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There are proposals to overcome the current incompatibilities
between the time scales of protein folding and molecular dynamics
simulation by using a large number of short simulations of only
tens of nanoseconds (distributed computing). According to the
principles of first-order kinetic processes, a sufficiently large num-
ber of short simulations will include, de facto, a small number of
long time scale events that have proceeded to completion. But
protein folding is not an elementary kinetic step: folding has a
series of early conformational steps that lead to lag phases at the
beginning of the kinetics. The presence of these lag phases can bias
short simulations toward selecting minor pathways that have
fewer or faster lag steps and so miss the major folding pathways.
Attempts to circumvent the lags by using loosely coupled parallel
simulations that search for first-order transitions are also prob-
lematic because of the difficulty of detecting transitions in molec-
ular dynamics simulations. Nevertheless, the procedure of using
parallel independent simulations is perfectly valid and quite fea-
sible once the time scale of simulation proceeds past the lag phases
into a single exponential region.

lag � relaxation � kinetics � denatured state � intermediate

Theoreticians and experimentalists are now combining forces
to describe and predict the pathways of folding and unfolding

of proteins (1). Simulation methods place varying demands on
computer time. With present technology, theoreticians use sim-
plified models to probe general principles and derive specific
details rapidly. At the extreme of resolution, molecular dynamics
(MD) simulation of proteins has the potential of predicting the
complete pathways of folding and unfolding at atomic resolution.
But there is an incompatibility between the time scales accessible
to MD simulation, currently of the order of a microsecond for a
very small protein, and that observed for folding, which is
generally in the upper end of the range of tens to hundreds of
thousands of microseconds. However, the pathways of unfolding
of several proteins have now been solved with ever-increasing
confidence at atomic resolution, thanks to combining simulation
with near-atomic level experimental information (reviewed in
ref 1). � value analysis of transition states and NMR studies of
denatured states provide the high-resolution experimental de-
scriptions that are used to benchmark MD simulations, which in
turn flesh out the structures and fill in the rest of the folding
events. MD simulations of protein unfolding are currently
feasible, because the rate of protein unfolding increases with
increasing temperature to the nanosecond to tens of nanosec-
onds time scales that are currently easily accessible to simulation.
Also, unfolding starts from the best-defined state on the reaction
pathway, the native state. Protein folding, on the other hand, is
initiated from the least-defined state in solution, the denatured
state, and the rate of protein folding follows a bell-shaped curve
with temperature, often peaking at just above body temperature.
The first simulations of unfolding were performed at some

200–300°C (2–4) but nevertheless gave results that are consistent
with experimental data at 25–50°C (5–8). Recently, experimen-
talists have sought to bridge the time scale gap by finding small
fast folding (in microseconds) and even faster unfolding (in
nanoseconds) proteins. Experiment and simulation of the un-
folding of the engrailed homeodomain (En-HD) (9) and WW
domains (10), for example, have been compared at accessible
temperatures. Running the unfolding simulations in reverse
gives the folding pathways. But even on current supercomputers,
it is still not possible to simulate directly the folding of these very
fast proteins.

Now theoreticians have risen to the challenge of microsecond
folding by introducing a radically new approach of MD simulation
that has the potential of simulating, with current computing tech-
nology, the folding of proteins that fold on the tens of microseconds
time scale. Instead of attempting a single very long simulation on
the tens of microseconds time scale, tens of thousands of very short
simulations are performed on screen savers on personal computers
throughout the world (‘‘distributed computing’’) (11–13). In es-
sence, the philosophy behind the method is that if N0 simulations
are performed of a first-order reaction of rate constant k for a very
short time period �t, where �t �� 1�k, then the number of
simulations going to completion (�NP) will be N0k�t (that is, the
initial rate of a first-order reaction as �t tends to 0). For example,
if k � 105�s�1 and �t � 10�8�s�1, then 10 of 104 simulations should
lead to complete reaction, even though each individual simulation
lasts only 1�1,000th of a half life of the reaction. This procedure is
so intriguing that I present an analysis of its scope and potential
problems to aid in its development and successful implementation.

True Two-State Folding?
Many small proteins do fold with apparently first-order kinetics.
The first question is whether first-order kinetics extends to the
very initial stages of folding. The MD procedure is initiated from
the polypeptide chain being in an extended conformation
(�‘‘U’’)† to avoid any bias. In contrast, rapid relaxation kinetics
experiments (see, e.g., ref. 9) measure the transition between the
denatured state that exists in solution under folding or physio-
logical conditions (D) and the native (N) and any intermediate
state (I). D is not an extended polypeptide chain but an
equilibrium ensemble of structures with varying degrees of
native and nonnative interactions (see, for example, refs. 7 and
8). I is also an ensemble. There is thus an initial energetically
downhill progress from the hypothetical extended form U to the

Abbreviations: MD, molecular dynamics; En-HD, engrailed homeodomain.
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†Now that we know that denatured states of proteins vary from being highly unfolded to
various degrees of compactness, many experimentalists prefer to use the generic term D
for the denatured state under any set of conditions and restrict U for describing the
completely unfolded, perhaps extended, state. Sometimes E is used for the extended state
(which is equivalent to U here) and U for the denatured state (equivalent to D here).
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denatured state ensemble, D. The folding of the polypeptide
chain in these simulations is not a single elementary step of a
first-order process, because there is a series of initial conforma-
tional events as the chain equilibrates from U to D. These will
lead to lag kinetics, with the very early stages not being on the
single exponential curve that can be observed experimentally for
D to N. First, I deal with the simplest case and then give a more
general example.

Very Rapid Transition from U to D and Rapid Equilibration
Within D
The overall folding kinetics depends on the relative rate con-
stants for collapse, for interconversion of states in the D
ensemble, and for the subsequent folding steps, as well as the
energetic distribution of states relative to U. One limiting
scenario, which is the simplest to analyze, is illustrated in Fig. 1:
the collapse is very fast relative to the time scale of experimental
observation, and the structures interconvert far more rapidly
than they form the native state N. Even though each of the states
in D folds with a different first-order rate constant, N is formed
according to a single exponential step if there is a common
transition state ensemble (see ref. 14 for a rigorous analysis).
Suppose the most stable state of the D ensemble, D0, has a free
energy GD,0, the transition state (average) GTS, and the extended
state GU. The rate constant for the formation of N from the
lowest energy state of I is of the form:

kD,0 � Aexp�GD,0 � GTS��RT. [1]

Similarly, the rate constant for state Di that is �Gi higher in
energy is given by:

kD,i � Aexp�GD,0 � GTS � �Gi��RT. [2]

In terms of flux (the number of molecules folding via each state
in D), the higher rate constant of each state kD,i is exactly
counterbalanced by its lower occupancy, which is proportional to
exp(��Gi)�RT, according to a Boltzmann distribution. Thus
the same flux, F, passes through each state in D, and is given by:

F � ND,0kD,0 � ND,0Aexp�GI,0 � GTS��RT, [3]

where ND,0 is the number of molecules in the lowest energy state
of D. If there are n states in the D ensemble and the total number
of molecules is N0, then the apparent first-order rate constant for

folding is given by:

kobs � �nND,0�N0�Aexp�GD,0 � GTS��RT.‡ [4]

That each state in the D ensemble contributes the same flux has
important consequences for comparing short simulations with
experiment, because the equal contribution of each pathway
holds throughout the whole folding time course. Suppose that
the period of simulation is long with respect to the time of the
U to D transition, and that it can sample the initial rates of the
D to N transition for a period �t. During �t, a higher energy state
Di folds with a rate constant that, as given by Eq. 2, is higher than
for D0 by a factor of exp(�G�RT). Again, the higher rate
constant is counterbalanced exactly by the lower occupancy of
state Di, and so the same number of molecules folds via Di as it
does through D0. Thus, under the special conditions of very rapid
formation and equilibration of D compared with the sampling
time, short time scale simulations provide a representative
sampling of the pathways of folding.

Competing Pathways
Small peptides fold on a time scale of tens of nanoseconds to a
microsecond (15), which is highly compatible with the current
sampling times of distributed computing. The secondary struc-
tural elements in real proteins also fold in this time regime (15),
which causes problems because a series of consecutive reactions
can generate substantial lag times in the formation of products
although each step may be fast. Consider a reaction passing
through a series of states as it proceeds to products (Eq. 5).
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If there are n steps, then n relaxation times are observed. The
equations cannot be easily solved for more than two steps when
each step is reversible, but the solutions are simple when the
steps are irreversible.

For a single-step reaction (where P � a2 in Eq. 5), the
analytical solution is

NP � N0�1 � e�k1t�, [6]

where N is either the number of molecules or of simulations. The
number of molecules (complete simulations), �NP, that are
produced in a very short time, �t, (��1�k1) at the beginning of
the reaction, is found from the expansion of the exponential
component to be

�NP � N0k1�t , [7]

which is the basis of the sampling in distributed computing
an initial rate kinetics. For a two-step reaction (where P � a3 in
Eq. 5):

NP �
N0

k2 � k1
�k2 � k1 � k1e�k2t � k2e�k1t�, [8]

which is the simplest example of lag kinetics.
The initial rate for �t �� 1�k1, 1�k2 is

�NP � N0k1k2�t2�2! [9]

In general, the initial rate for an n-step reaction is:

‡Note that if GD,0 � GU, kobs is less than N0Aexp(GU � GTS)�RT, which is the rate constant for
folding when GD,0 � GU. An uphill scenario to a transition state always provides a higher
rate constant than does a dip en route, if it can be avoided.

Fig. 1. Energy diagram for folding where the denatured state ensemble, D,
is formed and equilibrates very rapidly compared with the D to N rate
constant.
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�NP � N0�
i�1

n

ki�tn�n! [10]

Inspection of Eqs. 9 and 10 reveals how the initial rate in the lag
phase is greatly attenuated when there is a series of intermediate
steps prior to the last step. Note that if there are competing
first-order pathways by which U can proceed directly to N, and
the sum of their first-order rate constants is ka, then the rate law
for formation of NP is

NP �
N0

k2 � k1 � ka
�k2 � k1 � ka � k1e�k2t � �k2 � ka�e��k1�ka�t�.

[11]

The number of molecules folding by the two-step route,
NP(2-step), is

NP�2-step� �
N0

k2 � k1 � ka
�k2 � k1 � ka � k1e�k2t

� �k2 � ka�e��k1�ka�t� �
N0

k1 � ka
�ka � kae��k1 � ka�t�.

[12]

I shall illustrate the importance of lag phases in Eq. 5 by an
example based on experimental data. The engrailed homeo-
domain folds in a two-step process, with a fast collapse at
approximately 5 	 105�s�1 [an event on the time scale expected
for the formation of helices, etc. (15), followed by a docking
event at 50,000 s�1 (ref. 9 and unpublished data)]. Other
homologues of En-HD with less stable secondary structure fold
according to a kinetically single step with rate constants of
5,000–50,000 s�1 via different transition states (unpublished
data). It is likely that the folding of En-HD will explore an energy
landscape that includes all of these paths. Suppose, as in Fig. 2,
En-HD folds by its major pathway from U and there are also two
minor pathways that compete and fold without a prior collapse;
pathway 1 at 50,000 s�1 and pathway 2 at 5,000 s�1. The kinetics
for 10,000 simulations or molecules is plotted in Fig. 3, calculated
from Eq. 6 for the minor pathways and Eq. 8 for the major in
competition. After 20 ns of reaction (or simulation), 9.9 mole-
cules have folded by minor pathway 1, 1 molecule by pathway 2,
and 0.05 molecules by the major route. After 200 ns, minor

pathway 1 has produced 95, pathway 2 has produced 9.5, and the
major route, 4.8 folded molecules. But, at near completion at 100
�s, minor pathways 1 and 2 have produced only 901 and 90 folded

Fig. 2. Illustration of a two-step folding reaction, where both rate constants
are significant, and a competing one-step reaction via a different transition
state.

Fig. 3. Number of molecules found to be folded by experiment at different
time intervals when 10,000 molecules partition through three parallel path-
ways: two minor one-step pathways at 5,000 s�1 and 50,000 s�1, and a
two-step at 5 	 105�s�1 followed by 50,000 s�1, according to the mechanism in
Fig. 2. Mechanisms other than those in Fig. 2 can produce progress curves with
early bursts that have a different initial pathway distribution from that
expected from those found later. Attila Szabo has pointed out the pedagog-
ical example that where there are two competing pathways, one a single-step
with a rate constant of k2 and a two-step of first rate constant k1 and second
rate constant k2 (the same as for the single-step), then N is formed according
to a perfect single exponential of rate constant k2. The ratio of molecules
folding by the two-step route to the one step is given by: (k1 � (k1 �

k2)exp(�k2t) � k2exp(�(k1 � k2)t))�(k2(1 � exp(�(k1 � k2)t)). This reduces to
k1�k2 as t tends to infinity and to k1t�2 as t tends to zero, as expected from Eqs.
7 and 9.
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molecules, respectively, whereas the major route overwhelmingly
predominates with 8,942. Thus, sampling after 20 ns would have
had 99.6% of the successful pathways from minor components
that account for only 10% of the total molecules folded. Clearly,
a series of independent short simulations over 20 ns, and even a
microsecond, will miss the major pathway and pick up only the
slower high-energy pathways with fewer intermediates.

Discontinuous Simulation Methods
Voter has devised a method that avoids the difficulties associated
with lag kinetics (16); different simulations are loosely coupled,
whereby they are stopped after one simulation has successfully
crossed a barrier and are all restarted from the successful
configuration (11–13). For example, consider the kinetics of the
major pathway that begins with the step of 5 	 105�s�1. After 20
ns, nearly 100 of the 104 simulations should have crossed the
barrier that has the rate constant of 5 	 105�s�1, and 5 would have
crossed in the first nanosecond. Accordingly, the simulations
would have to be rapidly stopped and restarted from the
conformations corresponding to this transition and so avoid the
minor pathway. But the crucial factor in the loosely coupled
procedure is to identify when the transitions occur, and the
means for their identification is an inherent weakness in the
method (12, 13). It is extremely difficult to detect transitions in
MD simulations, because they do not directly calculate free
energy, and so indirect methods must be used. For example,
Daggett and coworker have used a structural clustering method
to detect transition states (17), and others use the experimentally
determined structures (6) in MD simulations. For En-HD, a
structural approach would require identifying the 1% of struc-
tures that have relaxed into the intermediate ensemble. Pande
and coworkers use the criterion of a surge in heat capacity as
being characteristic of a transition (12, 13). Experimentally,
changes in the heat capacity of a protein are dominated by
solvation; 95% of �CP results from changes in hydration and only
5% from changes in noncovalent interactions (18). The largest
changes in solvation result from hydrophobic collapse. The
actual quantity used by Pande and coworkers (the time-resolved
energy variance, 
E2�c) may differ somewhat from the experi-
mentally observed value, but it has yet to be established as an

unbiased discriminator and whether it will detect members of the
relatively heterogenous ensembles that typify folding interme-
diates. Thus, the loosely coupled procedure may have a bias
toward detecting pathways that are based on the features implicit
in the criterion for discrimination, such as those dominated by
hydrophobic collapse, or that just fail to detect intermediates.
Not only may the loosely coupled procedure miss pathways
because they do not generate the right signals, they will also be
dogged by the problems of lag phases in the generation of
intermediates.

Conclusion
Distributed computing is a very exciting development for sim-
ulating protein folding pathways cheaply over otherwise cur-
rently inaccessible long time regimes. But there are inherent
problems, because the early phases of protein folding of up to at
least the microsecond region are rich in events that may not be
representative of the major pathways of folding. Simulations
made in the early time regions before the system relaxes will be
biased toward overall folding routes that have the least number
of intermediates but that may be very minor pathways. Strategies
to overcome the problems of intermediates, such as that devised
by Voter (16), are problematic because it is so difficult to identify
intermediates in MD simulation. Simple criteria for detection of
intermediates will bias the search to pathways that have the
sought-for intermediates, which again may be misleading. Nev-
ertheless, the procedure using parallel independent simulations
is perfectly valid and quite feasible once the time scale of
simulation proceeds past the lag phases into the single expo-
nential region. This can be done with some smaller peptides at
present. To be reliable for larger proteins, simulations will have
to be extended into the microsecond region or greater. Perhaps,
starting distributed computing from denatured states, transition
states or intermediates that have been generated by other
simulation procedures may be a way forward now. As always,
benchmarking by experiment is necessary because of the ap-
proximations in the empirical energy functions that are used in
simulation.

I thank Drs. Vijay Pande and Attila Szabo for helpful comments.
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