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Electron tomograms of intact frozen-hydrated cells are essentially
three-dimensional images of the entire proteome of the cell, and
they depict the whole network of macromolecular interactions.
However, this information is not easily accessible because of the
poor signal-to-noise ratio of the tomograms and the crowded
nature of the cytoplasm. Here, we describe a template matching
algorithm that is capable of detecting and identifying macromol-
ecules in tomographic volumes in a fully automated manner. The
algorithm is based on nonlinear cross correlation and incorporates
elements of multivariate statistical analysis. Phantom cells, i.e.,
lipid vesicles filled with macromolecules, provide a realistic exper-
imental scenario for an assessment of the fidelity of this approach.
At the current resolution of �4 nm, macromolecules in the size
range of 0.5–1 MDa can be identified with good fidelity.

There is a growing awareness that it is inadequate to describe
a cell as a medley of freely diffusing and occasionally

colliding macromolecules (1). Cellular functions are performed
by ensembles of molecules with carefully orchestrated interac-
tions, giving rise to a stochastically variable supramolecular
architecture. On this level of structure the cell is largely an
uncharted territory. None of the existing imaging techniques
allows to study large pleiomorphic structures such as whole cells,
with a resolution of a few nanometers as required for identifying
macromolecules in situ. The methods currently used in biochem-
istry to isolate macromolecular assemblies for in vitro studies,
tend to select for abundant and stably associated complexes: rare
or transient macromolecular assemblies or those held together
by forces too weak to withstand the isolation procedures escape
detection. Therefore, there is a great demand for methods which
allow the study of macromolecular architecture in an unper-
turbed cellular context.

Electron tomography has unique potential to accomplish this:
it is capable of providing three-dimensional (3D) images of large
pleiomorphic structures at a resolution of 4–6 nm, and the
prospects for further improvement are good. With the advent of
automated data acquisition procedures (2), it became possible to
reduce exposure to the electron beam to the extent that radia-
tion-sensitive samples, such as biological materials embedded in
amorphous ice, can be studied without apparent damage. Vit-
rification by rapid freezing ensures close-to-life preservation and
avoids the risks of artifacts traditionally associated with chemical
fixation and staining or with dehydration. Equally important,
tomograms of frozen-hydrated cells represent their natural
density distribution and, therefore, allow interpretation in mo-
lecular terms, uncompromised by poorly understood staining
reactions yielding positive as well as negative contrast.

A cryotomogram even of a relatively small prokaryotic cell
contains an imposing amount of information. It is essentially a
3D image of the cellular proteome, and it depicts the whole
network of macromolecular interactions. However, new strate-
gies and innovative image analysis techniques are needed for
‘‘mining’’ this information. Exploitation of the data are con-
fronted with two major problems: cryotomograms suffer from
substantial residual noise, despite optimized data acquisition
schemes. ‘‘Denoising’’ techniques, although improving the sig-

nal-to-noise ratio, also modify the signal in a nonlinear way,
precluding quantitative postprocessing (3). Moreover, the cyto-
plasm is densely populated (‘‘crowded’’) with molecules literally
touching each other (4). It is, therefore, virtually impossible to
perform a segmentation and feature extraction based on visual
inspection of the tomograms, except for some large-scale struc-
tures. In principle, it would be possible to introduce electron-
dense labels marking the positions of the molecules under
scrutiny and facilitating their detection. However, such an
approach would no longer be noninvasive, and it would be
difficult, if not impossible to achieve quantitative detection.
Therefore, we prefer a different strategy, namely a detection and
an identification based on structural signatures. Provided that a
high or medium resolution structure of the macromolecule of
interest is available, this structure can be used as a template to
perform a systematic search of reconstructed volumes for match-
ing structures. Image simulation studies indicated that template
matching is a feasible approach and could achieve a satisfactory
level of fidelity (5). The search should be performed in an
objective and reproducible manner, and therefore, it should be
entirely machine based not requiring manual intervention. Ide-
ally, the search is exhaustive, detecting all copies of the target
structure, and it should be fast enough to allow the analysis of
large data sets.

In this article, we describe a strategy for template matching,
which is based on nonlinear cross correlation and incorporates
elements of multivariate statistical analysis. The algorithm has
excellent speed-up characteristics for parallel computing and,
therefore, allows one to perform a complete search of tomo-
grams without the need of data reduction by preprocessing. We
apply this algorithm to tomograms of ice-embedded ‘‘phantom
cells’’ (i.e., lipid vesicles encapsulating macromolecules), which
in size and shape mimic real prokaryotic cells. The a priori
knowledge of the macromolecular contents of the phantom cells
allows us to validate the results and to built up confidence in this
detection strategy.

Methods
Preparation of Phantom Cells: Encapsulation of Thermosomes and 20S
Proteasomes in Liposomes. Thermosomes (�-only) and bacterial
20S proteasomes were expressed in Escherichia coli and purified
as described (6, 7). Stock solutions of the recombinant proteins
were stored in glycerol at �20°C. Glycerol was removed by
overnight dialysis, against 1 liter of 50 mM Tris buffer (pH 7.5)
by using membrane with a 10-kDa cutoff. The proteasomes were
then concentrated by means of an Amicon concentrator from
initially 1 to 2.8 mg�ml. For protein encapsulation in liposomes,
a slightly modified version of the procedure described (8) was
used: a thin lipidic film was prepared by vacuum-drying 30 �l of
a 5 mg�ml 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine
(Avanti Polar Lipids) solution in the round bottom of a glass vial
and dissolved in chloroform. The lipid film was taken up in 20
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�l of 100 mM Tris buffer, and the vesicles were swollen by
vortexing at room temperature followed by sonication (10 min in
a Sonorex RK 102 bath sonicator). Solution (10 �l) containing
2.8 �g��l protein was added, and the suspension was subjected
to 10 freeze�thaw cycles; samples were frozen in liquid nitrogen
for 2 min and then thawed in a water bath at 30°C for 3 min. The
volume of the solution was doubled by adding 100 mM Tris
buffer. His-tagged macromolecular complexes not entrapped by
the vesicles were removed by passing the suspension twice
through an equilibrated Ni-chelate affinity chromatography
column (Ni-nitrilotriacetic acid spin kid, Qiagen, Chatsworth,
CA). Electron micrographs showed predominantly unilaminar
vesicles with an average diameter of �400 nm and only a few
protein complexes in the surrounding buffer medium. The
phantom cell solution (5 �l) was applied to grids covered with
holey carbon film. Excessive solution was blotted with filter
paper, and the grids were plunged into liquid ethane (9). The
vitrified samples were examined using a CM 300 transmission
electron microscope equipped with a field emission gun (FEI,
Eindhoven, The Netherlands) and a Gatan GIF 2002 post-
column energy filter.

Cryo-Electron Tomography. Tilt series were recorded at an under-
focus of 8 �m at a final magnification of 43,000 by using a Gatan
cryoholder (Pleasanton, CA). The pixel size corresponded to
0.72 nm. The angular range was typically from �70 to �70° with
angular increments of 1.5°. The exposure time was varied according
to the effective thickness of the specimen. The cumulative dose for
complete tilt series was �6,000 e��nm2. After alignment of the
projections by means of manually selected gold markers, followed
by a least-squares fit, which relates the projection images to a
common origin, the reconstructions were computed on Silicon
Graphics workstations by using the weighted backprojection algo-
rithm of the EM program package (10).

Results
Template Matching: General Strategy. The identification and map-
ping of proteins in phantom cells can also be formulated as a
problem of matching a template, ideally derived from a high-
resolution structure, to an image feature, the target structure.
Hitherto attempts to detect and identify macromolecular struc-
tures in reconstructed volumetric data rely almost exclusively on
normalized cross-correlation of manually segmented subvol-
umes with low-pass filtered templates (5). Here we describe a
parallelized 3D-scanning algorithm, which allows the analysis of
large tomographic volumes within a reasonable timeframe. By
combining cross-correlation techniques with multivariate statis-
tical analysis (MSA) the fidelity in target detection and identi-
fication is significantly improved. Despite the fact that both
techniques use the correlation principle, they exploit different
object properties: cross correlation measures the relative simi-
larity, and MSA determines the absolute differences between
two objects. Finally the templates were improved by taking into
account the recording conditions (transfer function of the
electron microscope; missing wedge).

Creating Search Templates. For encapsulation in the phantom
cells, we have chosen two complexes with a similar overall
architecture: the 20S proteasome [molecular mass, 721 kDa;
diameter, �11.5 nm; height, �15 nm (11)] an intracellular
protein degradation machine, and the thermosome [molecular
mass, 933 kDa; diameter, �16 nm; height, �15 nm (12)], an
archaeal chaperonin involved in cellular protein folding. Both
complexes are assembled from rings of subunits, which jointly
form toroidal structures with large internal cavities. Besides the
difference in diameter, the main distinguishing feature at low
resolution is the symmetry of the complexes: the proteasome is
sevenfold symmetric and the thermosome eightfold. Unlike the

proteasome, the thermosome undergoes large scale conforma-
tional changes in its functional cycle. Here it occurs largely in the
‘‘open’’ conformation, for which a crystal structure does not
exist. Therefore a (less accurate) pseudoatomic structure ob-
tained by a hybrid approach (12) was used as a template.

The pixel size of the templates must be adjusted to the pixel
size of the electron microscope 3D reconstruction (www.rcsb.
org�pdb�index.html). The gray value of a voxel (volume ele-
ment) is obtained by summation of the atomic numbers of all
atoms positioned in it. This approximation is reasonable because
(i) a large number of atoms (�30 atoms) is positioned in one
voxel and (ii) proteins are composed of light atoms; hence, the
electron-scattering amplitudes are assumed to be linearly de-
pendent on the atomic number.

Optimizing the Search Strategies. From the computational point of
view two strategies can be pursued. (i) The reconstructed volume
is scanned by using small boxes of the size of the target structure
(real space method), or (ii) the template is pasted into a box of
the size of the reconstructed volume (Fourier space method).
Considering the number of operations performed in both cases,
it emerges that the later approach is significantly faster (a typical
acceleration value for a 3D image with 5123 voxels and a
template with 443 voxels is 1,200!). Additionally, this approach
allows parallelization with excellent speed-up characteristics.

Correlation with Nonlinear Weighting. The correlation coefficient is
a measure of similarity of two features e.g., a signal x and a
template r. The numerator is the unnormalized part of the
correlation coefficient, and the two terms in the denominator are
the variances of the two correlated objects. The correlation
coefficient CC between an image x and the template r, both with
the same size R, expressed in one dimension is:

CC �

�
n�1

R

�xn�rn� � R�x��r�

��
n�1

R

�xn
2� � R�x�2��

n�1

R

�rn
2� � R�r�2

. [1]

Thereby x�, r� are the mean values of the subimage and the
template, respectively. To derive the local-normalized cross
correlation function or, equivalently, the correlation coefficients
in a defined region R around each voxel k, which belongs to a
large volume N (whereby N �� R), nonlinear filtering has to be
applied. This filtering is done in the form of nonlinear weighting,
presented in Eq. 2. For the sake of simplicity, it is given for the
1D case (the extension in 3D is, in fact, trivial).
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where, k � 1, 2, . . . , N�R, and
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rect�n � k� � �1 for 1 � n � k � R,
x��k� � �

n�k�1

k�R

�xn�
0 else

represents the local mean value of x and r� represents the mean
value of r. The unnormalized correlation function (numerator)
can easily be calculated in Fourier space, with modest compu-
tational effort. The denominator contains the normalization
terms (energy terms). The term �n�k�1

k�R (xn � x�(k))2 represents
the local image variance. It is calculated in real space for one
orientation only because the template is pasted inside a spherical
(rotationally invariant) mask. The variance of the template is
�n�1

R rn
2 � �n�1

N rn
2, as the template is pasted into a zero field.

Eq. 2 describes the derivation of the correlation coefficient,
for translation coordinates and for a single angle. This operation
has to be performed separately for every angular orientation of
the template, and the maximum correlation coefficient has to be
derived. The missing wedge does not have to be considered in
calculating the numerator because it is considered as a Fourier
filter already applied to the data. Nevertheless, it has to be
considered for the denominator; because of its anisotropy,
different coefficients are filtered out in Fourier space (Parseval’s
theorem), and consequently, the energy of the template changes
at different rotation angles. For a flow diagram, see Fig. 1.

MSA or Cluster Analysis. MSA can classify interimage variations in
heterogeneous data sets; it allows to separate images of mole-
cules existing in different states or varying in orientation or to
remove ‘‘outliers.’’ In the context of our application, a classifi-
cation in only two groups is required: target particles and
‘‘others.’’ Here we apply the MSA classification algorithm to
samples characterized by high correlation coefficients and thus
representing with high probability the target structure.

Electron Tomography of Phantom Cells. The 3D reconstructions of
the phantom cells show predominantly unilaminar vesicles with
a diameter of 500–600 nm in the x-y plane (Fig. 2). Because of
surface-tension effects, the vesicles are flattened to a thickness
of 300–400 nm (see also ref. 13). Typically, the vesicles contain
100–200 protein complexes. The vesicles are either filled with
20S proteasomes (Fig. 2a), with thermosomes (Fig. 2b), or with
both complexes in a nominal molar ratio of 1:1 (Fig. 2c).

Evaluation of the Detection and Identification Results. In presenting
the detection and identification results, we try to answer the
following questions. (i) Is the detection quality in 3D sufficient
to quantify the number of macromolecules contained in a given
phantom cell and to distinguish them from other objects in the
tomogram? A rigorous verification is not possible, because the
exact numbers of the molecules and their positions are not

Fig. 1. Schematic flow diagram showing the detection and identification strategy.

Fig. 2. Central x-y slices through the 3D reconstructions of ice-embedded phantom cells filled with 20S proteasomes (a), thermosomes (b), and a mixture of
both particles (c). At low magnification, the macromolecules appear as small dots.
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known a priori. (ii) Once the position of a particle is determined
on the basis of its structural signature, with what fidelity can it
be identified? Given the random orientations of the particles,
this task is not trivial, even in the absence of noise. For the
phantom cells containing exclusively either 20S proteasomes or
thermosomes, the statistical significance of the identification
results can be assessed. This is obviously not possible for the
phantom cells containing both molecular species. Nevertheless,
we have applied the search algorithms to them, and we compare
the molar ratio retrieved by our analysis to the biochemical input.

First, the tomograms were segmented by using automated
procedures to reduce the computational efforts (14). Features
not carrying relevant information, such as the holey carbon film,
are removed. Then, to detect the particles, every box inside the
3D images of the vesicles was searched with the proteasome and
the thermosome templates. To find the absolute maxima of the
normalized cross correlation functions, the templates must be
rotated around all three Eulerian angles �, �, and 	 with 7°
increments (the sampling theorem is fulfilled for a box with 32
voxels on edge); taking advantage of the sevenfold symmetry of
the templates reduces the computational efforts substantially
(see below).

A critical step is the optimization of the templates with the
respect to resolution. Low-pass filtering at a spatial frequency
corresponding to the first zero crossing of the contrast transfer
function of the electron microscope data are a pragmatic starting
point. However, it does not guarantee the best possible result,
because the higher frequency bands may be dominated by noise.
Therefore, the templates were separated into different fre-

quency bands [(7–5 nm)�1, (6–4 nm)�1, and (5–3 nm)�1], and
the resulting normalized cross-correlation function was in-
spected (data not shown). In the highest frequency band, the
correlation peaks were no longer significant. Therefore, the
templates were filtered such that only frequency bands showing
significant maxima were included. Besides optimizing the tem-
plate, this procedure provides a rough estimate of the resolution
obtained in the 3D reconstruction (4–6 nm). As the 3D image
is searched with the templates, the highest correlation maxima
for all likely positions of the macromolecules and the corre-
sponding angular coordinates are extracted and plotted in

Fig. 3. Result of MSA analysis. Graph representing the Euclidian distance (y
axis) of each sample from the particle average (absolute similarity). Samples
are ordered along the x axis with descending correlation coefficients (relative
similarity). Samples with higher correlation coefficients have a smaller dis-
tance from the average compared to samples with lower correlation coeffi-
cient; thereby, a clear step is visible. Note that among the samples with high
correlation values, there are four outliers, i.e., miss-hits of the cross-
correlation.

Fig. 4. (a) Histogram of the correlation coefficients of the particles found in the proteasome-containing phantom cell scanned with the ‘‘correct’’ proteasome
and the ‘‘false’’ thermosome template. Of the 104 detected particles, 100 were identified correctly. The most probable correlation coefficient is 0.21 for the
proteasome template and 0.12 for the thermosome template. (b) Histogram of the correlation coefficients of the particles found in the thermosome-containing
phantom cell. Of the 88 detected particles, 77 were identified correctly. The most probable correlation value is 0.21 for the thermosome template and 0.16 for
the proteasome template.

Fig. 5. (a) Gallery of x-y slices through the average of the particles found in
the proteasome-containing phantom cell. The dimensions of the particle are
in good agreement with those of a 20S proteasome. The sevenfold symmetry
is barely discernible, but the central cavity is clearly revealed. The correspond-
ing average generated with a thermosome template did not show a distinct
structure. (b) Gallery of y-z slices through the same particle. (c) y-z slices of the
20S proteasome template used for the detection and identification proce-
dure. (d) Gallery of x-y slices through the average of the particles found in the
thermosome-containing phantom cell. Again the size of the particles is in
good agreement with the structure of a thermosome. The eightfold symmetry
can be recognized in the x-y slices; the symmetry of the particle was not
imposed. (e) Gallery of y-z slices through the same particle. ( f) y-z slices of the
thermosome template.
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descending order. Typically, the correlation coefficient distribu-
tion is biphasic; there is a clear turning point beyond which the
correlation coefficients height drops sharply and reaches a
plateau as characteristic for normally distributed noise.

The main computational effort is the calculation of the
unnormalized correlation function, which has to be performed
for all required combinations of the three Eulerian angles and
for every template. The second task is the calculation of the local
image energy, which is equivalent to a nonlinear real-space
filtering and can also be performed in parallel (Fig. 1). This
operation takes only a small fraction of the time needed for
calculating the unnormalized correlation function. The search
for a sevenfold symmetric proteasome in a 512 	 512 	 256 voxel
large 3D image amounts to a computation time of �50 h on a
single processor (Pentium III 1 GHz); this time can be divided
by the number of processors used (16 in our case) resulting in �3
h for one 3D image and a single template.

For the refinement of the detection-identification results,
subtomograms around the 400 highest correlation peaks were

extracted and subjected to MSA, assuming (i) that the total
number of particles is 
400 and (ii) that the correlation coef-
ficients representing them were high enough to detect most of
them. MSA is simplified by the fact that only a binary decision
has to be made (target particles and others). The curve mea-
suring the distance from the particle cloud center (the particle
average) to all samples is presented in Fig. 3 with samples
numbered according to correlation coefficient peak height (in
descending order). The curve is step-shaped with the first
one-half of the samples being close to the cloud centers and the
second one-half at larger distances. Thus for the vast majority of
samples, the result of cross-correlation analysis and MSA were
in good agreement. Nevertheless MSA led to the identification
of a few outliers among those samples ranked highly in the
cross-correlation analysis.

With the phantom cells containing only one molecular species,
we can evaluate the performance of our approach. In the case of
the phantom cells containing 20S proteasomes only, the most
probable (median value) correlation coefficient for the correct
20S proteasome template is 0.21, and for the (false) thermosome,
it is 0.12. Accordingly, the histograms of cross-correlation peaks
are well separated (Fig. 4a). From the samples with the 110
highest correlation peaks, 6 outliers were removed after MSA
(see Fig. 3). Of the remaining 104 particles, 100 were correctly
identified as 20S proteasomes, whereas 4 were erroneously
identified as thermosomes; this is a success rate of 96% relative
to the number of detected particles. With the thermosome-
containing phantom cell, the success rate is somewhat less
satisfactory. Possible reasons are a lower intrinsic stability of the
complex, possibly aggravated by the freezing and thawing pro-
cedure, the coexistence of different conformational states and a
poorer quality of the template (see above). Here, the most
probable correlation coefficient is 0.216 for the thermosome
template and 0.16 for the proteasome template (Fig. 4b). Of the

Fig. 6. Fourier shell correlation of the detected particles. By using a threshold
of 0.5 of the cross correlation coefficients, the resolution is estimated to be at
�0.35 of the Nyquist frequency, indicating a resolution of �4 nm.

Fig. 7. Volume-rendered representation of a reconstructed ice-embedded phantom cell containing a mixture of thermosomes and 20S proteasomes. After
applying the template-matching algorithm, the protein species were identified according to the maximal correlation coefficient. The molecules are represented
by their averages; thermosomes are shown in blue, the 20S proteasomes in yellow.
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140 highest correlation peaks, 88 were retained after MSA; 77 of
them were identified correctly as thermosomes and 11 errone-
ously as 20S proteasomes, which corresponds to a success rate
of 87%.

By using the coordinates obtained in the initial search, i.e.,
without post-alignment, we calculated averages of the particles
contained in the two types of phantom cells (Fig. 5). Despite the
relatively small numbers of particles, these averages are in good
agreement with the template structures. When the templates
were interchanged, the resulting averages were indistinct and
featureless. For an assessment of resolution, Fourier shell cor-
relation functions have been calculated for both data sets. By
using a correlation coefficient of 0.5 as a standard criterion, the
resolution is �4 nm in both cases (Fig. 6). This is not only a
measure for the quality of the tomograms, it is also a measure
for the accuracy in mapping the positions and orientations of the
particles within the phantom cells. Finally, we have applied our
detection-identification strategy to a phantom cell containing
20S proteasomes and thermosomes in a nominal molar ratio of
1:1; even though it is not possible in this case to validate the
identification result, it is reassuring to identify 52% of the
particles total number as thermosomes and 48% as 20S protea-
somes (Fig. 7).

Discussion
Phantom cells are useful model systems for developing strategies
and algorithms capable of detecting and identifying macromol-
ecules in cryoelectron tomograms. They mimic prokaryotic cells
in size and shape and provide a realistic experimental scenario
in terms of data quality. Because the molecular contents of the
phantom cells are known, it is possible to assess the fidelity of the
detection and identification, which, in turn, allows improving and
fine-tuning the algorithms. The results obtained in this study are
encouraging and consistent with image simulation experiments

indicating that, even at the present resolution of 4 nm, it is
possible to identify macromolecular complexes in the size range
of 0.5–1 MDa with satisfactory fidelity.

The search of the tomograms is performed in a fully auto-
mated fashion and does not require manual interference. There-
fore, it is objective and reproducible. It is computationally
demanding, but given the 1�M scalability of the algorithm, it is
the number of processors (M) at one’s disposal which determines
the time it takes to search a tomogram. One major difference
between phantom cells and real cells is the molecular crowding
inside the latter. In principle, the performance of the algorithm
should not be affected by the crowding. Nevertheless some
modifications might be necessary: currently, the template is
embedded in a sharply delimited sphere with �80% of the pixels
carrying information; 20% is ‘‘void volume’’ but these pixels
contribute to the cross-correlation coefficients. This is not a
problem as long as the molecules in the tomograms are not
‘‘touching’’ each other. If they are, more elaborate nonspherical
masks should be used including only information carrying pixels
related to the template.

Two factors will ultimately determine the limits of what can be
achieved by template matching: the resolution of the tomograms
and the quality of the search template. Ideally, a template is used,
which is as similar as possible to the target structure in the 3D
image to be searched, i.e., it should take into account all factors
which degrade or convolute the tomograms (contrast transfer
function, missing information because of incomplete sampling,
etc.) Because it is difficult, if not impossible to create such an
ideal template, it might be worth to explore the usefulness of
different techniques, which are independent of these parame-
ters, either as an alternative to the deterministic methods
described in this communication or to be used in combination
with them.

We thank Drs. Alasdair Steven and Vladan Lusic for critically reading
the manuscript.
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