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ABSTRACT

We have developed a software analysis package,
HapScope, which includes a comprehensive analy-
sis pipeline and a sophisticated visualization tool
for analyzing functionally annotated haplotypes.
The HapScope analysis pipeline supports: (i)
computational haplotype construction with an
expectation-maximization or Bayesian statistical
algorithm; (ii) SNP classi®cation by protein coding
change, homology to model organisms or putative
regulatory regions; and (iii) minimum SNP subset
selection by either a Brute Force Algorithm or a
Greedy Partition Algorithm. The HapScope viewer
displays genomic structure with haplotype informa-
tion in an integrated environment, providing eight
alternative views for assessing genetic and func-
tional correlation. It has a user-friendly interface for:
(i) haplotype block visualization; (ii) SNP subset
selection; (iii) haplotype consolidation with subset
SNP markers; (iv) incorporation of both experimen-
tally determined haplotypes and computational
results; and (v) data export for additional analysis.
Comparison of haplotypes constructed by the stat-
istical algorithms with those determined experimen-
tally shows variation in haplotype prediction
accuracies in genomic regions with different levels
of nucleotide diversity. We have applied HapScope
in analyzing haplotypes for candidate genes and
genomic regions with extensive SNP and genotype
data. We envision that the systematic approach of
integrating functional genomic analysis with popu-
lation haplotypes, supported by HapScope, will
greatly facilitate current genetic disease research.

INTRODUCTION

Advances in the understanding of the biological mechanisms
of complex diseases require a knowledge of human population
history as well as of gene function. A classic example is the
parallel study in genetics and immunochemistry in which the
association between ApoE4 haplotype and Alzheimer's
disease was discovered. Extensive association studies revealed

a higher frequency of ApoE4 haplotypes in Alzheimer patients
compared with the control population (1), and functional
assays showed that ApoE plays a critical role in the
pathogenesis of the lesions of Alzheimer's disease (2).

Recent progress in human genomics and genetics research,
highlighted by the completion of the human genome draft
sequence (3,4) and the ongoing effort to develop a whole
genome, high density haplotype map (5±9), has resulted in a
wealth of information that can be employed to identify
correlations between population genetics and functional
genomics in a systematic approach. Improvements in statis-
tical methods for constructing haplotypes with genotyping
data (10±12) have the potential to signi®cantly reduce the cost
of haplotype mapping without compromising accuracy. In
addition, computational tools for predicting deleterious effects
of genetic variations (13) may reveal the signi®cance of DNA
variations on mRNA and protein expression and protein
structure and function. Assembling and interpreting the data
from the public domain and research laboratories in candidate
regions or candidate genes can be dif®cult and challenging
owing to the complex processes required for genetic and
genomic data gathering, computational analysis and results
integration. Many of the recently developed tools lack follow-
up studies that analyze their relative strengths and weaknesses,
which makes it dif®cult to apply the appropriate method to
speci®c research and to interpret the results accurately.
Furthermore, evaluation of the correlation between genetic
variation and its potential functional impact requires parallel
presentation of genetic and genomic data. Existing genome
viewers, such as NCBI Map Viewer (http://www.ncbi.nlm.
nih.gov) and the UCSC Genome Viewer (14) as well as static
genotype or haplotype viewers such as Visual Genotype or
Visual Haplotype (15,16) are capable of presenting donor
genotype or haplotype information but lack more sophisti-
cated features, such as SNP functional classi®cation, haplo-
type phase probability assessment, display of population
haplotype structure and haplotype blocks, and SNP subset
selection, that are required to determine the functional
signi®cance of genetic variations and plan for follow-up
genetic or functional experiments.

As a ®rst step towards providing a systematic approach for
establishing genetic and functional correlation, we have
developed HapScope, a software tool for analyzing the genetic
and functional correlation of haplotypes in a population of
interest. Our system, which includes an automated analysis
pipeline and a sophisticated visualization tool, is the ®rst to
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combine genomic analysis and population haplotype analysis
in an integrated environment. To enable users of the HapScope
system to select the most appropriate algorithm for com-
putational analysis of haplotypes, we have analyzed the
performance and accuracy of two popular haplotype con-
struction algorithms, PHASE (10) and SNPHAP (http://
www-gene.cimr.cam.ac.uk/clayton/software/), the former
based on Bayesian statistics and the latter based on the
expectation-maximization (EM) algorithm. We have com-
pared the computationally constructed haplotypes with those
experimentally derived from allele-speci®c PCR in genomic
regions encoding the ApoE (17) and LPL (18) genes,
representing genomic regions with low and high nucleotide
diversity, respectively. We have developed a Brute Force
Algorithm (BFA) and a Greedy Partition Algorithm (GPA) for
selection of the minimum (or near minimum in the case of the
GPA) subset of SNPs that is able to represent the haplotype
diversity observed in the population of interest, thus reducing
the cost of genotyping without compromising the power of
linkage disequilibrium (LD) mapping with haplotypes. The
HapScope viewer is the ®rst visualization tool to display
haplotype data in parallel with genomic information such as
coding region structure, repeats, SNPs, putative regulatory
regions and conserved regions in model organisms. This will
assist evaluation of potential susceptibility markers from both
genetic and genomic perspectives. The software package was
developed and tested with the genotype data for F2, ApoE and
LPL, three candidate genes for cardiovascular disease, and for
5q31, a genomic region with susceptibility to Crohn's disease
(9). It has been successfully applied in a genotyping project
(J.P.Struewing, unpublished data) to identify and assess SNPs
in the BRIP1 (19) and ZBRK1 (20) genes in breast cancer
studies.

MATERIALS AND METHODS

Sequence, SNP, genotype and haplotype data

We obtained genomic sequence, SNPs and genotype data for
the F2 gene from the website of the UW-FHCRC Variation
Discovery Resource (http://pga.mbt.washington.edu). The
data set includes 103 SNPs discovered in 48 individuals. To
analyze the success rate of haplotype construction algorithms
and to test and validate the HapScope analysis pipeline, we
obtained LPL and ApoE haplotype data (17,18) from Andy
Clark and Charlie Sing. The LPL and ApoE haplotypes were
originally determined by an iterative procedure involving
application of Clark's haplotype inference algorithm (21) and
allele-speci®c PCR sequencing of multiple heterozygous
individuals. The ApoE data set includes 23 SNPs discovered
in 96 individuals; haplotype phases were determined experi-
mentally for 22 SNPs. The LPL data set includes a total of 88
SNPs discovered in 71 individuals; 69 SNPs have experimen-
tally determined haplotype phases. The SNP locations and
their ¯anking sequence context for ApoE and LPL were
derived from GenBank accession nos AF050163 and
AF261279, respectively. To compare the effectiveness of
our minimum SNP selection algorithms with manual htSNP
selection (7), we retrieved haplotype data for eight genes
(CTLA4, CASP10, CASP8, CFLAR, H19, INS, SDF1 and
TCF8) from the original publication. The genomic sequence,

SNPs, genotype data and haplotype block structure for 5q31
were obtained from the Whitehead Institute (http://www.
genome.wi.mit.edu/humgen/IBD5/haplodata.html). The BRIP1
and ZBRK1 SNPs and genotypes were obtained from one of the
authors (J.P.Struewing, unpublished data).

External haplotype construction programs

Two programs were used to construct haplotypes: SNPHAP
and PHASE. SNPHAP was developed by David Clayton
(http://www-gene.cimr.cam.ac.uk/clayton/software/) and uses
the EM algorithm. PHASE was developed by Stephens et al.
(10) and is based on Bayesian statistics. Both versions of the
PHASE program, PHASE.big and PHASE.small, were
incorporated into the pipeline.

Minimum SNP set selection algorithms

The minimum SNP set is the smallest possible subset of SNPs
in a haplotype block that represents the diversity of haplotypes
within the block; such SNPs have also been referred to as
`haplotype tagging SNPs' or `htSNPs' (7). HapScope offers
two minimum SNP set algorithms: a BFA that always ®nds the
minimum SNP set and a GPA that ®nds either the minimum
SNP set or one close to it in size.

The BFA iteratively generates all possible SNP combin-
ations (i.e. putative minimum SNP sets) starting with the
smallest possible until it ®nds a set of SNPs that represents all
haplotype diversity within the haplotype block.

The GPA successively partitions the minimum SNP set
discovery problem, ®nding a solution for the largest partition
at each iteration. By combining intermediate solutions, a new
set of smaller partitions is generated by each iteration.
Eventually, all partitions are of size one, indicating that a
minimum SNP set (or one close to it) has been found and the
algorithm ends (an algorithm that, at each iteration, solves the
biggest available sub-problem is referred to as a `greedy'
algorithm, hence the name).

Evaluation of haplotype construction algorithms

Donor haplotypes constructed with the PHASE.big,
PHASE.small and SNPHAP programs were compared with
those obtained experimentally from allele-speci®c PCR
experiments for ApoE and LPL (17,18). The default para-
meters were used for all three programs. The programs were
run on a Sparc II station with a 400 MHz CPU and 3.5 GB of
RAM. The operating system was Solaris 2.6.

In the original allele-speci®c PCR experiments, haplotype
phases for SNPs with multiple alleles and those identi®ed in
only one or two chromosomes were not determined experi-
mentally. For this reason, 19 SNPs in LPL and one SNP in
ApoE were excluded in our analysis of haplotype construction
algorithms. We analyzed the accuracy of haplotype prediction
by pre-®ltering these SNPs from the input or post-®ltering
them from the output. In the post-®ltering analysis, the multi-
allele indel SNP at position 4827 of LPL was converted into a
microsatellite marker in the input to PHASE. Since SNPHAP
can handle only bi-allelic variations, alleles other than the two
most frequent ones for this marker were treated as missing
data in the input to SNPHAP. For each donor subject, we
selected the matching haplotype pairs that represent minimum
haplotype phase differences between computational predic-
tion and experimental assay. We determined the proportion of
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subjects whose computationally constructed haplotypes are
identical to experimental results to measure the accuracy of
haplotype prediction. To take into account the differences in
SNP density and nucleotide diversity in genomic regions
encoding the ApoE and LPL genes, we also tabulated the
proportion of individual heterozygous genotypes with correct
phase assignment. Missing genotype data are excluded in all
analyses.

A useful feature of the PHASE algorithm is its assignment
of a probability score to the phase determination for each
heterozygous genotype. To assess the accuracy of this
probability value we compared the observed phase error rate
with the predicted error rate. For each predicted error rate
(= 1 ± probability of phase being correct), the estimated
number of incorrect calls and the actual number were
tabulated. We plotted the percentage of all predicted and the
percentage of all observed incorrect phase assignments in a
moving window of size eight. For example, in ApoE, PHASE
assigned an error probability in the range 41±50% to 20
heterozygous genotypes; the sum of its estimated inaccurate
phase calls in this range was 9.08, giving an estimated
incorrect call percentage of 45.40%. The percentage of
observed inaccurate calls for the same range was 45.00%.
Thus 45.50 and 45.00 are the ®rst two data points on the chart.
The window was then moved one position and new values of
the percentages were computed. This proceeded until the
entire table was covered. Error probability = 0 was plotted in
its own interval.

Programming language, platform and availability

The HapScope analysis pipeline was written in C and Perl.
Currently it runs on Solaris and can be re-compiled for other
UNIX platforms, such as SGI and Sun. The HapScope viewer
was written in C using NCBI's Vibrant Software Toolkit. It
runs on Windows 2000 and Windows NT as well as the UNIX
platform.

The HapScope analysis pipeline, the viewer and the test
data set are available free of charge and can be obtained by
anonymous ftp (ftp://ftp1.nci.nih.gov/pub/HapScope).

RESULTS

As shown in Figure 1, HapScope supports the iterative process
of target region analysis, SNP discovery, genotyping,
haplotype analysis and statistical analysis in genetics studies
using SNPs or haplotypes. The analysis pipeline provides tools
for both genomic and haplotype analysis and the viewer
provides a graphical interface for expert review of the
computational results. The analysis presented here of the
accuracy of the computational haplotype algorithms used by
the system will assist the user in selecting the method that is
most appropriate to the genomic region of interest. The
minimum SNP selection algorithms ensure the identi®cation
of the minimum or near minimum number of SNPs that are
required to represent haplotype diversity in the population of
interest within a user-de®ned frequency range.

Analysis pipeline

The analysis pipeline is a ¯at®le-based system that consists of
three modules, prep_seq for reference sequence annotation,
map_SNP for SNP mapping and classi®cation, and run_hap

for haplotype construction and integration. The three modules
can be run independently, in serial order or in a pipeline
process, which enables the user to substitute results from
computational predictions with experimental data and to
perform manual data editing where applicable. Results from
each of the modules can be viewed and edited with the
HapScope viewer.

As outlined in Figure 1, the prep_seq module can perform
de novo sequence annotation on raw sequence data or
download an annotated sequence record from NCBI (http://
www.ncbi.nlm.nih.gov) or combine de novo analysis with
annotations on a GenBank record. The user can de®ne a region
of interest by specifying the start and stop positions and
orientation of the region on the original record. For example,
we used the sub-sequence between 790 and 1020 kb of NCBI's
contig NT_031907 to represent the genomic region encoding
the BRIP1 gene. The sub-sequence was derived in reverse
orientation to contig NT_031907 so that SNPs and haplotypes
are presented in the same orientation as the coding sequence.
A repeat database ®le and a collection of public or local
databases can be speci®ed for repeat masking and homology
search using the program powerblast (23). Features such as
coding regions, mRNAs, homologous regions to related
organisms and repetitive regions are annotated automatically
based on the database search results. Prep_seq was able to
generate accurate coding region structures for the ®ve genes
analyzed in the study. For example, it was able to duplicate the
20 exon coding region structure for BRIP1 that was originally
generated by manual analysis. Prep_seq can also be run as a
stand-alone process to identify target regions such as coding or
regulatory regions for SNP discovery projects.

SNPs of interest are discovered either by laboratory
experiments or by mining the public databases. The
map_SNP module ®rst aligns the sequences representing the
5¢ and 3¢ ¯anking regions of SNPs to the reference sequence
using a modi®ed version of the sim (23) program. The SNPs
are mapped to the reference sequence using these alignments

Figure 1. System design of the HapScope analysis pipeline. Rectangles
indicate computational or experimental processes, parallelograms represent
data ®les. The arrows indicate the process ¯ow as well as input or output
data generated from a process.
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and are subsequently classi®ed into UTR, silent, missense,
nonsense and splice site variations using the coding region and
mRNA annotations on the reference sequence record. Starting
with raw sequence data, prep_seq and map_SNP are able to
accurately reproduce the SNP classi®cation for ApoE and LPL
in the original publication.

The run_hap module takes genotype data in Prettybase
format and converts them into the input data ®les required for
the PHASE or SNPHAP program. The computationally
constructed haplotypes are stored as alignment data in the
reference sequence record. Haplotype block information can
be incorporated with user-supplied haplotype block bound-
aries. The minimum SNP subset required to represent
haplotype diversity for all haplotypes (or a subset of
haplotypes within a user-de®ned population frequency
range) can be determined using the GPA or the BFA.

HapScope viewer

Figure 2 is a screenshot of the HapScope viewer displaying the
LPL haplotypes computed by the PHASE program for 71

donors. The viewer divides the display window horizontally
into two panels. The top panel is a text box containing a
description of a user-selected object, which can be a SNP, a
coding region, an mRNA transcript, a repeat or a region with
conserved sequence homology across multiple species. In
Figure 2, a 2 bp insertion SNP has been selected by mouse
click and the top panel displays data associated with the SNP,
including allelic variations with 10 bp ¯anking sequences,
allele frequencies in the population, SNP position on the
reference sequence and SNP type such as substitution,
insertion or deletion, as well as user-supplied synonyms of
the SNP. The bottom panel displays an integrated graphic
view of genomic and genetic data. At the top of this panel,
features annotated on the reference sequence are laid out in a
compressed format to preserve the majority of the display
space for genotype or haplotype data. The display panel can be
split horizontally into two sub-panels with independent
vertical scrolling so the user can navigate haplotype data at
the bottom without losing connection to the genomic anno-
tation displayed at the top. Features related to a SNP object are

Figure 2. A screen shot of the standard haplotype view for computed LPL haplotypes with the split display panel. The top panel displays the genome annota-
tion computed with the prep_seq module. At the top, the magenta rectangles are used to represent the coding exons. The gray area inside the sequence repre-
sents the repeat region and the red lines on top of the sequence represent human±mouse conserved regions. The substitution SNPs are displayed as diamonds;
the deletions and insertions are displayed as triangles or inverted triangles. Red, magenta or green are used to represent nonsense, missense and silent SNPs.
Yellow squares at the bottom of this panel highlight SNPs selected by a user query (all SNPs with >5% allele frequency in this case). Donor haplotypes are
displayed at the bottom panel. Major alleles are shown with ®lled red circles; minor alleles are shown with ®lled white circles; missing genotypes are not
marked with circles. Gray and vertical hatched lines on either side of the circles present PHASE probability scores in the ranges 75±99% and 50±47%, while
solid black lines indicate 100% probability.
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rendered graphically in detail. Different display symbols are
used to differentiate substitution, insertion and deletion SNPs
and different color schemes are applied to represent silent,
missense and nonsense SNPs. SNPs belonging to the same
haplotype block, determined either by an external process or
manually constructed with the HapScope viewer interface, are
grouped into a rectangle and subset SNPs from the user query
are highlighted. For example, in Figure 2 SNPs with >5%
minor allele frequency are highlighted in yellow; in Figure 3
the minimum SNP index for each haplotype block is
highlighted

Haplotype and/or genotype data are displayed in a `beads on
a string' fashion. The color of the beads indicates the major or
minor allele for haplotype data, homozygous or heterozygous
genotype for genotype data. The color of the strings illustrates
population frequency of a haplotype or a haplotype in a block
(Fig. 3). The probability score of haplotype phase determin-
ation is displayed with a gray or hatched line when the zoom
feature is used to expand the image (Fig. 2). The user has the
option of selecting from the eight alternative graphic views for
visualizing haplotype or genotype data. With the exception of
the male sex chromosomes, the standard view uses double
strings to display the two haplotypes for each donor (Fig. 2).
The genotype view uses a single string to display major allele
homozygous, minor allele homozygous and heterozygous
genotypes in a donor. The haplotype frequency view displays
the haplotypes in descending order of population frequency
(Fig. 3). The haplotype similarity view displays the haplotypes
by their similarity to the most common haplotype. If haplotype

blocks are de®ned by the user, the viewer can also display the
haplotype frequency or haplotype similarity view for SNPs
within each block (Fig. 3). If a selected subset of SNPs is
displayed, the viewer has the option of consolidating identical
haplotypes and recalculating population frequency. Figure 4
shows a consolidated view for molecularly determined
haplotypes for ApoE with SNPs selected from the promoter
and the coding region. Four SNPs are selected and as a result
the original 31 haplotypes have been consolidated into 10.

In addition to its visualization features, the HapScope
viewer also provides a variety of analysis functions, including
SNP subset selection, manual construction of haplotype
blocks and data export. A user can select a subset of SNPs
by specifying one or more functional classi®cations, such as
silent, missense and nonsense, by de®ning a range of minor
allele frequency, by de®ning the threshold for missing
genotype data, by requesting the minimum SNP subset that
represents haplotype diversity or by manually selecting SNPs
with a mouse click. Haplotype blocks can be manually built by
selecting SNPs representing the start and/or stop positions of
the blocks. Selected SNPs can be exported in FASTA format
for primer design. Genotype and haplotype data ®les can be
exported for additional statistical analysis. HapScope supports
haplotype clade analysis by exporting the data in the format
required for the RM network software (http://www.¯uxus-
engineering.com). HapScope can export ¯at®les representing
genomic, mRNA and protein haplotypes, which can be used to
investigate potential deleterious effects on coding regions
structure, mRNA expression and protein functions. Figure 5

Figure 3. Haplotype block view of the 5q31 region with haplotypes sorted in descending order of haplotype frequency within each block. The red, blue and
black strings connecting the circles represent haplotypes with >15%, >5% and >1% population frequency.
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shows the protein haplotype export ®le listing the most
common ApoE3 haplotype as well as a rare variant of the
ApoE4 haplotype with a Leu28Pro change that has been
previously reported to be more acidic than the common E4
isoform (24).

Minimum SNP set selection

To compare the effectiveness of GPA and BFA in manual
htSNP identi®cation (7), we applied both algorithms to the
eight genes for the subset of haplotypes at or above the 5%
frequency level, the same threshold used in the publication.
Results from both algorithms agreed with each other in every
case; minimum SNP set size agreed with the size of the
manually derived htSNP set given in the paper, except for
genes CASP10 and SDF1, where GPA and BFA found
minimum SNP sets smaller by one SNP in each case.

A more detailed test was carried out against molecularly
determined haplotypes for LPL. The results obtained from
haplotypes ®ltered with four population frequency thresholds
are summarized in Table 1. In all cases, GPA generates a
minimum SNP set of the same size as BFA. In an additional
test, un®ltered haplotypes from the htSNP publication (7) were
run through both algorithms and again the minimum SNP set
sizes were the same.

For small inputs with fewer than 20 SNPs, the run times of
the algorithms were approximately the same. For large inputs
with more than 40 SNPs, the run time of the BFA was
measured in days, versus minutes for the GPA.

Evaluation of computational haplotypes

The results of the three haplotype construction programs,
PHASE.big, PHASE.small and SNPHAP, are summarized in
Table 2. Pre-®ltering low frequency SNPs produced a minor
improvement in the accuracy of haplotype prediction (from 1
to 7%) in all programs. As a result, we implemented an option
for pre-®ltering input data with a user-de®ned SNP allele
frequency in run_hap.

In general, both SNPHAP and PHASE performed well on
the ApoE data set, with >75% of complete haplotypes
accurately predicted. The accuracy of complete haplotype
prediction was 4±5% higher for SNPHAP than PHASE and
the CPU-intensive PHASE.small generated the same results as
PHASE.big, the faster version of the two PHASE programs.
The accuracy of complete haplotype prediction for the 69 SNP
LPL data is signi®cantly lower, ranging from a maximum of
53% using PHASE.small to a minimum of 39% using
SNPHAP. Of the two PHASE programs, there was a 1±5%
performance improvement when the CPU-intensive
PHASE.small was used. SNPHAP had lower haplotype
accuracy than PHASE and it failed to determine haplotypes
for three donor subjects in the pre-®lter analysis and one donor
subject in the post-®lter analysis. Despite the differences in
their success rates for predicting complete haplotypes, the
accuracy of individual heterozygous genotypes was high and
consistent (88±92%) in ApoE and LPL, suggesting that the
low success rate of LPL complete haplotype prediction is
related to its high nucleotide diversity.

Figure 4. A consolidated haplotype view for ApoE haplotypes constructed with two promoter SNPs and two coding SNPs. The labels for haplotype name,
count and frequency have been recomputed after haplotype consolidation.

Figure 5. ApoE protein haplotype ®le exported by the HapScope viewer.
Upper case characters indicate protein variations. Underlined characters are
amino acid residues that de®ne the ApoE3 and ApoE4 isoforms. The bold
and underlined format does not appear in the exported ®le; it is used here
for illustration purposes.
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The results of the comparison of the predicted errors
calculated from the probability scores with the observed
heterozygous genotypes assigned with incorrect phase are
shown in Figure 6. In general, the accuracy of prediction
deteriorated as the PHASE error probability decreased, but
improved again for error probability = 0; this was true for both
the ApoE and LPL genes. In ApoE, of the 222 heterozygous
genotypes predicted by PHASE to have an error probability of
0, two (0.01) were found to be different from the experimental
data. In LPL, 39 (0.04) of 896 heterozygous genotypes
predicted with 0 error probability were assigned with incorrect
haplotype phase. Though there is a substantial difference
between observation and prediction for lower error probability
values, the correlation coef®cient for these ranges was high
(e.g. for LPL in the range 0.87±0.94 the correlation coef®cient
was 0.84, in ApoE in the range 0.87±0.99 it was 0.67). This
suggests that the inaccuracy of the PHASE probability is a
scaling problem.

DISCUSSION

Success in applying haplotypes in the identi®cation of genes
associated with Mendelian diseases such as cystic ®brosis
(25), as well as complex diseases (9,26,27), and ongoing
active research in the haplotype structures of the human
genome (5,6,8) have led to increasing interest in the use of

computational tools for haplotype analysis. HapScope is the
®rst software package in the public domain to offer automated
analysis and sophisticated graphical presentation for haplo-
types and functional annotations. The design of the analysis
pipeline follows the work¯ow of the SNP/haplotype-based
genetic study, integrating genomic and genetic data for SNP
and haplotype analysis. It is straightforward to incorporate
additional computational tools into the analysis pipeline; for
example, it took 2 days to implement the code changes
required to add the SNPHAP program as an alternative to the
PHASE program for computational haplotype construction. In
addition, experimental data can be used in place of data
derived by computational prediction; for example, we used the
system to analyze molecularly derived haplotypes for ApoE
and LPL. In theory, computing a high density haplotype map
for an entire chromosome with the HapScope pipeline is
possible with a `divide and conquer' approach. It requires
de®ning the chromosomal haplotype block structure and then
computing haplotypes within each block. The challenge in this
approach is the lack of consensus on the de®nition of a
haplotype block and the variation in haplotype block structure
across different populations (6).

The HapScope viewer can be considered a `polymorphism/
population centric' viewer that specializes in parallel analysis
of information that will support the assessment of the possible
functional relevance of polymorphisms. Polymorphism data

Table 2. Comparison of the PHASE.big, PHASE.small and SNPHAP programs using phase known data sets

Gene name ApoE LPL
Target region (kb) 5.5 9.7
No. of subjects 96 71
No. of SNPs 22 69
No. of heterozygous genotypes 283 1154
Average no. of heterozygous genotypes per subject 3 16
Nucleotide diversitya 0.0005 6 0.0003 0.002 6 0.001
Algorithm PHASE.big PHASE.small SNPHAP PHASE.big PHASE.small SNPHAP
Run time Pre-®lterb 2 h 6 h 1 min 3 h 9 days 90 s

Post-®lterc 2 h 6 h 1 min 3 h 7 days 1 min
Accuracy of full haplotyped Pre-®lter 74 (77%) 74 (77%) 79 (82%) 37 (52%) 38 (53%) 30 (42%)

Post-®lter 73 (76%) 73 (76%) 77 (80%) 32 (45%) 38 (53%) 27 (39%)
Accuracy of heterozygous genotypese Pre-®lter 253 (91%) 253 (91%) 258 (93%) 1051 (91%) 1058 (92%) 1033 (89%)

Post-®lter 252 (91%) 252 (91%) 256 (92%) 1035 (90%) 1053 (91%) 1022 (88%)

aNucleotide diversity data is obtained from previous publications (17,18).
bPre-®lter, haplotypes predicted after excluding SNPs with no experimentally determined haplotype phase.
cPost-®lter, all SNPs were included in haplotype prediction, but SNPs with no experimentally determined haplotype phase were excluded in the comparison
analysis.
dThe number of subjects (or percentage of donors) whose complete haplotypes are correctly constructed.
eThe number of heterozygous genotypes (or percentage of heterozygous genotypes) with correct haplotype phase assignment.

Table 1. Comparison of the GPA and BFA using LPL haplotypesa

Haplotype frequency (%) Data GPA BFA
No. of haplotypes No. of unique SNPsb Size of minimum index Run time (s) Size of minimum index Run time (s)

All 88 59 22 103 ?c ?c

>1 8 11 5 0.01 5 0.01
>2 6 7 4 <0.01 4 <0.01
>3 5 4 3 <0.01 3 <0.01

aThe input data included 88 haplotypes and 69 SNPs from Clark et al. (18).
bThe value in this column represents the number of SNPs that are polymorphic after: (i) removal of haplotypes with population frequencies lower than the
threshold in the ®rst column; (ii) consolidation of SNPs in LD. For example, the original 69 SNPs for all 88 haplotypes are consolidated into 59 unique SNPs.
cWe were unable to obtain the minimum SNP index for all haplotypes using BFA since the computing time exceeded the time required to prepare the
manuscript.
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are shown in great detail, with graphic features that indicate
whether a polymorphism occurs in a mRNA encoding or
regulatory region, the nature of the amino acid change, if
applicable, and the type of variation, such as substitution,
insertion or deletion. In contrast, presentation of genomic
features is concise and compressed, with related computa-
tional results and annotated features superimposed on each
other and details displayed only when the user manually
selects an object of interest. This compact display, though
rarely found in sequence-centric genomic viewers such as the
UCSC genome viewer, is commonly used in ®gures manually
drawn for journal publication and is exportable in HapScope.
In addition to saving space for population data, it can also
facilitate the detection of relationships among different types
of features. For example, the 5¢- and 3¢-UTRs can be identi®ed
in the HapScope viewer since the coding region features are
overlaid on the related mRNA features (Fig. 4). Similarly,
conserved regions between human and mouse can be correl-
ated with the predicted coding exons. To explore haplotype
structure at the genome scale, HapScope provides an interface
for querying and browsing chromosomal region or candidate
genes of interest.

Unlike ViewGene (28), another recently developed SNP
viewer, the HapScope viewer focuses on presenting results
from haplotype analysis, while ViewGene's main utility is for
analyzing sequence data for SNP discovery. Many of
HapScope's novel display features, such as graphical pre-
sentation and manipulation of haplotype block structures, are
speci®cally designed to support current active research in
human haplotype structure analysis (5,6,8). In the donor
haplotype view, HapScope displays haplotype probability
scores, a novel feature that can assist interpretation of
computational haplotype construction and aid laboratory
scientists in the design of experiments for resolving ambigu-
ities in computational prediction. For example, in ApoE >50%
of the haplotype phase discrepancies computed by the PHASE
program involve the SNP in the promoter region (also known
as ±491AT) of ApoE. Detection of such sites with the
HapScope viewer can assist targeted experimental veri®cation
of computational haplotype prediction. The dynamic haplo-
type view with the option for selecting a subset of SNPs and
consolidating redundant haplotypes in the subset gives more
¯exibility for haplotype analysis than the static Visual
Haplotype or Visual Genotype view (15,16). Of the four
haplotypes representing ApoE4 constructed with two pro-
moter SNPs, ±491AT and Th1/E47cs, the protective effect of
±491AT and the deleterious effect of Th1/E47cs reported
previously (29) suggest that the subtype of ApoE4 consoli-
dated from haplotypes 5, 15, 23, 18 and 31 has the most severe
adverse impact on Alzheimer's disease patients as it lacks the
protective allele of ±491AT and harbors the deleterious allele
of Th1/E47 (Fig. 4).

Our analysis of the two haplotype construction programs,
PHASE and SNPHAP, showed variations in their success rates
in genomic regions with different degrees of nucleotide
diversity. The PHASE program, based on Bayesian statistics,
is ~10% more accurate than SNPHAP in analyzing the LPL
gene, a region with high nucleotide diversity. In contrast, the
SNPHAP program, based on the EM algorithm, is ~5% more
accurate than PHASE in analyzing the ApoE gene, a region
with low nucleotide diversity. In a later analysis involving 17
SNPs in the ZBRK1 gene (19; J.P.Struewing, unpublished
data) and 109 donors with an average of three heterozygous
genotypes per donor, SNPHAP and PHASE generated iden-
tical results. Because haplotypes were not molecularly deter-
mined, we can conclude from this analysis that the two
programs had equal, but unknown, accuracy. Our experience
suggests that a prior analysis of regional nucleotide diversity
for the human genome may assist in the selection of the best
algorithm for generating an accurate human haplotype map.

The results of the comparison of predicted versus observed
errors in haplotype phase cast doubt upon PHASE probability
scores in the range 0.7±0.99. In ApoE, PHASE assigned a
probability value of 0.57 to ®ve heterozygous genotypes; of
these, 43%, i.e. about two, should have been incorrect. In fact,
two discrepancies were observed, a good match. In the same
gene, PHASE assigned a probability value of 0.98 to four
heterozygous genotypes, predicting effectively 0 incorrect
calls. In fact, PHASE made two incorrect calls at this
probability level, a poor match. We decided to use the moving
window plot to display the relationship between predicted and
expected errors for haplotype phase probability because this

Figure 6. Graph representation of observed versus expected errors calcu-
lated by the PHASE program. The expected errors are shown in triangles
and the observed errors are shown in squares. (Top) Results for ApoE.
(Bottom) Results for LPL. Most of the heterozygous genotypes are assigned
with 0% error probability, representing 78% and 77% of the heterozygous
genotypes in ApoE and LPL.
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presentation shows most clearly the discrepancy between the
two sets of values.

Minimum SNP set selection enables the user to obtain the
minimum subset of SNPs required to represent haplotype
diversity, thus reducing the cost of genotyping by assaying the
minimum number of SNPs required. BFA is a robust and
accurate method of obtaining a minimum SNP set, practicable
for common haplotypes that only include a small number of
unique SNPs. In comparison with the previously published
htSNP identi®cation result (7), BFA was able to identify
smaller SNP set sizes for two of the eight genes. This suggests
that manual derivation of a minimum SNP set is problematic
even for small haplotype blocks (<6 haplotypes). Though
current haplotype mapping focuses on haplotypes with >5%
population frequency, HapScope offers minimum SNP set
solutions for less common haplotypes that may involve many
SNPs. We developed the GPA partly because the exhaustive
search for all possible combinations of SNPs, implemented in
BFA, is an NP-complete problem and the run time becomes
intolerably long when the number of unique SNPs exceeds 40.
GPA is an approximation algorithm; however, in all the data
we analyzed we have so far not found a real case in which the
algorithm-generated minimum SNP set differs in size from
that generated by BFA. This is an unusual result and cannot be
expected to hold for all genes.
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