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Since the discovery of the inner core in 1936, no additional
spherical subshell of the Earth has been observed. Based on an
extensive seismic data set, we propose the existence of an inner-
most inner core, with a radius of �300 km, that exhibits a distinct
transverse isotropy relative to the bulk inner core. Specifically,
within the innermost inner core, the slowest direction of wave
propagation is �45° from the east-west direction. In contrast, the
direction of the slowest wave propagation in the overlying inner
core is east-west. The distinct anisotropy at the center of the Earth
may represent fossil evidence of a unique early history of inner-
core evolution.

The solid inner core of the Earth constitutes less than 1% of
the Earth’s volume; nonetheless, this tiny sphere has played

and continues to play an important role in the evolution of our
planet. Growth of the inner core provides a source of thermal
and compositional buoyancy for powering the geodynamo (1–3),
and the region acts to stabilize the magnetic field (4, 5).
However, the inner core remains a poorly understood region of
the Earth, because most seismic waves do not sample it and the
extreme pressures and temperatures are not reproduced easily in
the laboratory.

The existence of the inner core was first inferred by Inge
Lehmann (6) when she discovered a discontinuity in the com-
pressional wave speed within the core (this discontinuity defines
the boundary between outer and inner core). The discovery of
athe inner core led to studies of this deepest region of the Earth: solidity
was proposed by Birch (7) and firmly established by Dziewoński and
Gilbert (8). Furthermore, anomalous splitting of inner core-sensitive
normal modes (9), and evidence for directional dependence of wave
propagation (10) were observed in the early 1980s. In 1986, Morelli et
al. (using travel times) (11) and Woodhouse et al. (using normal modes)
(12) proposed that the inner core is anisotropic (transversely isotropic)
with the axis of symmetry parallel to the axis of rotation, i.e., waves
traveling parallel to the equatorial plane are slower than waves traveling
perpendicular to it.

There are two types of seismic data (normal-mode and
body-wave data) available for investigation of the inner-core
properties. Difficulties in body-wave modeling arise from in-
complete sampling of the inner core and the fact that a ray that
reaches the inner core must travel through the laterally heter-
ogeneous mantle (Fig. 1). Analyzing data from the Bulletins of
the International Seismological Centre, Su and Dziewoński (14)
found that the best fit of the axis of symmetry for transversely
isotropic inner core requires �10° tilt with respect to the axis of
rotation. Subsequent analysis suggests that this inference was
driven by a highly anomalous subset of data representing paths
from earthquakes in South Sandwich Islands to Alaska (15). The
origin of this anomaly is still not determined, but if this data
subset is excluded, there is no evidence for a significant differ-
ence between the alignments of the symmetry and rotation axes.
This example of an erroneous conclusion shows that one must
consider the spatial scales of the travel-time anomalies, without
automatically attributing them to global properties. Several
different complexities have been proposed in the properties of

the inner core near the inner-core boundary (16–18), but they
are also likely to be associated with anomalous data subsets (19).

The initial models of inner-core anisotropy were simple:
transverse isotropy (hexagonal symmetry) with the symmetry
axis parallel to the Earth’s rotation axis. Anisotropic parameters
were either constant or varied as a function of radius. Although
the presence of anisotropy in the inner core is generally ac-
cepted, investigations of inner-core anisotropy subsequent to
Morelli et al. (11) and Woodhouse et al. (12) resulted in a wide
range of views regarding strength as well as lateral and radial
variations. In particular, there has been a major discrepancy
between models based on normal-mode and body-wave data
(e.g., refs. 20 and 21). Ishii et al. (22) derived a simple model of
inner-core anisotropy, ICAS02, which fits normal-mode, abso-
lute travel-time, and differential travel-time data. This model is
characterized by a relatively weak anisotropy (peak-to-peak
velocity variation of 0.2 km�s) with no radial dependence. The
fit to travel-time data using this simple model is good (22) except
in the distance between 173° and 180°, corresponding to the
bottoming radius from 0 to 300 km. We propose here that this
misfit requires the introduction of distinct anisotropic behavior
at the center of the Earth. We call this anomalous region the
innermost inner core (IMIC). It is essential, of course, to
demonstrate that our inference is not biased by local anomalies
or small subsets of anomalous data.

Theory
For homogeneous transversely isotropic material, perturbations
in velocity (�v) depend on cos2� (see ref. 22) as

�v � v0�A�cos2��2 � B cos2��, [1]

where � is the angle between the ray and the axis of symmetry
(Fig. 1B), v0 is the average compressional wave velocity in the
inner core, and parameters A and B describe the anisotropic nature
of the material (i.e., they are related to the elements of the elastic
tensor). This form is suitable for displaying anisotropic behavior
because travel times can be plotted as a function of cos2� (Fig. 2).
Eq. 1 can be written in a variety of forms based on trigonometric
relationships, but a physically appealing expression is

�v � v0�A�cos�4�� � B�cos�2���, [2]

because it is analogous to the equation for azimuthal anisotropy.
In addition, the parameters A� and B� have simpler relationships
to the elements of the elastic tensor. Perturbations in velocity are
related to travel-time anomalies (�t) through a relationship

�t � ���v
v2 ds,

Abbreviation: IMIC, innermost inner core.

See commentary on page 13966.
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where integration is over the ray path s, and v is the velocity of
the reference isotropic Earth model (23).

Data
Constraints on the anisotropy within the IMIC primarily involve
absolute travel-time data of the DF branch (see Fig. 1). The
sensitivity of normal-mode data to the deepest 300 km of the
core is close to zero for most modes, because the eigenfunctions
vanish at the center of the Earth. BC � DF differential travel
times are available between the epicentral distance range of 145°
and 156°, and hence they only provide information on the
shallow (upper 350-km) portion of the inner core. In contrast,
AB � DF data are available in distance ranges up to 180°;
however, the paths between AB and DF within the mantle are
considerably different, resulting in substantial signals from man-
tle structure (19, 24–26). Hence AB � DF data cannot provide
reliable constraints on the inner core, especially at large epicen-
tral distances.

We use absolute travel-time data collected by the Interna-
tional Seismological Centre between 1964 and 1994. The data
are corrected for the Earth’s ellipticity (27), effects due to the
crust, and mantle contributions based on a P-velocity model
MK12�WM13 (28). The earthquakes in the data set are then
relocated by using mantle models and arrival times of the P, S,
PKPAB, PKPBC, and PKPDF phases. There are �325,000 DF
measurements that are averaged according to the ray angle �
(Fig. 1B) and eight different ranges of epicentral distance. The
procedures used here were first described by Su and Dziewoński
(14) and used, with small variations, by Ishii et al. (22). Fig. 2
shows the result of these procedures, i.e., average DF residuals

Fig. 1. Geometry of ray paths for PKP branch. (A) Ray paths for PKPAB (red
curve), PKPBC (green curve), and PKPDF or PKIKP (blue curve) at an epicentral
distance of 150°. PKPBC (BC for brevity) and PKPAB (AB) turn in the lower and
upper outer core, respectively, and do not sample the inner core. Travel times
of PKPDF (DF) are referred to as ‘‘absolute travel times’’ in contrast to ‘‘differ-
ential travel times,’’ which are obtained by subtracting DF travel times from BC
(BC � DF) or AB (AB � DF) travel times. Differential travel times are often used
in inner-core studies because similarity of the BC or AB path with DF path
within the mantle reduces undesirable mantle and earthquake effects from
the data. Mantle heterogeneity based on a shear-velocity model of Gu et al.
(13) is plotted. Red colors indicate slower than average velocity, and blue
colors indicate faster than average velocity. The cross section is made along a
great circle between Africa and the southwestern Pacific (crossing under
Eurasia). (B) Geometry of the DF ray in the inner core (pale-blue circle), where
� is the angle of the ray with respect to the symmetry axis (shown in red). At
high values of cos2�, the ray is traveling parallel to the symmetry axis, and
when cos2� is small, the ray is traveling perpendicular to the symmetry axis.

Fig. 2. Fit to DF data at various distance ranges. Observed DF travel-time data
(black circles with error bars) and residual DF data after correcting for a
constant anisotropy model (gray circles with error bars) for various distance
ranges. The values shown below the epicentral distance range correspond to
the bottoming depth of the data below the inner-core boundary. Prediction
based on the bulk inner-core anisotropy model (22) is shown as a black curve,
and the zero line is shown in gray. The standard deviation of the mean is
shown as the uncertainty of each averaged datum point.

Fig. 3. Independent subsets of data from 173° to 180° distance range.
Comparison of four subsets of DF data in the distance range between 173° and
180° after the removal of signal due to inner-core anisotropy in the top 920
km. Red and yellow dots with error bars are data in the western hemisphere
with  latitude � 30° and  latitude � 30°, respectively, and those in blue and
green correspond to two latitude bins in the eastern hemisphere. Here,
latitude refers to the ray’s bottoming latitude. There are only a handful of
data with cos2� 	 0.8.
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as a function of cos2� for eight distance ranges (bottoming
depths) and the residuals corrected for the anisotropy of model
ICAS02. Despite the possibility of substantial reading errors and
source-receiver bias, this data set is remarkably consistent with
high-quality differential travel-time data when some anomalous
paths are removed (19).

In the first seven panels (between 120° and 173° distance
ranges), the data are almost linearly dependent on cos2�, and the
residuals follow the zero line closely, with small deviations.
However, the deviations are significant (
1 s) for the last
distance range and have a well developed parabolic shape; the
slowest arrivals (maximum travel-time residual) correspond to

Fig. 4. Comparison of DF data from 153° to 155° and 173° to 180°. Plot of DF data binned into 362 caps for the distance ranges 153°–155° (Left) and 173°–180°
(Right). Colatitude and longitude in these maps correspond to ray angle � and bottoming longitude, respectively. Contours (four red and four blue curves) and
background color (eight red and eight blue colors) have constant extreme values (
1 s). (A) Locations of cap centers where those with more than three
measurements are shown in green circles and those with less than three measurements are shown in purple triangles. (B) Raw DF travel-time data binned
according to their bottoming longitude and ray angle �. Spherical harmonic expansion up to and including degree 4 is shown by contours. (C and D) DF data
after the removal of anisotropy in the upper 920 km of the inner core. In C, the binned data are shown with contours of spherical harmonic expansion up to degree
4, and in D, the same data are shown with background color obtained only with zonal terms at degrees 2 and 4. A strong degree-4 zonal pattern (east-west banded
pattern with five regions) is clear for the near-antipodal distance range, whereas the 153–155° distance range contains small residuals with a weak zonal pattern
at degree 2 (bands with three regions).
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intermediate values of cos2�. The smooth behavior of these
residuals implies that they could be well fit as a quadratic in cos2�
and thus be consistent with transverse isotropy. The anomalous
behavior of data from the 173°–180° distance range cannot be
explained by structure within the mantle, outer core, or the
shallow inner core, because data up to 173° are well explained by
the constant model of anisotropy. Furthermore, there are more
than 3,000 individual readings from the 173°–180° distance
range: two or three times more than all differential travel-time
data reported thus far for all the phases at all distances. The
anomalous behavior of the data at nearly antipodal distances
has been observed previously. Indeed, the earliest study of
inner-core anisotropy (11) showed large positive travel-time
residuals at �45° latitude (figure 1 of ref. 11). In addition, Su and
Dziewoński (14) inferred stronger anisotropy in the central inner
core in their four-shell models of anisotropy. We demonstrate
here, on the basis of a detailed analysis of more extensive
database of travel times, that the parabolic behavior in travel-
time data is a robust feature, and that anisotropy within the
IMIC is not only stronger than in the shallower part but that it
has a different slow direction.

Tests of the Robustness
To begin, we investigate whether biased sampling, or a small
set of anomalous ray paths, may be corrupting travel-time data
within the epicentral distance range relevant to IMIC studies.
Following geometrical considerations described in Ishii et al.
(19), the data are grouped into four subsets according to their
bottoming points: whether they bottom in the polar or equa-
torial latitudes and in the eastern or western hemispheres. This
procedure effectively identifies anomalous but heavily
weighted data that may be associated with small-scale struc-
ture within the mantle or the inner core. For example, at the
distance range of 150°–153°, the South Sandwich Islands to
Alaska anomalies cause the western equatorial-data subset
to diverge significantly from other subsets at cos2� between
0.7 and 0.9 (19). Fig. 3 shows the four subsets of data as a
function of cos2� for the distance range from 173° to 180°. The
consistency of the independent data sets implies that the
anomalous parabolic dependence of travel times on cos2� is
robust and unlikely to be due to either biased sampling or
contamination from a small number of anomalous data.

For a transversely isotropic medium, the local velocity
depends only on the angle � of the ray with respect to the
symmetry axis. If the IMIC is transversely isotropic, and if
there are no significant regional variations, then the function
�t(�, �), where � is the bottoming longitude, should be zonal
(i.e., with no longitudinal dependence) in the �–� space. Fig.
4 shows �t(�, �); this plot is similar to Fig. 2 except that an
additional dimension (bottoming longitude �) is introduced
and that � is used rather than cos2�. Using triangular tessel-
lation (29), we divide the surface of a sphere into 362 nearly
equal-area triangles, the vertices of which are used as the
center of the 10° cap (Fig. 4). The advantage of the triangular
tessellation over a commonly used rectangular one is that the
nodes are nearly equidistant. On the other hand, the nodes in
the northern and southern hemispheres are not a mirror image
of one another, forcing signal to appear nonsymmetric across
the equator. There is slight smoothing as the 10° caps overlap;
nevertheless, this procedure preserves wavelengths up to a
spherical harmonic of degree 9. We are primarily interested in
the zonal harmonics of degrees 2 and 4 (linear and quadratic
dependence of �t on cos2�, respectively), and thus this smooth-
ing should not affect our conclusions.

This procedure implies that when a ray is traveling parallel
to the equatorial plane (at any latitude), the datum is binned
into caps at the equator, and when it is perpendicular to the
equatorial plane, the datum is included in caps at the poles.

Consequently, latitudinal variations in the data with given
values of � and � are averaged for a given cap location. We call
this averaging scheme ‘‘latitudinal stacking’’. The resulting
two-dimensional map shows the travel-time dependence on ray
angle (plotted as colatitude) and bottoming longitude. The
strength of the zonal pattern at degree 2 in such a map
corresponds to the strength of a linear dependence of the data
on cos2�, and the strength of the zonal pattern at degree 4
corresponds to the strength of a quadratic dependence of the
data on cos2�. Latitudinal stacking could be useful, for exam-
ple, in examining the hemispheric variations in the strength of
anisotropy (16, 18), because the patterns of residuals should
show strong longitudinal dependence.

For both the 153°–155° and 173°–180° distance ranges, data
coverage is good (Fig. 4A) although each cap is required to
have at least three measurements. It should be remembered
that there is no simple correspondence between the location of
source or receiver at the surface and ray-bottoming coordi-
nates. Thus, although there are regions of the Earth poorly

Fig. 5. Data from the IMIC. DF data in the distance range between 173° and
180° after the removal of signal due to inner-core anisotropy in the top 920
km. (A) Averaged data (blue dots with error bars) with a prediction (blue solid
curve) that assumes that the symmetry axis is aligned with the rotation axis.
The prediction based on an anisotropy model of the bulk inner core (22) is
shown by the dashed curve. (B) Grid-search result for best-fitting symmetry
axis location showing the variance reduction as a function of the symmetry
axis location. The center of this map is the North Pole (white star). Note that
the color scale is not linear but is characterized by a small increment at high
values to emphasize change as a function of axis location. (C) Velocity varia-
tion as a function of � for a bulk inner-core model (black curve) and the IMIC
model (blue curve).
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covered by sources (much of the Pacific, for instance), the
ray-bottoming points have a much better distribution; mantle
P-wave tomography is an instructive example (e.g., figure 8 of
ref. 30). Binning the raw data results in a clear zonal pattern
both in 153°–155° and 173°–180° (Fig. 4B). However, when
effects due to anisotropy in the upper 920 km of the inner core
are removed from the data, residuals from the two distance
ranges show clear differences. As could be expected from Fig.
2, residuals in the 173°–180° distance range exhibit a strong
degree-4 zonal pattern, whereas those in the 153°–155° are
almost zero with a weak degree-2 signal (Fig. 4 C and D). Note
that for the latter range, the effect of the anomalous South
Sandwich Islands to Alaska paths is confined to a few points
at nearly polar � and that there is no significant longitudinal
variation at hemispheric scales. The distinctive zonal pattern at
degree 4 for data from the 173° to 180° distance range (Fig. 4
C and D) is an unambiguous indication that the peculiar
anisotropic behavior is characteristic of the IMIC.

Results and Discussion
Inverting residual DF data for the constants in Eq. 1 or 2 results
in almost purely parabolic dependence of travel times on cos2�
(Fig. 5A). The improvement in the variance reduction obtained
with this model (87% for the averaged data as shown in Fig. 5A)
is substantial compared with the prediction based on a simple
model of the bulk inner core (�15%) despite the small number
of additional unknowns. The variance reduction can be further
improved to 90% level if the axis of symmetry is tilted from the
rotation axis. This tilt is not well constrained, partly because of
a limitation in data availability from polar paths (Fig. 5B).
However, travel-time residuals remain parabolic regardless of
the axis location, indicating that tilt of the axis of symmetry is not
the cause of parabolic dependence of travel times on cos2�.
Inversions with varying orientation of the symmetry axis result
in models with a maximum velocity difference of 0.8 km�s
between the fastest and slowest directions, with the lowest
velocity at ��45° (Fig. 5C).

Theoretical calculations of the elastic parameters of iron, the
main constituent of the Earth’s core, predict a velocity minimum
at �50° from the direction of the highest velocity (31). Exper-
imental results at high pressures also indicate that the lowest
velocity occurs at �45° (32). Although these two results do not
agree in the direction of fast velocity, our observations are
consistent with either result given a mechanism for aligning the
fast axis with the axis of rotation. In addition, in both of these
studies, iron is found to be highly anisotropic with a velocity

difference of 2 � 2.5 km�s, suggesting that only a fraction of
crystal alignment is required to generate the anisotropic signal
observed for the IMIC. A linear dependence of travel times on
cos2� in the shallower part of the inner core may be due to
impurities associated with the freezing process at later (more
recent) times.

The existence of an anisotropically distinct IMIC from the
bulk inner core has significant consequences. The behavior may
represent fossil evidence of two episodes of inner core devel-
opment, presumably related to changes in core environment. For
example, an inner core of a few hundred-kilometer radius may
have formed rapidly when the Earth differentiated or with a
different chemical composition. Also, because the inner core
affects the pattern of convection in the outer core, the prevailing
pattern of the flow might have changed after the radius of the
inner core exceeded �300 km. Furthermore, if the IMIC is a
preserved region of the early Earth, it restricts later development
of anisotropy to mechanisms acting close to the boundary
between the inner and outer core. Those involving the entire
inner core, such as degree-one convection (33, 34), would
preclude a distinct IMIC anisotropy. Alternatively, the change in
anisotropic behavior between the bulk and innermost inner core
may represent an additional phase change in iron.

The boundary between the IMIC and the bulk inner core at
300-km radius is somewhat artificial, since the sharpness of the
transition cannot be well constrained from our data. Data such
as a triplication in the travel-time curve and associated am-
plitude anomalies are required for resolving the boundary
between the bulk inner core and the IMIC. To obtain such
data, one needs to deploy densely spaced linear arrays in the
15° range of antipodal distance from a relatively active source
region. Thus, with improved global coverage of seismometer
and projects such as the USArray with its ‘‘f lexible’’ compo-
nent, or even a 1-year deployment of broad-band seismographs
below the ocean bottom, it might be possible to conduct a more
detailed survey of the distinct anisotropy that characterizes the
very center of the Earth.
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25. Bréger, L. & Romanowicz, B. (1998) Science 282, 718–720.
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