represents the first attempt to determine
the prevalence of COL5A1 haploinsufficiency in a large
series of patients with classical EDS. Evidence of
COL5A1 haploinsufficiency was observed in ∼30% of
the individuals who were informative for the 3′ UTR
polymorphisms used in this study. The addition of other
expressed polymorphisms, such as the PstI site in exon

5, should increase the overall heterozygosity rates, from
60% to as high as 90%. Consequently, these RFLPs
should enable COL5A1 haploinsufficiency to be iden-
tified efficiently in patients with classical EDS.

In our study population of 59 cases of classical EDS,
8 were shown, in the present study, to have haplo-
insufficiency of COL5A1. In previous studies, one case
was shown to have an exon 65–skipping mutation of
COL5A1, and two cases had skipping mutations of ei-
ther exon 27 or exon 28 of COL5A2. Assuming that
the 30% prevalence of COL5A1 haploinsufficiency ob-
served in the subset of the patients who were infor-
mative for the 3′ UTR polymorphisms applies to the
complete group, we predict that ∼19 of the 59 cases
will be haploinsufficient. Overall, we predict that, at a
minimum, 22 (37%) of the 59 cases have mutations of
either COL5A1 or COL5A2. We did not determine
whether haploinsufficiency of COL5A2 was present in
the study population.

Although additional studies are in progress to deter-
mine the prevalence of all types of mutations in
COL5A1 and COL5A2 in classical EDS, it is likely that
up to half of the cases may be due to mutations in other
gene loci. Phenocopies clearly occur, because segrega-
tion with COL5A1 and COL5A2 has been excluded in
several families with classical EDS (Greenspan et al.
1995; Wenstrup et al. 1996). Some of these families still
may have mutations in the COL5A3 gene or in genes
that code for other proteins that interact with or are
involved in the formation of the type I collagen–rich
fibrils. For example, deficiencies of decorin (Danielson
et al. 1997), thrombospondin 2 (Kyriakides et al. 1998),
and fibromodulin (Svensson et al. 1999) produce a frag-
ile-skin phenotype in mice. Also, a heritable deficiency
of tenascin X in humans results in an EDS-like phe-
notype with recessive inheritance (Burch et al. 1997a,
1997b).

The finding described here—that is, that the classical
EDS phenotype is commonly due to 50% reduction of
proa1(V) chains—indicates that biomechanical integ-
rity of connective tissues, particularly that of healing
dermis, is exquisitely sensitive to type V–collagen con-
tent. The precise role of type V collagen in the main-
tenance of connective-tissue strength is not completely
known. Type V collagen has been postulated to be a
negative regulator of collagen-fibril diameter (Marchant
et al. 1996), and dermal collagen fibrils in patients with
EDS are, on average, larger than normal (Vogel et al.
1979; Hausser and Anton-Lamprecht 1994). Yet, larger
collagen fibrils are correlated with increased structural
and material properties of tissues (Parry and Craig
1988)—rather than with the apparent decrease in those
properties that is found in most connective tissues of
patients with EDS. A possible pathogenetic mechanism
underlying loss of tissue integrity in EDS may be inter-
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ference with a putative role of type V collagen in nu-
cleation of type I collagen–rich fibrils, a role consistent
with the localization of type V–collagen triple-helical
epitopes in the interior—rather than on the surface—of
collagen fibrils (Birk et al. 1988). Abnormal nucleation
of collagen fibrils in dermis may account for the ap-
pearance of disorganized fibrils in dermis of some pa-
tients with EDS (Hausser and Anton-Lamprecht 1994).
Alternately, loss of connective tissue integrity in EDS
may be related to a reduced capacity of type V-deficient
collagen fibrils for binding to noncollagenous matrix
components, including heparin sulfate proteoglycan
(Delacoux et al. 1998), decorin (Fleischmajer et al.
1991), osteonectin (Xie and Long 1996), and chondro-
itin sulfate proteoglycan (Fleischmajer et al. 1991).
Heparin sulfate, in particular, exhibits higher binding
to type V than to type I collagen; binding to type V
collagen varies by molecular isoform and is directly
proportional to the a1(V) chain content: a1(V)3 1

a1(V)2a2(V) 1 a1(V)a2(V)a3(V) (Delacoux et al.
1998). Morphologic, biochemical, and cellular analyses
of COL5A1- haploinsufficient cells and tissues from pa-
tients with classical EDS may elucidate the function of
type V collagen in the regulation of tissue biomechanical
properties.
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