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The bottom-up approach to understanding the evolution of or-
ganisms is by studying molecular evolution. With the large number
of protein structures identified in the past decades, we have
discovered peculiar patterns that nature imprints on protein struc-
tural space in the course of evolution. In particular, we have
discovered that the universe of protein structures is organized
hierarchically into a scale-free network. By understanding the
cause of these patterns, we attempt to glance at the very origin of
life.

I t is well known that many proteins with undetectable sequence
similarity—as low as expected for random sequences (8–

9%)—share a similar three-dimensional structure (fold) (1–4).
The possibility that many dissimilar sequences fold into the same
stable three-dimensional structure has been demonstrated in a
variety of simplified models (5, 6) and is understood on theo-
retical grounds. General models of protein evolution that are
based solely on the requirement of protein stability reproduced
observed conservation of amino acids in proteins with dissimilar
sequences with reasonable accuracy (4, 7). Several authors have
also pointed out that diverse functions can be carried out by
proteins of the same fold (8–11). However, a striking observa-
tion is that different folds are represented to a different degree
in genomes: some folds are represented by many nonhomologous
and functionally diverse proteins, whereas other folds are
uniquely represented by a single sequence (orphans, i.e., do-
mains that are not structurally similar to any other domains; refs.
12–14). A possible physical or biological reason for such vari-
ability in fold representation is one of the major unsolved
problems of molecular biophysics.

One suggested explanation of the observed variability in fold
representation is based on the premise of convergent evolution.
It is presumed that evolution has reached equilibrium in the
protein sequence space. Thus, more ‘‘designable’’ folds that can
be encoded by many sequences have a higher representation in
genomes (15–17). This proposal, called the ‘‘designability prin-
ciple,’’ is based on phenomenological considerations (18) and on
observations drawn from exhaustive enumeration of all se-
quences in simplified two- and three-dimensional lattice protein
models. However, the designability principle has not been suc-
cessful thus far in predicting the actual structural features of
known folds that render them highly designable, in contrast to
less populated and orphan folds. Furthermore, the underlying
assumption of equilibrium in sequence space is difficult to justify
if one considers the sheer size of sequence space.

It is difficult to determine the evolutionary relation between
proteins based on their sequence similarity when it is as low as
that between randomly selected proteins (8–9%; ref. 4). Given
the large number of sequences that correspond to a specific fold
(4, 19), structure is a more robust protein characteristic than
sequence. To this end, we focus on the analysis and possible
genesis of the protein universe based on the structural rather
than the sequential classification of proteins. Such analysis may
be complicated by the fact that structural similarity is not always
rigorously defined. Two popular databases, SCOP (20) and

CATH (21), use a semi-intuitive definition of folds that is
somewhat subjective. The FSSP database—based on the DALI
structure comparison algorithm (2)—defines a quantitative
measure of structural similarity, the Z score. However, selec-
tion of the threshold value Zmin of the Z score, beyond which
proteins are considered structurally similar, also introduces an
element of ambiguity into FSSP-based family classification. In
a recent paper, Domany and coworkers (22) provided a
quantitative relationship between FSSP, CATH, and SCOP
classifications. These authors noted that the matrix of pairwise
Z scores can be viewed as a weighted graph, where each two
proteins that have similarity Z � 2 (Z � 2 is the minimal Z
score reported in FSSP) are connected by an edge that carries
weight corresponding to the Z score similarity between these
two proteins. Clustering algorithms developed for weighted
graphs then can be used to identify fold families. However,
clustering of weighted graphs is not exact as it may depend on
the chosen algorithm and other factors. Another well known
problem with structural classification of whole proteins pre-
sented in FSSP is so-called ‘‘f loats,’’ where two structurally
unrelated proteins having a common ‘‘promiscuous’’ domain
are identified as structurally similar.

To overcome some of these difficulties, we employ a graph
representation of the protein domain universe, in which we
consider only protein domains that do not exhibit pairwise
sequence similarity in excess of 25%, and each such protein
domain represents a node of the graph. We use protein
domains as identified by Dietmann and Holm in the FSSP
database of protein domains (23). Structural similarity be-
tween each pair of protein domains is characterized by their
DALI Z score (23). We define a structural similarity threshold
Zmin and connect any two domains on our graph that have
DALI Z score Z � Zmin by an edge. Thus, we create the protein
domain universe graph (PDUG). It is crucial to note that, in
contrast to weighted graphs considered in (22), the PDUG is
an unweighted graph where each edge that made it above
threshold is considered equally. Clustering of such an un-
weighted graph represents its partitioning into disjoint clusters
that can be carried out exactly by using the classical depth-first
search algorithm (24). Each disjoint cluster represents a family
of structurally related proteins in which each protein is pre-
sented only once (Fig. 1). Disjoint PDUG clusters are, in
principle, equivalent to the fold classification level of the
SCOP database (20).

Although the fact that PDUG is an unweighted graph signif-
icantly simplifies its analysis, such simplification comes at a price
of possible dependence of the results on the selection of thresh-
old value Zmin. Thus our first goal is to evaluate how PDUG
depends on selection of the threshold value Zmin and whether
there is a preferred choice of this parameter. To this end, we
study the properties of the largest cluster (giant component; ref.
25) of the PDUG as a function of the cutoff similarity score Zmin.

Abbreviation: PDUG, protein domain universe graph.
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As a key control throughout this work, we compare the prop-
erties of the PDUG to that of random graphs that have the same
number of nodes and edges as PDUG and the same distribution
of pairwise Z scores, but for which the edges are connected
randomly. To generate such random graphs, we take the same
number of nodes as in PDUG (3,464) and connect randomly
chosen pairs by edges. This procedure is repeated until the total
number of edges reaches its value (39,479) in the original PDUG
(by ‘‘original PDUG,’’ we mean PDUG at the lowest possible
threshold Zmin � 2, where all pairs of domains reported by DALI
as structurally similar with Z � 2 are connected by an edge).
Next, each edge is given a weight, Z score, drawn randomly from
a distribution of Z scores for edges observed in a real, original
PDUG. Finally, we remove the edges of a random graph with
Z � Zmin and identify disjoint clusters by using a depth-first
clustering algorithm.

We compute the size of the largest cluster in PDUG and
random control graph as a function of Zmin (26). We find a
pronounced transition of the size of the largest cluster in PDUG
at Zmin � Zc � 9 (Fig. 2a). The random graphs feature a similar
transition but at a higher value of Zmin � Zc � 11 (Fig. 2b). The
distribution of cluster sizes depends significantly on whether
Zmin � Zc or Zmin � Zc for both the PDUG and random graphs.
We also find that the probability density, P(M), of cluster sizes
M for both the PDUG and random graphs follows a power law
at their respective Zc: P(M) � M�2.5 (Fig. 2c). The observed
power-law behavior of P(M) is simply a consequence of criti-
cality at Zc as it is featured prominently both for the PDUG and

random graphs. The power-law probability density of cluster
sizes is a generic percolation phenomenon that has been ob-
served and explained in both percolation (27, 28) and random
graph theories (25). Recently, Gerstein and coworkers (29)
reported a power-law distribution for fold family sizes derived
from the SCOP database and attributed the observed power-law
distribution to a certain evolutionary mechanism. However, we
find that random graphs feature the same power-law distribution
for fold family sizes and are simply explained by percolation
theory (25, 27, 28).

To characterize the structural properties of the PDUG, we
compute the probability P(k) of the number of edges per node
k taken at Zmin � Zc for individual clusters. It is known that P(k)
distinguishes random graphs from various graphs observed in
science and technology (26). In drastic contrast with the equiv-
alent random graph, the PDUG is scale-free, with P(k) � k�1.6

with a high degree of statistical significance (P � 10�8; Fig. 3a).
The power-law fit of P(k) is most accurate at Zmin � Zc and
deteriorates noticeably above and below Zc. The fit at Zmin � Zc
quickly becomes meaningless as the range of values of connec-
tivity k rapidly diminishes as greater Zmin leads to mostly
disconnected domains. At Zmin � Zc, the power-law fit also
becomes problematic in the whole range of k because at large
values of k (50–100), P(k) shows some nonmonotonic behavior
that can be interpreted as a maximum at large k (the data are
insufficient to conclude that with certainty). However, the
remarkable property of a maximum P(k) at k � 0, i.e., domi-
nance of orphans, remains manifest at all Zmin values. This

Fig. 1. An example of a large cluster of TIM barrel-fold protein domains. Protein domains whose DALI similarity Z score is greater than Zmin � 9 are connected
by lines.
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finding is in striking contrast with a random graph which is not
scale-free at any value of Zmin (Fig. 3b) and where P(k) allows
almost perfect Gaussian fit with maximum at higher values of k.§

The discovery of the scale-free character of the protein
domain universe is striking and represents the main result of this
paper. It has immediate evolutionary implications by pointing to
a possible origin of all proteins from a single or a few precursor
folds—a scenario akin to that of the origin of the universe from
the Big Bang. An alternative scenario, whereby protein folds
evolved de novo and independently, would have resulted in
random PDUG (similar to the one shown in Fig. 3b) rather than
that observed in the scale-free one.

The genesis of scale-free networks observed in other areas of
science and technology, such as the world wide web, scientific
collaboration networks, and domain combinations in proteomes
(26, 30–32), has been explained by the peculiar dynamics of their
creation. In particular, several dynamic models featuring ‘‘pref-
erential’’ attachment have been proposed (26, 33–35). However,
many models predict an exponent � � 2, whereas in our case,
� � 1.6.

It is quite suggestive that the origin of the observed scale-free
character of the PDUG lies in the evolutionary dynamics of
protein fold genesis as a result of divergent evolution from one
or a few precursor domains. To this end, we develop a mini-
malistic model that aims to explain the scale-free PDUG.
Specifically, we assume, as do several other models (29, 35), that
new proteins evolve as a result of an increase in the gene
population primarily by means of duplication with subsequent
divergence of sequences by mutations, as well as more dramatic
changes such as deletions of certain parts sequences and even
possible reshuffling of some structural elements (foldons; refs.
36 and 37).

Our evolutionary dynamics model starts with a single node
representing an initial protein. At each time step t, a new protein

is generated by means of gene duplication; hence, the total
number of proteins created by time step t is exactly t. The
creation of a new protein, t � 1, at time step t occurs through
gene duplication of some protein k chosen at random (1 � k �
t) from the available gene pool generated up to time t. When a
protein k is chosen (node Ak), its offspring protein, t � 1, is
generated and is represented by node At�1. Importantly, our
evolutionary time step is large enough to allow many mutations
as well as more dramatic changes in sequences such as inser-
tions�deletions or shuffling of structural elements to occur in the
offspring protein such that sequence similarity with the parent
protein is lost (4). Such mutations may or may not lead to
significant structural divergence of the offspring from its parent
protein because the landscape in sequence space is complex (4).

To account for that uncertainty, we assign the distance w
between the parent protein and its offspring as a random number
uniformly distributed in the interval 0 � w � 1 (Fig. 4a). This
quantity may have a conceptual physical meaning of RMSD, an
(inverse) Z score, or any other measure of structural similarity
between two proteins. If this structural distance is below some
critical value wmax, we assign a bond (edge of the graph) between
the newly created node At�1 and its parent node Ak. Otherwise,
a new structural family (fold) is created around the protein t �
1, which is an orphan at time t � 1 (Fig. 4b). If the structural
divergence between a new protein t � 1 and its parent does not
exceed threshold value wmax, so that an edge between nodes At�1
and Ak is created, we also attempt to connect a newborn At�1 to
the set of nodes Ai that are themselves connected by edges to the
parent node Ak. The reason for this step is that structural
similarity may be transitive; i.e., if a newly born protein t � 1 is
similar to its parent k, it might also be similar to other proteins
that are themselves similar to k. To evaluate whether structural
neighbors of k are similar to its offspring t � 1, we use a simple
geometrical ansatz. Because w is a measure of structural diver-
gence, we choose w to satisfy the rule of triangle, where the
maximal and minimal sizes of any side of a triangle are deter-
mined by the sizes of the second and third sides. In this case, the
triangle is formed by the new node At�1, its parent node Ak, and
Ai, a structural neighbor of Ak whose distance to At�1 we wish to

§Because of the small number of domains with �25% pairwise sequence similarity, we
included all domains in PDUG. We also tested whether this small number of homologous
domains affected our P(k); we found that if we discard one of these homologs, the
resulting P(k) does not change significantly.

Fig. 2. The dependence of the number of proteins in the maximal cluster on the threshold value of Z score Zmin for PDUG (a) and random graphs (b). (c) The
probability density of the cluster sizes for PDUG and random graphs at their respective Zc. Zc indicates the critical value of the Z score threshold at which transition
in the size of maximal cluster occurs. For PDUG Zc � 9; for random graphs Zc � 11. We generated 10 different realizations of random graphs, so each point of
b represents an average over these 10 realizations. Interestingly, at minimal Zmin � 2, all of the nodes in random graphs are connected; thus, the largest cluster
spans all of the protein domains. In contrast, just a small fraction of all nodes (�250) constitutes the largest cluster in PDUG (at Zmin � 2), pointing to a dramatic
difference between PDUG and random graphs. This difference is further revealed in Fig. 3.
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evaluate. According to the ansatz, we select the distance between
Ai to At�1 as a random number, w(At�1, Ai), from the uniform
distribution in the interval

� w(At�1,Ak) � w(Ak,Ai) � � w(At�1,Ai) � w(At�1,Ak) �
w(Ak,Ai).
If w(At�1,Ai) � wmax, we assign a bond between At�1 and Ai
(Fig. 4c).

Additionally, we account for the effects of random mutations
and other sequence changes (deletions�insertions) that accumu-
late over coarse-grained time step t and lead to structural
divergence in the protein universe (like the expanding universe
in astronomy). To this end, at each time step we increase the
structural distances w between all proteins by a small number D:
wij3 w�ij � wij � D (Fig. 4d). If the new weight w�ij exceeds wmax,
we remove a bond between Ai and Aj.

We perform simulations for 3,500 maximal nodes and average
over 20 runs to compute the dependence of the largest cluster
size (giant component) in the generated graphs on wmax and find
that there is a transition at wmax � 0.75 (Fig. 4e). Hence, wmax �
0.75 corresponds to a critical region in this model, analogous to

Fig. 4. Proposed model of domain evolution. (a) Gene duplication (A3A �
B): the structural similarity between A and B is defined by some function w �
(A,B) (e.g., RMSD or DRMSD). (b) If structural similarity w � (A,B) is greater
than some critical value wmax, then we add a link connecting A and B. If
structural similarity is above wmax, a new fold family is born. (c) The second
generation progeny C (A3 B3 C) can connect to its grandparent A, if there
is structural similarity between A and C: wAC � wmax. (d) With each time step,
mutations diverge protein structures from each other; i.e., structural similarity
changes by some value D: w3w� � w � D(D � 10�4). If w� � wmax, we remove
the edge between corresponding proteins. (e) The dependence of the size of
the largest cluster in the graphs generated by our model on wmax, averaged
over 20 realizations. ( f ) The probability of the node connectivity in our model,
averaged over 102 realizations. Apart from the finite-size effects at large k, it
exhibits power law distribution with exponent � � 1.6.

Fig. 3. The distribution of node connectivity P(k) for PDUG (a) and for
random graph (b) at their corresponding Zc. For PDUG Zc � 9; for random
graphs Zc � 11. Node connectivity denotes how many proteins a given protein
is connected to by structural similarity connections.
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Zc � 9 for the PDUG. Indeed, we find (Fig. 4f ) that the
probability P(k) of node connectivity follows a power-law up to
finite-size effects at large k, and that the power-law exponent
is � 1.6, close to that in the PDUG. Importantly, the results
presented in Fig. 4f are averaged over 102 realizations of
generated networks, although each individual realization yields
a similar distribution, albeit a noisier one, so that for an
individual realization, the power-law estimate belongs to an
interval between 1.4 and 1.9. The presented model, being
coarse-grained, does not aim at a detailed and specific descrip-
tion of protein evolution. However, it illustrates that divergent
evolution is a likely scenario that leads to scale-free PDUG.

Our method of clustering protein structures provides a num-
ber of insights. First of all, using graph theory for protein
structure classification removes the ambiguities that are inherent
in the highly useful, albeit manual, approaches to structural
classification of proteins (20, 21). Perhaps not surprisingly, we
observed that the structure of the graph representing the protein
domain universe depends on the Zmin threshold value of Z score,
above which protein domains are considered structurally similar
and are connected by an edge of the graph. However, at a certain
critical value, Zmin � Zc, the structure of the PDUG becomes
remarkably universal, simple, and amenable to theoretical un-
derstanding from an evolutionary standpoint.

An important component of our analysis is random control
where PDUG is compared with random graph. Our results show
that random weighted graph having the same weight (Z score)
distribution as PDUG features the same cluster-size distribution.
Because clusters in PDUG can be associated with fold-level
classification of protein structure, this observation suggests that
nonuniform distribution of nonhomologous proteins over folds
may not be due to special features of ‘‘most popular’’ protein
folds, as suggested by some researchers (17, 18). However, that
does not necessarily imply that observed protein folds are not
selected based on their physical properties (8). It may well be that
the divergent evolution scenario described here occurs only on
these selected folds, whereas unfeasible ones are not observed in
nature. However, our analysis points out that an explanation of
the nonuniform distribution of nonhomologous proteins over
observed folds does not require one to invoke a designability
principle (17) or related conjectures about the nonuniform
density of sequences in the space of protein folds (18).

We discovered that the structure of the PDUG is, by far,
nonrandom, but rather represents a scale-free network featuring

the power-law distribution of number of edges per node. The
most striking qualitative aspect of the observed distribution is
the much greater number of orphans compared with random
graph control. Importantly, this qualitative feature remains
prominent at any value of threshold Zmin, despite the fact that
power-law fits of P(k) get worse when Zmin deviates from Zc. A
natural explanation of this finding is from a divergent evolution
perspective. The model of divergent evolution presented here is
in qualitative agreement with PDUG, as it produces large
(compared with random graph) number of orphans at all values
of wmax. Orphans are created in the model mostly through gene
duplication and their subsequent divergence from precursor.
This conjecture may be meaningful biologically, because dupli-
cated genes may be under less pressure and, hence, prone to
structural and functional divergence. The divergent evolution
model presented here is a schematic one, as it does not consider
many structural and functional details, and its assumptions about
the geometry of protein domain space in which structural
diffusion of proteins occurs may be simplistic. However, its
success in explaining qualitative and quantitative features of
PDUG supports the view that all proteins might have evolved
from a few precursors.

Finally, we want to comment on the robustness of our results.
Indeed, power-law scaling of P(k) is observed only in a range of
threshold values Zmin; special algorithms were applied to discern
such behavior. Does nature use similar algorithms and select
similar thresholds? In our opinion, nature is not concerned at all
with power-laws and with algorithms in their generation. We
believe that creation of functionally (and as a consequence of it,
structurally) diverse proteins could have been one of the driving
forces of evolution. Our motivation in this work is to ‘‘spy’’ on
nature by using algorithms as devices to see implications of
evolutionary processes in existing proteins. Selection of a par-
ticular value of threshold Zmin means just a choice of conditions
at which these spying devices are most effective in discerning
natural events from random ones.
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