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Abstract Quasi-experimental study designs, often described as nonrandomized, pre-post intervention studies,
are common in the medical informatics literature. Yet little has been written about the benefits and limitations of the
quasi-experimental approach as applied to informatics studies. This paper outlines a relative hierarchy and nomen-
clature of quasi-experimental study designs that is applicable to medical informatics intervention studies. In addition,
the authors performed a systematic review of two medical informatics journals, the Journal of the American Medical
Informatics Association (JAMIA) and the International Journal of Medical Informatics (IIMI), to determine the number of
quasi-experimental studies published and how the studies are classified on the above-mentioned relative hierarchy.
They hope that future medical informatics studies will implement higher level quasi-experimental study designs that
yield more convincing evidence for causal links between medical informatics interventions and outcomes.
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Background

Quasi-experimental studies encompass a broad range of non-
randomized intervention studies. These designs are fre-
quently used when it is not logistically feasible or ethical to
conduct a randomized controlled trial. Examples of quasi-
experimental studies follow. As one example of a quasi-exper-
imental study, a hospital introduces a new order-entry system
and wishes to study the impact of this intervention on the
number of medication-related adverse events before and after
the intervention. As another example, an informatics technol-
ogy group is introducing a pharmacy order-entry system
aimed at decreasing pharmacy costs. The intervention is im-
plemented and pharmacy costs before and after the interven-
tion are measured.

In medical informatics, the quasi-experimental, sometimes
called the pre-post intervention, design often is used to eval-
uate the benefits of specific interventions. The increasing ca-
pacity of health care institutions to collect routine clinical
data has led to the growing use of quasi-experimental study
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designs in the field of medical informatics as well as in other
medical disciplines. However, little is written about these
study designs in the medical literature or in traditional epide-
miology textbooks.'™ In contrast, the social sciences literature
is replete with examples of ways to implement and improve
quasi-experimental studies.*™®

In this paper, we review the different pretest-posttest quasi-
experimental study designs, their nomenclature, and the rel-
ative hierarchy of these designs with respect to their ability
to establish causal associations between an intervention and
an outcome. The example of a pharmacy order-entry system
aimed at decreasing pharmacy costs will be used throughout
this article to illustrate the different quasi-experimental
designs. We discuss limitations of quasi-experimental designs
and offer methods to improve them. We also perform a system-
atic review of four years of publications from two informatics
journals to determine the number of quasi-experimental
studies, classify these studies into their application domains,
determine whether the potential limitations of quasi-experi-
mental studies were acknowledged by the authors, and place
these studies into the above-mentioned relative hierarchy.

The authors reviewed articles and book chapters on the design
of quasi-experimental studies.* ' Most of the reviewed arti-
cles referenced two textbooks that were then reviewed in
depth.*®

Key advantages and disadvantages of quasi-experimental
studies, as they pertain to the study of medical informatics,
were identified. The potential methodological flaws of
quasi-experimental medical informatics studies, which have
the potential to introduce bias, were also identified. In ad-
dition, a summary table outlining a relative hierarchy and
nomenclature of quasi-experimental study designs is de-
scribed. In general, the higher the design is in the hierarchy,
the greater the internal validity that the study traditionally
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possesses because the evidence of the potential causation
between the intervention and the outcome is strengthened.*

We then performed a systematic review of four years of publi-
cations from two informatics journals. First, we determined
the number of quasi-experimental studies. We then classified
these studies on the above-mentioned hierarchy. We also
classified the quasi-experimental studies according to their
application domain. The categories of application domains
employed were based on categorization used by Yearbooks
of Medical Informatics 1992-2005 and were similar to the
categories of application domains employed by Annual
Symposiums of the American Medical Informatics Asso-
ciation."" The categories were (1) health and clinical manage-
ment; (2) patient records; (3) health information systems; (4)
medical signal processing and biomedical imaging; (5) deci-
sion support, knowledge representation, and management;
(6) education and consumer informatics; and (7) bioinfor-
matics. Because the quasi-experimental study design has
recognized limitations, we sought to determine whether
authors acknowledged the potential limitations of this design.
Examples of acknowledgment included mention of lack of
randomization, the potential for regression to the mean, the
presence of temporal confounders and the mention of another
design that would have more internal validity.

All original scientific manuscripts published between January
2000 and December 2003 in the Journal of the American Medical
Informatics Association (JAMIA) and the International Journal of
Medical Informatics (IJMI) were reviewed. One author (ADH)
reviewed all the papers to identify the number of quasi-
experimental studies. Other authors (ADH, JCM, JF) then
independently reviewed all the studies identified as quasi-
experimental. The three authors then convened as a group
to resolve any disagreements in study classification, applica-
tion domain, and acknowledgment of limitations.

Results and Discussion

What Is a Quasi-experiment?

Quasi-experiments are studies that aim to evaluate interven-
tions but that do not use randomization. Similar to random-
ized trials, quasi-experiments aim to demonstrate causality
between an intervention and an outcome. Quasi-experimen-
tal studies can use both preintervention and postintervention
measurements as well as nonrandomly selected control
groups.

Using this basic definition, it is evident that many published
studies in medical informatics utilize the quasi-experimental
design. Although the randomized controlled trial is generally
considered to have the highest level of credibility with regard
to assessing causality, in medical informatics, researchers of-
ten choose not to randomize the intervention for one or
more reasons: (1) ethical considerations, (2) difficulty of ran-
domizing subjects, (3) difficulty to randomize by locations
(e.g., by wards), (4) small available sample size. Each of these
reasons is discussed below.

Ethical considerations typically will not allow random with-
holding of an intervention with known efficacy. Thus, if the
efficacy of an intervention has not been established, a ran-
domized controlled trial is the design of choice to determine
efficacy. But if the intervention under study incorporates an
accepted, well-established therapeutic intervention, or if the

intervention has either questionable efficacy or safety based
on previously conducted studies, then the ethical issues of
randomizing patients are sometimes raised. In the area of
medical informatics, it is often believed prior to an implemen-
tation that an informatics intervention will likely be beneficial
and thus medical informaticians and hospital administrators
are often reluctant to randomize medical informatics inter-
ventions. In addition, there is often pressure to implement
the intervention quickly because of its believed efficacy,
thus not allowing researchers sufficient time to plan a ran-
domized trial.

For medical informatics interventions, it is often difficult to
randomize the intervention to individual patients or to indi-
vidual informatics users. So while this randomization is tech-
nically possible, it is underused and thus compromises the
eventual strength of concluding that an informatics interven-
tion resulted in an outcome. For example, randomly allowing
only half of medical residents to use pharmacy order-entry
software at a tertiary care hospital is a scenario that hospital
administrators and informatics users may not agree to for nu-
merous reasons.

Similarly, informatics interventions often cannot be random-
ized to individual locations. Using the pharmacy order-entry
system example, it may be difficult to randomize use of the
system to only certain locations in a hospital or portions of
certain locations. For example, if the pharmacy order-entry
system involves an educational component, then people
may apply the knowledge learned to nonintervention wards,
thereby potentially masking the true effect of the interven-
tion. When a design using randomized locations is employed
successfully, the locations may be different in other respects
(confounding variables), and this further complicates the
analysis and interpretation.

In situations where it is known that only a small sample size
will be available to test the efficacy of an intervention, ran-
domization may not be a viable option. Randomization is
beneficial because on average it tends to evenly distribute
both known and unknown confounding variables between
the intervention and control group. However, when the sam-
ple size is small, randomization may not adequately accom-
plish this balance. Thus, alternative design and analytical
methods are often used in place of randomization when
only small sample sizes are available.

What Are the Threats to Establishing Causality
When Using Quasi-experimental Designs in
Medical Informatics?

The lack of random assignment is the major weakness of the
quasi-experimental study design. Associations identified in
quasi-experiments meet one important requirement of causal-
ity since the intervention precedes the measurement of the
outcome. Another requirement is that the outcome can be
demonstrated to vary statistically with the intervention.
Unfortunately, statistical association does not imply causality,
especially if the study is poorly designed. Thus, in many
quasi-experiments, one is most often left with the question:
“Are there alternative explanations for the apparent causal
association?” If these alternative explanations are credible,
then the evidence of causation is less convincing. These rival
hypotheses, or alternative explanations, arise from principles
of epidemiologic study design.
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Shadish et al.* outline nine threats to internal validity that are
outlined in Table 1. Internal validity is defined as the degree
to which observed changes in outcomes can be correctly
inferred to be caused by an exposure or an intervention. In
quasi-experimental studies of medical informatics, we believe
that the methodological principles that most often result in al-
ternative explanations for the apparent causal effect include
(a) difficulty in measuring or controlling for important con-
founding variables, particularly unmeasured confounding var-
iables, which can be viewed as a subset of the selection threat
in Table 1; (b) results being explained by the statistical princi-
ple of regression to the mean. Each of these latter two principles
is discussed in turn.

An inability to sufficiently control for important confounding
variables arises from the lack of randomization. A variable is
a confounding variable if it is associated with the exposure of
interest and is also associated with the outcome of interest;
the confounding variable leads to a situation where a causal
association between a given exposure and an outcome is ob-
served as a result of the influence of the confounding variable.
For example, in a study aiming to demonstrate that the intro-
duction of a pharmacy order-entry system led to lower phar-
macy costs, there are a number of important potential
confounding variables (e.g., severity of illness of the patients,
knowledge and experience of the software users, other
changes in hospital policy) that may have differed in the pre-
intervention and postintervention time periods (Fig. 1). In a
multivariable regression, the first confounding variable could
be addressed with severity of illness measures, but the second
confounding variable would be difficult if not nearly impos-
sible to measure and control. In addition, potential confound-
ing variables that are unmeasured or immeasurable cannot be
controlled for in nonrandomized quasi-experimental study
designs and can only be properly controlled by the random-
ization process in randomized controlled trials.

Another important threat to establishing causality is regres-
sion to the mean.'*'* This widespread statistical phenome-
non can result in wrongly concluding that an effect is due
to the intervention when in reality it is due to chance. The
phenomenon was first described in 1886 by Francis Galton

Table 1 m Threats to Internal Validity

1. Ambiguous temporal precedence: Lack of clarity about whether
intervention occurred before outcome

2. Selection: Systematic differences over conditions in respondent
characteristics that could also cause the observed effect

3. History: Events occurring concurrently with intervention could
cause the observed effect

4. Maturation: Naturally occurring changes over time could be
confused with a treatment effect

5. Regression: When units are selected for their extreme scores,
they will often have less extreme subsequent scores, an
occurrence that can be confused with an intervention effect

6. Attrition: Loss of respondents can produce artifactual effects
if that loss is correlated with intervention

7. Testing: Exposure to a test can affect scores on subsequent
exposures to that test

8. Instrumentation: The nature of a measurement may change
over time or conditions

9. Interactive effects: The impact of an intervention may depend
on the level of another intervention

Adapted from Shadish et al.*
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Confounding

Outcome: Pharmacy
costs

Confounding
variable: Experience
of software users

Intervention: Pharmacy
order-entry software

Figure 1. Example of confounding. To get the true effect
of the intervention of interest, we need to control for the con-
founding variable.

who measured the adult height of children and their parents.
He noted that when the average height of the parents was
greater than the mean of the population, the children tended
to be shorter than their parents, and conversely, when the av-
erage height of the parents was shorter than the population
mean, the children tended to be taller than their parents.

In medical informatics, what often triggers the development
and implementation of an intervention is a rise in the rate
above the mean or norm. For example, increasing pharmacy
costs and adverse events may prompt hospital informatics
personnel to design and implement pharmacy order-entry
systems. If this rise in costs or adverse events is really just
an extreme observation that is still within the normal range
of the hospital’s pharmaceutical costs (i.e., the mean pharma-
ceutical cost for the hospital has not shifted), then the statisti-
cal principle of regression to the mean predicts that these
elevated rates will tend to decline even without intervention.
However, often informatics personnel and hospital adminis-
trators cannot wait passively for this decline to occur.
Therefore, hospital personnel often implement one or more
interventions, and if a decline in the rate occurs, they may
mistakenly conclude that the decline is causally related to
the intervention. In fact, an alternative explanation for the
finding could be regression to the mean.

What Are the Different Quasi-experimental

Study Designs?

In the social sciences literature, quasi-experimental studies
are divided into four study design groups*®:

A. Quasi-experimental designs without control groups

B. Quasi-experimental designs that use control groups but
no pretest

C. Quasi-experimental designs that use control groups and
pretests

D. Interrupted time-series designs

There is a relative hierarchy within these categories of study
designs, with category D studies being sounder than cate-
gories C, B, or A in terms of establishing causality. Thus, if fea-
sible from a design and implementation point of view,
investigators should aim to design studies that fall in to the
higher rated categories. Shadish et al.* discuss 17 possible de-
signs, with seven designs falling into category A, three de-
signs in category B, and six designs in category C, and one
major design in category D. In our review, we determined
that most medical informatics quasi-experiments could be
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characterized by 11 of 17 designs, with six study designs in
category A, one in category B, three designs in category C,
and one design in category D because the other study designs
were not used or feasible in the medical informatics literature.
Thus, for simplicity, we have summarized the 11 study de-
signs most relevant to medical informatics research in Table 2.

The nomenclature and relative hierarchy were used in the
systematic review of four years of JAMIA and the IJML
Similar to the relative hierarchy that exists in the evidence-
based literature that assigns a hierarchy to randomized
controlled trials, cohort studies, case-control studies, and
case series, the hierarchy in Table 2 is not absolute in that in
some cases, it may be infeasible to perform a higher level

Table 2 m Relative Hierarchy of Quasi-experimental
Designs

Quasi-experimental Study Designs Design Notation

A. Quasi-experimental designs
without control groups
1. The one-group posttest-only X 01
design

2. The one-group 01 X 02
pretest-posttest design
3. The one-group pretest-posttest O1 O2 X O3

design using a double pretest

4. The one-group pretest-posttest
design using a nonequivalent
dependent variable

5. The removed-treatment design ~ O1 X O2 O3 removeX O4

6. The repeated-treatment design ~ O1 X O2 removeX O3 X O4

B. Quasi-experimental designs that

use a control group but no
pretest

1. Posttest-only design with
nonequivalent groups

(Ola, O1b) X (O2a, O2b)

Intervention group: X O1

Control group: O2
C. Quasi-experimental designs that
use control groups and pretests
1. Untreated control group with
dependent pretest and
posttest samples

Intervention group:
Ola X O2a

Control group: Olb O2b
Intervention group:
Ola O2a X O3a

2. Untreated control group
design with dependent
pretest and posttest samples
using a double pretest

Control group: O1b O2b O3b

3. Untreated control group design Intervention group:
with dependent pretest and ~ Ola X O2a O3a
posttest samples using
switching replications

Control group: Olb
02b X O3b
D. Interrupted time-series design*

1. Multiple pretest and posttest
observations spaced at
equal intervals of time

01 02 O3 04 O5 X O6
07 08 09 010

O = Observational Measurement; X = Intervention Under Study.
Time moves from left to right.

*In general, studies in category D are of higher study design quality
than studies in category C, which are higher than those in category
B, which are higher than those in category A. Also, as one moves
down within each category, the studies become of higher quality,
e.g., study 5 in category A is of higher study design quality than
study 4, etc.

study. For example, there may be instances where an A6
design established stronger causality than a B1 design.">™"”

Quasi-experimental Designs without
Control Groups

The One-Group Posttest-Only Design (X O1)

Here, X is the intervention and O is the outcome variable (this
notation is continued throughout the article). In this study de-
sign, an intervention (X) is implemented and a posttest obser-
vation (O1) is taken. For example, X could be the introduction
of a pharmacy order-entry intervention and O1 could be the
pharmacy costs following the intervention. This design is
the weakest of the quasi-experimental designs that are dis-
cussed in this article. Without any pretest observations or a
control group, there are multiple threats to internal validity.
Unfortunately, this study design is often used in medical in-
formatics when new software is introduced since it may be
difficult to have pretest measurements due to time, technical,
or cost constraints.

The One-Group Pretest-Posttest Design (O1 X O2)

This is a commonly used study design. A single pretest mea-
surement is taken (O1), an intervention (X) is implemented,
and a posttest measurement is taken (O2). In this instance, pe-
riod O1 frequently serves as the “control” period. For exam-
ple, O1 could be pharmacy costs prior to the intervention, X
could be the introduction of a pharmacy order-entry system,
and O2 could be the pharmacy costs following the interven-
tion. Including a pretest provides some information about
what the pharmacy costs would have been had the interven-
tion not occurred.

The One-Group Pretest-Posttest Design Using a Double
Pretest (01 02 X O3)

The advantage of this study design over A2 is that adding a
second pretest prior to the intervention helps provide evi-
dence that can be used to refute the phenomenon of regression
to the mean and confounding as alternative explanations for
any observed association between the intervention and the
posttest outcome. For example, in a study where a pharmacy
order-entry system led to lower pharmacy costs (O3 < O2 and
O1), if one had two preintervention measurements of phar-
macy costs (O1 and O2) and they were both elevated, this
would suggest that there was a decreased likelihood that O3
is lower due to confounding and regression to the mean.
Similarly, extending this study design by increasing the
number of measurements postintervention could also help
to provide evidence against confounding and regression to
the mean as alternate explanations for observed associations.

The One-Group Pretest-Posttest Design Using a Non-
equivalent Dependent Variable ([Ola, O1b] X [O2a, O2b])

This design involves the inclusion of a nonequivalent depen-
dent variable (b) in addition to the primary dependent varia-
ble (a). Variables a and b should assess similar constructs; that
is, the two measures should be affected by similar factors and
confounding variables except for the effect of the interven-
tion. Variable a is expected to change because of the interven-
tion X, whereas variable b is not. Taking our example, variable
a could be pharmacy costs and variable b could be the length
of stay of patients. If our informatics intervention is aimed at
decreasing pharmacy costs, we would expect to observe a
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decrease in pharmacy costs but not in the average length of
stay of patients. However, a number of important confound-
ing variables, such as severity of illness and knowledge of
software users, might affect both outcome measures. Thus,
if the average length of stay did not change following the in-
tervention but pharmacy costs did, then the data are more
convincing than if just pharmacy costs were measured.

The Removed-Treatment Design (O1 X O2 O3 Remove X O4)

This design adds a third posttest measurement (O3) to the
one-group pretest-posttest design and then removes the inter-
vention before a final measure (O4) is made. The advantage of
this design is that it allows one to test hypotheses about the
outcome in the presence of the intervention and in the ab-
sence of the intervention. Thus, if one predicts a decrease in
the outcome between O1 and O2 (after implementation of
the intervention), then one would predict an increase in the
outcome between O3 and O4 (after removal of the interven-
tion). One caveat is that if the intervention is thought to
have persistent effects, then O4 needs to be measured after
these effects are likely to have disappeared. For example, a
study would be more convincing if it demonstrated that phar-
macy costs decreased after pharmacy order-entry system in-
troduction (O2 and O3 less than O1) and that when the
order-entry system was removed or disabled, the costs in-
creased (O4 greater than O2 and O3 and closer to O1). In ad-
dition, there are often ethical issues in this design in terms of
removing an intervention that may be providing benefit.

The Repeated-Treatment Design
(O1 X O2 Remove X O3 X 0O4)

The advantage of this design is that it demonstrates reproduc-
ibility of the association between the intervention and the out-
come. For example, the association is more likely to be causal
if one demonstrates that a pharmacy order-entry system re-
sults in decreased pharmacy costs when it is first introduced
and again when it is reintroduced following an interruption
of the intervention. As for design A5, the assumption must
be made that the effect of the intervention is transient, which
is most often applicable to medical informatics interventions.
Because in this design, subjects may serve as their own con-
trols, this may yield greater statistical efficiency with fewer
numbers of subjects.

Quasi-experimental Designs That Use a Control
Group but No Pretest
Posttest-Only Design with Nonequivalent Groups:
Interventiongroup: X O1
Controlgroup: O2

An intervention X is implemented for one group and com-
pared to a second group. The use of a comparison group
helps prevent certain threats to validity including the ability
to statistically adjust for confounding variables. Because in
this study design, the two groups may not be equivalent
(assignment to the groups is not by randomization), con-
founding may exist. For example, suppose that a pharmacy
order-entry intervention was instituted in the medical inten-
sive care unit (MICU) and not the surgical intensive care
unit (SICU). O1 would be pharmacy costs in the MICU after
the intervention and O2 would be pharmacy costs in the SICU
after the intervention. The absence of a pretest makes it
difficult to know whether a change has occurred in the
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MICU. Also, the absence of pretest measurements comparing
the SICU to the MICU makes it difficult to know whether
differences in O1 and O2 are due to the intervention or due
to other differences in the two units (confounding variables).

Quasi-experimental Designs That Use Control
Groups and Pretests

The reader should note that with all the studies in this cate-
gory, the intervention is not randomized. The control groups
chosen are comparison groups. Obtaining pretest measure-
ments on both the intervention and control groups allows
one to assess the initial comparability of the groups. The as-
sumption is that if the intervention and the control groups
are similar at the pretest, the smaller the likelihood there is
of important confounding variables differing between the
two groups.

Untreated Control Group with Dependent Pretest and
Interventiongroup: Ola X O2a

Controlgroup: O1b O2b

The use of both a pretest and a comparison group makes it
easier to avoid certain threats to validity. However, because
the two groups are nonequivalent (assignment to the groups
is not by randomization), selection bias may exist. Selection
bias exists when selection results in differences in unit charac-
teristics between conditions that may be related to outcome
differences. For example, suppose that a pharmacy order-
entry intervention was instituted in the MICU and not the
SICU. If preintervention pharmacy costs in the MICU (Ola)
and SICU (O1b) are similar, it suggests that it is less likely
that there are differences in the important confounding vari-
ables between the two units. If MICU postintervention costs
(O2a) are less than preintervention MICU costs (Ola), but
SICU costs (O1b) and (O2b) are similar, this suggests that
the observed outcome may be causally related to the
intervention.

Posttest Samples:

Untreated Control Group Design with Dependent Pretest
and Posttest Samples Using a Double Pretest:
Interventiongroup: Ola O2a X O3a
Controlgroup: O1b O2b O3b

In this design, the pretests are administered at two different
times. The main advantage of this design is that it controls
for potentially different time-varying confounding effects in
the intervention group and the comparison group. In our ex-
ample, measuring points O1 and O2 would allow for the as-
sessment of time-dependent changes in pharmacy costs, e.g.,
due to differences in experience of residents, preintervention
between the intervention and control group, and whether
these changes were similar or different.

Untreated Control Group Design with Dependent Pretest
and Posttest Samples Using Switching Replications:
Interventiongroup: Ola X O2a O3a
Controlgroup: O1b O2b X O3b

With this study design, the researcher administers an inter-
vention at a later time to a group that initially served as a non-
intervention control. The advantage of this design over
design C2 is that it demonstrates reproducibility in two differ-
ent settings. This study design is not limited to two groups; in
fact, the study results have greater validity if the intervention
effect is replicated in different groups at multiple times. In the
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example of a pharmacy order-entry system, one could imple-
ment or intervene in the MICU and then at a later time, inter-
vene in the SICU. This latter design is often very applicable to
medical informatics where new technology and new software
is often introduced or made available gradually.

Interrupted Time-Series Designs
01 02 03 04 05 X 06 O7 08 09 010

An interrupted time-series design is one in which a string
of consecutive observations equally spaced in time is inter-
rupted by the imposition of a treatment or intervention. The
advantage of this design is that with multiple measurements
both pre- and postintervention, it is easier to address and con-
trol for confounding and regression to the mean. In addition,
statistically, there is a more robust analytic capability, and
there is the ability to detect changes in the slope or intercept
as a result of the intervention in addition to a change in the
mean values.'® A change in intercept could represent an im-
mediate effect while a change in slope could represent a grad-
ual effect of the intervention on the outcome. In the example

21

of a pharmacy order-entry system, O1 through O5 could rep-
resent monthly pharmacy costs preintervention and O6
through O10 monthly pharmacy costs post the introduction
of the pharmacy order-entry system. Interrupted time-series
designs also can be further strengthened by incorporating
many of the design features previously mentioned in other
categories (such as removal of the treatment, inclusion of a
nondependent outcome variable, or the addition of a control

group).

Systematic Review Results

The results of the systematic review are in Table 3. In the four-
year period of JAMIA publications that the authors reviewed,
25 quasi-experimental studies among 22 articles were pub-
lished. Of these 25, 15 studies were of category A, five studies
were of category B, two studies were of category C, and no
studies were of category D. Although there were no studies
of category D (interrupted time-series analyses), three of the
studies classified as category A had data collected that could
have been analyzed as an interrupted time-series analysis.
Nine of the 25 studies (36%) mentioned at least one of the

Table 3 m Systematic Review of Four Years of Quasi-designs in JAMIA

Limitation of

Informatics Quasi-design
Topic Quasi-experimental Mentioned
Study Journal Category Design in Article
Staggers and Kobus® JAMIA 1 Counterbalanced study design Yes

Schriger et al.?! JAMIA

Patel et al.?2 JAMIA
Patel et al.? JAMIA
Borowitz? JAMIA
Patterson and Harasym?* JAMIA
Rocha et al.? JAMIA
Lovis et al.?® JAMIA
Hersh et al.?” JAMIA
Makoul et al.*® JAMIA
Ruland® JAMIA
DeLusignan et al.*° JAMIA
Mekhjian et al.>! JAMIA
Mekhjian et al.*' JAMIA

Ammenwerth et al.* JAMIA

Oniki et al.*® JAMIA
Liederman and Morefield* JAMIA
Liederman and Morefield** JAMIA
Rotich et al.”® JAMIA

Payne et al.*® JAMIA
Hoch et al.*” JAMIA
Laerum et al.>® JAMIA
Devine et al.* JAMIA

Dunbar et al.*° JAMIA
Lenert et al.*! JAMIA
Koide et al.*? JMI
Gonzalez-Hendrich et al.*? IJMI
Anantharaman and Swee Han** IJMI
Chae et al.®® JMI
Lin et al.* JMI
Mikulich et al.* JMI
Hwang et al.*® IIMI

Park et al.* MI
Park et al.* M1

— == R, WO WNUTO R, P, WORNNR, RO R PR, RPR R, OO, O —~, NN -

A5 Yes

A5 (study 1, phase 1) No
A2 (study 1, phase 2) No
A2 No
C1 Yes
A2 Yes
Counterbalanced study design No
B1 No
Bl Yes
B1 No
Al No
A2 (study design 1) Yes
B1 (study design 2) Yes
A2 No
C1 Yes
Al (study 1) No
A2* (study 2) No
A2* No
Al No
A2* No
B1 Yes
Counterbalanced study design

Al

A2

D4 No
Al No
B1 No
A2 No
Al No
A2 Yes
A2 Yes
2 No
D4 No

JAMIA = Journal of the American Medical Informatics Association; IJMI = International Journal of Medical Informatics.

*Could have been analyzed as an interrupted time-series design.



22

potential limitations of the quasi-experimental study design.
In the four-year period of IJMI publications reviewed by the
authors, nine quasi-experimental studies among eight manu-
scripts were published. Of these nine, five studies were of cat-
egory A, one of category B, one of category C, and two of
category D. Two of the nine studies (22%) mentioned at least
one of the potential limitations of the quasi-experimental
study design.

In addition, three studies from JAMIA were based on a coun-
terbalanced design. A counterbalanced design is a higher
order study design than other studies in category A. The
counterbalanced design is sometimes referred to as a Latin-
square arrangement. In this design, all subjects receive all
the different interventions but the order of intervention
assignment is not random." This design can only be used
when the intervention is compared against some existing
standard, for example, if a new PDA-based order entry system
is to be compared to a computer terminal-based order entry
system. In this design, all subjects receive the new PDA-based
order entry system and the old computer terminal-based
order entry system. The counterbalanced design is a within-
participants design, where the order of the intervention is var-
ied (e.g., one group is given software A followed by software
B and another group is given software B followed by software
A). The counterbalanced design is typically used when the
available sample size is small, thus preventing the use of ran-
domization. This design also allows investigators to study the
potential effect of ordering of the informatics intervention.

Conclusion

Although quasi-experimental study designs are ubiquitous in
the medical informatics literature, as evidenced by 34 studies
in the past four years of the two informatics journals, little has
been written about the benefits and limitations of the quasi-
experimental approach. As we have outlined in this paper,
a relative hierarchy and nomenclature of quasi-experimental
study designs exist, with some designs being more likely
than others to permit causal interpretations of observed asso-
ciations. Strengths and limitations of a particular study de-
sign should be discussed when presenting data collected in
the setting of a quasi-experimental study. Future medical in-
formatics investigators should choose the strongest design
that is feasible given the particular circumstances.
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