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Comparative effects of two antimycotic agents, ketoconazole
and terbinafine on the metabolism of tolbutamide,
ethinyloestradiol, cyclosporin and ethoxycoumarin by human
liver microsomes in vitro
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Department of Pharmacology and Therapeutics, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX

Two antimycotic agents, the azole ketoconazole and the allylamine terbinafine, have been
examined for their effects on the metabolism of tolbutamide, ethinyloestradiol, cyclosporin
and ethoxycoumarin by human liver microsomes (n = 4) in vitro. Ketoconazole caused
marked inhibition of all enzyme activities with mean IC50 values (concentration producing
50% inhibition) of 17.9 p,M (tolbutamide hydroxylase), 1.9 ,UM (ethinyloestradiol 2-
hydroxylase), 2.0 ,IM (cyclosporin N-demethylase), 2.1 pUM (cyclosporin hydroxylase)
and 25 ,LM (ethoxycoumarin O-deethylase). At 50 ,.M terbinafine concentration, inhibition
was less than 5% for tolbutamide and ethoxycoumarin, approximately 12% for both
cyclosporin pathways and 35% for ethinyloestradiol. Terbinafine does not have the same
inhibitory potential for cytochrome P-450 isozymes as ketoconazole.
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Introduction

Both the azole (e.g. ketoconazole) and allylamine
(e.g. terbinafine) antimycotics are potent inhibi-
tors of fungal ergosterol synthesis. The mode of
action of ketoconazole involves inhibition of a
cytochrome P-450 mediated enzyme, lanosterol
14-demethylase (Van den Bossche et al., 1978,
1983) whereas terbinafine exhibits strong inhibi-
tion of a non-cytochrome P-450 enzyme, squalene
epoxidase (Schuster, 1985). Many of the azole
antimycotics, including ketoconazole, in addition
to inhibiting fungal P-450, also inhibit hepatic
oxidative enzymes. This is because these
compounds have readily accessible non-bonded
electrons on a nitrogen atom, the imidazole 3-N,
enabling them to bind (Type II interaction) to
the ferric form of the haemoprotein as a sixth
ligand (Sheets & Mason, 1984; Back & Tjia,
1985; Meredith et al., 1985; Brown et al., 1985;
Sheets et al., 1986; Lavrijson et al., 1987; Back et
al., 1988). In contrast, terbinafine is a Type I
substrate for a small portion of cytochrome(s)
P-450 of hepatic microsomes (Schuster, 1987).
The present study was undertaken to compare

the inhibitory potential of terbinafine and keto-

conazole on the hepatic metabolism of tolbuta-
mide (TOL), ethinyloestradiol (EE2), cyclosporin
A (CSA) and ethoxycoumarin (EC) using human
liver microsomes in vitro.

Methods

Histologically normal livers were obtained from
kidney transplant donors (three males; three
females). Ethical approval for the study was
granted and consent to removal of the liver was
obtained from donors' relatives. Donor 1 was
known to be a smoker and donor 6 to have
received both phenobarbitone and phenytoin
for management of epilepsy. Washed microsomes
(105,000 g pellets) were prepared using the
classical differential sedimentation method as
previously described (Purba et al., 1987). Cyto-
chrome P-450 was assayed by the method of
Omura & Sato (1964) and microsomal protein
by the method of Lowry et al. (1951).
Tolbutamide 4-hydroxylase and ethinyl-

oestradiol 2-hydroxylase activities were measured
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using initial velocity conditions as previously
described (Back et al., 1988; Purba et al., 1987).

Cyclosporin N-demethylase (to metabolite
M21) and hydroxylase (to metabolite M17)
activities were determined as follows: Incubations
containing cyclosporin (CSA; 40 FM, a gift from
Sandoz Pharmaceuticals, Basle), MgCl2 (5mM),
EDTA (lmM), KCI (lmM), NADPH (lmM),
microsomal protein (3 mg) and 0.067M phosphate
buffer (pH 7.4) to a final volume of 2.5 ml, were
performed in Erlenmeyer flasks at 370 C with
agitation for 10 min. CSA and metabolites were
extracted into ether (6 ml) and quantified by
h.p.l.c. Metabolites (M17; M21) were identified
according to the retention times of the authentic
standards (Sandoz). Separations were performed
at 760 C on a Partisil ODS-3 (25 cm x 0.46 cm)
column protected by an in-line guard column.
The mobile phase used was acetonitrile:water
(67:33) and the flow rate was 1.5 ml min-1. The
eluate was monitored byUV detection at 210 nm
(Spectra-Physics UVNis detector). Initial velocity
conditions were established for both metabolic
pathways which were linear over 20 min and up
to 4 mg protein. In experiments involving the
antimycotics and CSA metabolism, radiolabelled
CSA (3H; 17 Ci mmol1, 0.2 ,uCi per incubation;
40 FiM; Amersham International) was used and
the metabolites were measured by determining
the radioactivity in 0.5 min eluate fractions in
4 ml of scintillant (Aqua Luma Plus; LKB).

7-Ethoxycoumarin O-deethylase (ECOD)
activity was determined under conditions
previously shown to be linear with respect to
time and protein concentration. Incubations
containing ethoxycoumarin (10 or 100 FLM),
NADPH (1 mM), microsomal protein (150 jig)
and 0.067 M phosphate buffer (pH 7.4) to a final
volume of 2.5 ml were performed in glass tubes
at 370 C with vigorous agitation for 15 min.
Extraction and measurement of the product
7-hydroxycoumarin was performed as reported
by Greenlee & Poland (1978).

Ketoconazole (a gift from Janssen) and
terbinafine (a gift from Sandoz) in the concentra-
tion range 0.5-100 FM were dissolved in methanol
which was evaporated to dryness before the
addition of other reaction constituents. The
percentage inhibition produced by the potential
inhibitor was determined and where appropriate
an IC50 value calculated (IC50 = concentration
of inhibitor producing 50% inhibition).

Results

The microsomal protein and cytochrome P-450
contents of the six livers used in the study are
shown in Table 1. Tolbutamide 4-hydroxylase,
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Figure 1 Effect of ketoconazole *-* and terbinafine *-0 on the metabolism of tolbutamide (a),
ethinyloestradiol (b) and cyclosponn (to metabolite M17, c; to metabolite M21, d). Each value is the mean
obtained from four different microsomal preparations.

ethinyloestradiol 2-hydroxylase, cyclosporin N-
demethylase, cyclosporin hydroxylase and
ethoxycoumarin O-deethylase activities are also
shown. It is interesting to note that cyclosporin
metabolism was highest in the liver of the donor
who had received phenobarbitone and phenytoin
and ethoxycoumarin metabolism (at low substrate
concentration) was greatest in the liver from the
known smoker. Ketoconazole caused marked
inhibition of all enzyme activities with mean IC50
values of: 17.9 ± 9 ,UM (TOL), 1.9 1.8 FLM
(EE2), 2.0 ± 0.5 FM (CSA M21),
2.1 ± 0.3 ,JM(CSA -- M17) and 25 ± 3 FM
(ECOD; low substrate). In contrast terbinafine
up to a concentration of 50 FLM (or 100 FLM, CSA
study), had a much smaller inhibitory effect.
Inhibition was less than 5% for tolbutamide and
ethoxycoumarin, approximately 12% for both
CSA pathways and 35% for EE2 (Figure 1).

Discussion

In this study ketoconazole has shown marked
inhibition of a number of metabolic pathways
which are probably catalysed by several different
cytochrome P-450 isozymes. Whilst definitive
proof i.e. activity of purified human P-450s or
use of specific inhibitory antibodies with the
microsomal fraction is the ideal approach to

characterize the form of enzyme catalysing a
particular oxidation, other lines of evidence are
important. Based on inhibition studies it has
been shown that tolbutamide hydroxylase is
distinct from isozymes involved in the metabolism
of theophylline, debrisoquine, nifedipine and
antipyrine (Back et al., 1988; Miners et al.,
1988). Knodell et al. (1987) have reported that
tolbutamide is a substrate for the purified human
liver cytochrome P-450 isozyme responsible for
S-mephenytoin 4-hydroxylation. Recently
Guengerich (1988) has argued that the enzyme
responsible for EE2 2-hydroxylation is P-45ONF.
Evidence for this conclusion included results of
studies using enzyme reconstitution, immuno-
inhibition, correlation of activities and inhibitors.
Purified P-450MP did not have catalytic activity
towards EE2. We have attempted to characterise
the selectivity of the forms of P-450 towards both
oestradiol (E2) and EE2 by using purified rat
isozymes (Ball et al., 1988). EE2 appeared to be
mainly metabolised by P450 isozymes from family
P4501IC. Kronbach et al. (1988) have examined
the metabolism of CSA to its three primary
metabolites (M17, M21 and Ml) and found
metabolism to be inhibited in a dose-dependent
manner by an antibody against a steroid-inducible
P-450 (cytochrome P-45OPCN) of rat liver. They
concluded that the human isozyme must be
similar or identical to P45ONF (P450IIIA3). The
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final substrate we used, ethoxycoumarin, is
metabolised (at least at high concentrations)
substantially by isozyme(s) distinct from those
responsible for the metabolism of ethoxyreso-
rufin. Thus ethoxyresorufin metabolism, but not
that of ethoxycoumarin, is inhibited by an anti-
body to a 3-MC-induced rat hepatic cytochrome
P-450 and is also increased in the livers of cigarette
smokers (Pelkonen et al., 1986). Ryan et al.
(1984) found that ethoxycoumarin was only
poorly metabolised by purified rat cytochromes
P-450, g and h. It is not clear what the major
isozyme(s) responsible for ethoxycoumarin
dealkylation are.
The findings of the present study with keto-

conazole are therefore wholly consistent with
this antimycotic being a potent general inhibitor
of cytochromes P-450 due to the binding of the
imidazole-3-N to the ferric form of the haemo-
protein. The interaction of ketoconazole and
cyclosporin has important clinical implications
for the management of transplant patients
(Cockbum, 1986; Ferguson et al., 1982; Dieperink
& Moller, 1982; Kronbach et al., 1988). The
elevation of CSA blood concentrations in

transplant recipients given ketoconazole con-
currently is clearly the result of inhibition of the
major metabolic pathways (to M21 and M17,
data shown; to Ml, data not shown).

Terbinafine does not appear to have a general
inhibitory effect on cytochromes P-450. The
enzyme most inhibited was EE2 2-hydroxylase
(by 35% at 50 ptM). It is possible that terbinafine
is a substrate for the same isozyme(s) metabolizing
EE2 and the observation reflects competition for
the substrate binding site. Further studies are
necessary to clarify this point. The maximum
plasma concentration following a 250 mg oral
dose of terbinafine is 3 jxM (unpublished obser-
vation).
The results of this work indicate that it is

unlikely that the allylamines will cause clinically
significant pharmacokinetic drug interactions
in vivo.

We are grateful to the Renal Transplant Unit, Royal
Liverpool Hospital for the provision of human liver.
Sandoz Pharmaceuticals provided financial support
for JFT.
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