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Abstract
Statistically based iterative image reconstruction methods have been developed for emission
tomography. One important component in iterative image reconstruction is the system matrix, which
defines the mapping from the image space to the data space. Several groups have demonstrated that
an accurate system matrix can improve image quality in both SPECT and PET. While iterative
methods are amenable to arbitrary and complicated system models, the true system response is never
known exactly. In practice, one also has to sacrifice the accuracy of the system model because of
limited computing and imaging resources. This paper analyzes the effect of errors in the system
matrix on iterative image reconstruction methods that are based on the maximum a posteriori
principle. We derived an analytical expression for calculating artifacts in a reconstructed image that
are caused by errors in the system matrix using the first-order Taylor series approximation. The
theoretical expression is used to determine the required minimum accuracy of the system matrix in
emission tomography. Computer simulations show that the theoretical results work reasonably well
in low-noise situations.

1. Introduction
Statistically based iterative image reconstruction methods have been developed for emission
tomography to improve image quality [Fessler, 1994, Mumcuoglu et al, 1994, Fessler and Hero,
1995, Bouman and Sauer, 1996]. Compared to analytic approaches, which generally require
an idealized system model and do not account for nonuniform noise in the data, iterative
methods are amendable to an arbitrary, complicated, and realistic system model that defines
the mapping from source to detectors. Furthermore, iterative methods allow for proper
modeling of the statistical properties of the acquired data and result in better tradeoffs of
resolution verses noise. In the past decade, tremendous effort has been devoted to developing
accurate system models for image reconstruction, e.g., [Bai et al, 2002, Bai et al, 2000,
Beekman et al, 1997, Formiconi et al, 1989, Frey and Tsui, 1990, Gilland et al, 1994, Jaszczak
et al, 1984, King et al, 1995, King et al, 1996a, Laurette et al, 2000, Meikle et al, 1994, Metz
et al, 1980, Qi et al, 1998, Tsui et al, 1994a, Tsui et al, 1998, Welch and Gullberg, 1998, Wells
et al, 1997]. In positron emission tomography (PET) the line integral model had been
considered to be reasonably accurate. Even so, resolution is affected by the combined effects
of positron range, noncolinearity of the photon pair, variations in detector-pair sensitivity along
the line of response (LOR), and the spatially variant response of the detector caused by
intercrystal penetration and scatter. The resolution in filtered backprojection degrades
significantly as the target is moved from the center of the scanner to radially off-center
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locations. By modeling these effects in an iterative reconstruction framework, one can obtain
high-resolution images [Veklerov et al, 1988, Mumcuoglu et al, 1996]. In single photon
emission computed tomography (SPECT), line-integrals are a far less accurate model. The
collimators produce pronounced depth dependence in resolution that is not included in the line
integral model. The single photon detection process results in attenuation that can differ
between each voxel and each detector element. Iterative methods can explicitly model these
effects in the system matrix. It is been shown, for example, that correct modeling of collimator
response can reduce partial volume effect and reduce bias in kinetic parameter estimation
[Kadrmas et al, 1999], and that accurate attenuation and scatter correction improves the
quantitation in cardiac scans [King et al, 1996b, Tsui et al, 1994b] and the signal to noise ratio
of cold lesions [Beekman et al, 1997, Hutton et al, 1996, Hutton, 1997]. Clinical studies also
show improved sensitivity and specificity in the diagnosis and evaluation of coronary artery
disease [Ficaro et al, 1996, Ficaro and Corbett, 2004].

One approach in implementing iterative algorithms is to precompute and store the system
matrix. If the system matrix needs to be computed only once as is often the case in PET,
computation time is not an issue. The system matrix can be computed using analytic
calculations [Huesman et al, 2000] or Monte Carlo simulations [Floyd and Jaszczak, 1985,
Veklerov et al, 1988], or it can be measured directly [Formiconi et al, 1989]. However, one
challenge is the huge size of system matrices for fully 3D imaging systems. Even storing only
the non-zero elements can be a daunting task. Researchers have exploited sparse matrix
structures and used various approximations to make this approach practical [Johnson et al,
1995, Floyd and Jaszczak, 1985, Qi et al, 1998].

To avoid the precomputation and storage of a huge projection matrix, on-the-fly calculations
are used. The simplest one uses a ray-tracing technique that is essentially the same as the line
integral model. A more sophisticated approach is to trace multiple rays for each LOR in order
to model the geometric response [Huesman et al, 2000, Laurette et al, 2000]. To include other
physical effects in the forward model, Monte Carlo simulations can be used to perform forward
and back projection [Kudrolli et al, 2002, Beekman et al, 2002]. Monte Carlo software packages
with very accurate physical models of PET and SPECT systems are available. However,
computation time is still high if every detail in the photon detection process is modeled, and
one must trade off between computation time and model accuracy.

Regardless of the approach, errors are inevitable in the system matrix. When data noise and
modeling error both follow a white Gaussian distribution, a well-known solution to this
problem is the total least squares (TLS) method [Golub and Van Loan, 1996], which minimizes
the combined error in both the system matrix and data measurements. It has been studied for
image restoration [Mesarovic et al, 1995a, Mesarovic et al, 1995b, Mesarovic et al, 2000] and
image reconstruction [Zhu et al, 1997, Brankov et al, 1999, Zhu et al, 1998, Zhu et al, 1999].
However, due to the high computational cost of TLS methods, most of the work has focused
on spatially invariant linear inverse problems, although methods have also been proposed for
nonconvolutional linear inverse problems [Zhu et al, 1997, Zhu et al, 1999]. When noise is not
white Gaussian, such as in emission tomography, TLS methods are not directly applicable.
Because of these limitations of TLS methods, the majority of the image reconstruction methods
still assume that the system matrix is exact. Thus, it is important to understand the effect of
modeling errors on these reconstruction methods.

In this paper, we study the error propagation from the system matrix into reconstructed images
in MAP reconstruction. Unlike the existing work that often focuses on a specific type of
modeling error, such as geometric response, attenuation, or scatter, we derive a general
theoretical formula that is not limited to a single type of modeling error. We use the result to
determine the minimum required accuracy for the system matrix, such that the effect of the
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modeling error is small compared to the intrinsic noise in the data. An earlier work on
quantitative analysis of effects of the modeling errors can be found in [Tekalp and Sezan,
1990], but it is limited to linear space-invariant image restoration with stationary noise. Here
we focus on nonconvolutional imaging systems and nonstationary noise models. We analyze
iterative reconstruction at convergence using the fixed-point condition [Fessler, 1996]. Thus,
the result is independent of the particular optimization algorithm, as long as the algorithm is
iterated to effective convergence.

2. Theory
2.1. Approximations

For a given imaging system with measured data y ∈ ℝM×1, the maximum a posteriori (MAP)
reconstruction x̂ ∈ ℝN×1 is found by maximizing the log-posterior density function:

x̂ = arg max
x≥0

L (y; x) − βU (x) , (1)

where L(y; x) is the log-likelihood function, U(x) is energy function of a Gibbs prior, which
can be written as

p(x) = 1
Z e−βU (x), (2)

where β is the hyperparameter that controls the resolution of the reconstructed image, and Z is
a normalization constant.

We focus our attention on the reconstruction problems in which the expectation of the data,
ȳ, can be related to the unknown image x by the following equation

ȳi = f ( Px i) + ri. (3)

where f(·) is a one-to-one function, P ∈ ℝM×N is the system matrix that defines the mapping
from the image space to the data space, [Px]i denotes the ith element of Px, and ri accounts for
the mean of background events in the ith measurement.

For example, in emission tomography the (i, j)th element of P contains the probability of
detecting an event emitted from the jth image element at the ith sinogram bin, f(z) = z, and the
log-likelihood function is

L (y; x) = ∑
i

(yi log ȳi − ȳi − log yi ! ). (4)

Equation (3) assumes a discrete-to-discrete (DD) imaging model [Barrett and Myers, 2003],
where the unknown image is represented by a linear combination of a set of basis functions
(image elements) with x containing the corresponding coefficients. The most commonly used
basis functions in image reconstruction are pixels in two dimensions and voxels in three
dimensions, although other basis functions, such as blobs [Matej and Lewitt, 1996], and natural
pixels [Buonocore et al, 1981], have also been proposed. The analysis here is not restricted to
any particular form of basis function. The DD model in (3) is not even required to have zero
image error (see Ch. 7.4.3 in [Barrett and Myers, 2003] for a discussion on image errors),
because we focus on analyzing how changes in the system matrix P affect the estimate of the
finite dimension coefficient x. The representation error of a continuous object by the basis
functions is beyond the scope of this paper.
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To simplify the notation in the following derivation, we first assume that the log-likelihood
function L(y; x) can be decomposed as follows

L (y; x) = ∑
i

hi( Px i). (5)

Such decomposition is always possible when measured data contain independent noise, but
independence is not a necessary requirement. For the Poisson log-likelihood function in (4),
we have

hi(z) = yi log f (z) + ri − f (z) − ri − log yi !

We shall show later that the above requirement in (5) can be relaxed.

The necessary condition for x̂ to be the solution of (1) is the Kuhn-Tucker condition
[Luenberger, 1984]:

∑
i

Pijḣ i( P x̂ i) − β ∂
∂x j

U (x̂){ = 0, x̂ j > 0

≤ 0, x̂ j = 0

j = 1, … , N ,

(6)

where ḣ i(z) ≡ dh i(z) / dz.

For a given data vector y, equation (6) implicitly defines the relationship between the system
matrix P and the corresponding MAP reconstruction x̂. Let us denote the “true” system
matrix‡ by P̄ = P − ΔP. The reconstructed image with the “true” system matrix, x̂*, satisfies

∑
i

P̄ ijḣ i( P̄ x̂*
i) − β ∂

∂x j
U (x̂*){ = 0, x̂ j

* > 0

≤ 0, x̂ j
* = 0.

j = 1, … , N ,

(7)

Considering x̂ as a function of P, when ΔP is small, we can use the first-order Taylor series
approximation to calculate the error propagation, i.e.,

Δx j ≡ x̂ j − x̂ j
* ≈ ∑

m,n

∂ x̂ j(P)

∂Pmn
ΔPmn, (8)

where ∂ x̂ j(P) / ∂Pmn denotes the partial derivative of x̂ j with respect to Pmn evaluated at P.
Here the Taylor series is expanded at the noisy system matrix P. However, the expansion can
also be taken at the “true” system matrix P̄, because the first-order Taylor series approximation
essentially assumes that the first derivatives are constant.

To proceed, we assume that the zero regions in x̂ and x̂* are the same, so
∂ x̂ j(P) / ∂Pmn = 0 for j : x̂ j = 0. Thus, we can exclude zero regions from the following
analysis by removing the columns in P that correspond to the zero image elements and reducing
the number of unknowns in x. Without loss of generality, we shall assume that x̂ j > 0 for all
j = 1, …, N in the rest of the derivation.

‡The word “true” here means that we use P̄  as a reference. P̄  may contain modeling error as well, since a real imaging system is a
continuous-to-discrete transform and its response can never be known exactly.
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To find the expression of ∂ x̂ j(P) / ∂Pmn for the nonzero image elements, we differentiate
equation in (6) with respect to Pmn by applying the chain rule [Fessler, 1996] and get

0 = ∑
i

∂Pij
∂Pmn

ḣ i( P x̂ i) +∑
i

Pijḧ i( P x̂ i)
∂ P x̂ i
∂Pmn

+∑
k

∂ Px̂ i
∂ x̂k

∂ x̂k(P)

∂Pmn
− β∑

k
∂2U (x̂)
∂ x j∂ xk

∂ x̂k(P)

∂Pmn

= ∑
i

δ jnδimḣ i( P x̂ i) +∑
i

Pijḧ i( P x̂ i) δimx̂n +∑
k

Pik
∂ x̂k(P)

∂Pmn
− β∑

k
∂2U (x̂)
∂ x j∂ xk

∂ x̂k(P)

∂Pmn

= δ jnḣ m( P x̂ m) + Pmjḧ m( P x̂ m)xn +∑
k {∑i Pijḧ i( P x̂ i)Pik − β ∂2U (x̂)

∂ x j∂ xk
} ∂ x̂k(P)

∂Pmn
,

j = 1, 2, … , N ; m = 1, 2, … , M ; n = 1, 2, … , N

(9)

where δmn is the Kronecker delta function defined as

δmn = {1, m = n
0, m ≠ n

and ḧ i(z) ≡ d 2h (z) / dz 2.

Solving the linear equations in (9) yields

∂ x̂ j(P)

∂Pmn
= ∑

k
H −1

jk δknḣ m( P x̂ m) + Pmkḧ m( P x̂ m)x̂n , (10)

where the (j, k) element of H is

H jk = − ∑
i {Pijḧ i( P x̂ i)Pik − β ∂2U (x̂)

∂ x j∂ xk
}.

and [H−1]jk denotes the (j, k)th element of H−1. Here we assume that the symmetric matrix
H is positive definite.

Substituting (10) into (8), we get

Δx j ≈ ∑
m,n

∑
k

H −1
jk δknḣ m( P x̂ m) + Pmkḧ m( P x̂ m)x̂n ΔPmn

= ∑
k

H −1
jk{∑m ΔPmkḣ m( P x̂ m) + ∑

m
Pmkḧ m( P x̂ m)∑

n
ΔPmnx̂n}. (11)

The above equation can be written in a matrix form

Δx̂ ≈ H −1{(ΔP)′ ḣ i( P x̂ i) + P ′diag ḧ i( P x̂ i) (ΔP)x̂}, (12)

where diag[yi] denotes a diagonal matrix with (i, i)th element being yi, [ci] denotes a column
vector with the ith element being ci, and ‘′’ denotes the matrix transpose.

As we have mentioned above, the decomposition in (5) is not essential to the derivation. The
fundamental requirement is that the log-likelihood function can be written as

L (y; x) = Φ(y, q), (13)

where q = Px. Following the same procedure, we can show that the error propagation formula
for the likelihood function in (13) is
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Δx̂ ≈ − P ′∇02Φ(y, P x̂)P + β∇2U (x̂)
−1{(ΔP)′∇01Φ(y, P x̂) + P ′∇02Φ(y, P x̂)(ΔP)x̂}, (14)

where the (j, k)th element of ∇02Φ(y, q) is ∂2

∂q j∂qk
Φ(y, q), the jth element of ∇01Φ(y, q) is

∂
∂q j

Φ(y, q), and ∇2U (x̂) is a symmetric matrix with the (j, m)th element being

∂2

∂ x j∂ xm
U (x̂).

Equations (12) and (14) are the main results of this paper. They can be applied to a range of
likelihood functions and image priors so long as the first-order Taylor series approximation
(8) and equation (13) hold. In the following we shall show the applications of these results to
emission tomography and transmission tomography problems.

2.2. Emission Tomography
Emission data are often modeled as independent Poisson random variables with the expectation
ȳ related to the unknown image x through an affine transform

ȳ = Px + r,

where r accounts for the mean of the background events, such as randoms and scatters. For the
Poisson likelihood function, we have

hi(z) = yi log(z + ri) − z − ri − log yi ! (15)

ḣ i(z) =
yi

z + ri
− 1 (16)

ḧ i(z) = −
yi

(z + ri)
2 (17)

Substituting (16) and (17) into (12), we get the following expression for error propagation in
emission tomography

Δx̂ ≈ F + β∇2U (x̂)
−1

(ΔP)′( yŷ − 1) − P ′diag
yi

ŷi
2 (ΔP)x̂ , (18)

where

F ≡ P ′diag
yi

ŷi
2 P

and ŷ ≡ P x̂ + r. In high count situations we can approximate y ≈ ŷ, so (18) reduces to

Δx̂ ≈ − F + β∇2U (x̂)
−1

P ′diag 1
ŷi

(ΔP)x̂. (19)

The result shows that the error propagation from the system matrix depends on the prior
function through β∇2U (x̂). In general, a prior that encourages smoothness in the reconstructed
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image can reduce the error propagation. This is similar to the error propagation from the voxel
sensitivity image [Qi and Huesman, 2004].

One application of (19) is to determine the minimum accuracy required for the system matrix.
While the exact answer depends on the specific task, a reasonable requirement would be that
the artifacts caused by the errors in the system matrix are small compared to the uncertainty
caused by the Poisson noise in the data, i.e.,

E (Δx̂)(Δx̂)′ < αΣ, (20)

where E denotes ensemble expectation, ∑ is the image covariance caused by the Poisson noise
given the true system matrix P̄, and a is a user-defined tolerance factor, e.g., 0.01.

From the results in [Fessler, 1996], we know that ∑ can be approximated by

Σ ≈ F
⌣

+ β∇2U (x
⌣

)
−1

P̄′ diag
ȳi

y
⌣

i
2 P̄ F

⌣
+ β∇2U (x

⌣
)
−1

, (21)

where x
⌣

 denotes the MAP reconstruction of the noise-free data ȳ with P̄,

F
⌣

≡ P̄′ diag
ȳi

y
⌣

i
2 P̄,

and y
⌣

≡ P̄ x
⌣

+ r.

To proceed, we assume that the artifacts caused by the modeling error are independent of the
Poisson noise in the measurements. Thus, we can analyze Δx̂ using noise-free data, in which

case we have x̂* = x
⌣

. If we consider P as a random quantity, the expansion point of the first-
order Taylor series approximation in (8) should be changed to P̄, which essentially changes all

x̂ to x̂*( = x
⌣) and all P to P̄ in equation (19). Substituting the modified equation (19) and

equation (21) into (20), we get

E{ F
⌣

+ β∇2U (x
⌣

)
−1

P̄′diag 1

y
⌣

i
(ΔP) x

⌣
x
⌣′

(ΔP)′diag 1

y
⌣

i
P̄ F

⌣
+ β∇2U (x

⌣
)
−1}

< α F
⌣

+ β∇2U (x
⌣

)
−1

P̄′diag
ȳi

y
⌣

i
2 P̄ F

⌣
+ β∇2U (x

⌣
)
−1

.

(22)

A sufficient condition for (22) to hold is

E (ΔP) x
⌣

x
⌣′

(ΔP)′ < αdiag ȳi . (23)

Equation (23) is useful in practice to determine whether the system matrix is accurate enough
for reconstruction. For example, when using a system matrix that is calculated using Monte

Carlo simulations or is measured directly using a scanning point source, E (ΔP) x
⌣

x
⌣′

(ΔP)′

can be estimated from the covariance of the forward projected sinogram. To satisfy the
requirement in (23), the variance in the forward projection need be less than a times the
statistical variance in the data. If no acceleration scheme is used in the Monte Carlo simulation,
this essentially means that the total number of detected events in the forward projection should
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be more than 1/a times the total number of detections in the data set. A similar criterion may
also be used in the situation where Monte Carlo simulation is used to calculate the forward and
back projection at each iteration, e.g., [Kudrolli et al, 2002]. However, because the system
matrix changes from iteration to iteration in this case, exact analysis is more difficult.

Another direct application of (23) is to determine the required accuracy for normalization and
attenuation correction factors in PET. These factors are often measured using blank and
transmission scans, in which noise is inevitable. Both factors can be written as a diagonal
matrix, so we have

ΔP = diag
Δni
n̄i

P̄, (24)

where n̄i and Δni denote the true correction (normalization or attenuation) factors and the errors
in the measured correction factors, respectively.

Substituting (24) into (23) and using the approximation P̄ x
⌣

+ r ≈ ȳ results in

E{diag
Δni
n̄i

(ȳ − r)(ȳ − r)′diag
Δni
n̄i

} < αdiag ȳi . (25)

Assuming Δni and Δnj are independent for i ≠ j, we get

E (Δni)
2

n̄i
2 <

αȳi
(ȳi − ri)

2 , ∀ i. (26)

A simpler but sufficient condition is

E (Δni)
2

n̄i
2 < α

ȳi
, ∀ i (27)

which essentially requires the relative noise level in the correction factors to be less than α
times of that in the original data.

2.3. Transmission Tomography
The theoretical result is also applicable to transmission tomography. Here we consider the
transmission reconstruction from measurements that have independent Poisson distributions.
We use xj to denote the the attenuation coefficient in the jth pixel. The mean of the data, ȳ, is
related to x by

ȳi = bie
− Px i + ri,

where Pij denotes the intersection length of the ith ray passing through the jth pixel, bi denotes
the number of emission from the transmission source along the ith measurement, and ri denotes
the additive background events in the ith measurement. For simplicity we focus on the case
where ri = 0. Thus, we have

hi(z) = yi log(bie
−z) − bie

−z − log yi ! (28)
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ḣ i(z) = bie
−z − yi (29)

ḧ i(z) = − bie
−z (30)

Substituting equations (29) and (30) into (12) yields the following error propagation expression
for transmission tomography

Δx̂ ≈ F + β∇2U (x̂)
−1

(ΔP)′(ŷ − y) − P ′ diag ŷi (ΔP)x̂ , (31)

where

F = P ′ diag ŷi P

and ŷi ≡ bie
− P x̂ i. If we use the approximation y ≈ ŷ, equation (31) reduces to

Δx̂ ≈ − F + β∇2U (x̂)
−1

P ′diag ŷi (ΔP)x̂. (32)

We can also use the condition (20) to determine the required accuracy for transmission
reconstruction. From [Fessler, 1996] we know that the covariance caused by Poisson noise in
transmission reconstruction can be approximated by

Σ ≈ F
⌣

+ β∇2U (x
⌣

)
−1

P ′̄diag ȳi P̄ F
⌣

+ β∇2U (x
⌣

)
−1

, (33)

where x
⌣

 is the noisefree reconstruction, F
⌣

= P̄′diag y
⌣

i P̄, and y
⌣

i = bie
− P̄ x

⌣
i. Substituting

equations (32) and (33) into (20) and simplifying yields the following condition

E (ΔP) x
⌣

x
⌣′

(ΔP)′ < αdiag 1
ȳi

. (34)

3. Validation using Computer Simulations
Computer simulations have been conducted to validate the theoretical results for emission
tomography. We simulate a single-ring small-animal PET scanner that consists of 240
scintillation detectors. The size of each scintillation crystal is 2 mm (transaxial) × 10 mm
(radial). The field-of-view (FOV) is a circular region of 64 mm in diameter represented by
64×64 1-mm2 pixels. A scaled Hoffman brain phantom is used (Fig. 1(a)). The activity
concentrations in the gray matter, white matter, and CSF are 5, 1, and 0, respectively. The
“true” system matrix is calculated using a ray-tracing technique with modeling of crystal
penetration effect by subdividing each crystal into 36 small elements as described in [Huesman
et al, 2000]. We add a uniform background (10% of true events) to model random and scattered
events. The total number of detected events is about 0.1M except where noted otherwise. A
preconditioned conjugated gradient MAP algorithm with a log-quadratic prior is used to
reconstruct the image. The prior energy function is U(x) = ∑j ∑k∈Nj (xj = xk)2, where Nj includes
the four nearest neighbors of pixel j. Note that the results require only that the algorithm iterates
to an effective convergence and are independent of the particular optimization algorithm. The
exact expectation of the additive background r is used. A noisy reconstruction is shown in Fig.
1(b).

Qi and Huesman Page 9

Phys Med Biol. Author manuscript; available in PMC 2006 February 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.1. Validation of Equation (18)
Figs. 2 and 3 show the changes in the reconstructed images when we decrease one row (i.e., a
fixed LOR) of the system matrix by 50%. The theoretical predictions are computed using (18)
with the reconstruction shown in Fig. 1b. The measured results are calculated from two
independent reconstructions, i.e., reconstructions of the same noisy data using the “true” system
matrix and the one with errors. Both results show a small increase in activity at the voxels close
to the perturbed LOR. A slight decrease in activity at the voxels that are further away from the
LOR is also noticed. Most importantly, the theoretical predictions match the measured results
very well.

Figs. 4 and 5 show the changes in the reconstructed images when we decrease one column (i.e.,
a fixed voxel) of the system matrix by 50%. Without a prior, such perturbation would only
increase the activity at this voxel. In our case, the effect is spread to neighboring voxels by the
prior as shown by both theoretical calculation and Monte Carlo reconstructions.

Fig. 6 shows the changes in the reconstructed images when we add 20% zero-mean Gaussian
noise to each nonzero element of the system matrix. Again, good agreement between the
theoretical calculation and measured results is found.

3.2. Validation of Condition (23)
One of the contributions of this paper is the derivation of (23), which provides a guideline for
determining the required accuracy of a system matrix. We test this condition at three different
count levels, 0.1M, 1M, and 10M events. At each count level, we generate 50 independent data
sets by adding pseudo-random Poisson noise. Each data set is reconstructed using both the
“true” system matrix and a noisy system matrix with three different β values (β = 100, 10, 1).
The resolution is measured by the full-width-at-half-maximum (FWHM) of the local impulse
response function at the center of the FOV. The noisy system matrices are generated by adding
15% zero-mean Gaussian noise to each nonzero element of the “true” system matrix.

Table 1 shows the comparison of variations caused by Poisson noise and artifacts caused by
noise in the system matrix. The variation caused by Poisson noise (denoted as “Poisson noise”)
is measured by trace{∑}, where ∑ is the covariance matrix calculated from the 50 reconstructed
images using the “true” system matrix. The level of the artifacts caused by noise in the system
matrix is measured by the average of the mean squared error (MSE) between the reconstructed
images using the “true” system matrix and noisy system matrices, which is equal to trace
{E (Δx̂)(Δx̂)′ }. The predicted MSE is calculated using Δx̂ from equation (18).

The results show that when count level is high, the artifacts cause by system modeling error is
small compared to Poisson noise. However, as count level decreases, the artifacts by the
modeling error increases at a faster rate than that of Poisson noise. In low-noise reconstructions
(high count or strong regularization), the theoretically predicted MSEs match the measured
results very well. As noise level increases, the theoretical prediction breaks down. This is a
limitation of the first-order Taylor series approximation that is used in the theoretical
derivation.

To validate equation (23), we estimate the value of a by calculating the ratio of the second

moments of (ΔP) x
⌣

 and ȳ. The maximum ratio is 1.05 and the average ratio is 0.22. All the
results in Table 1 satisfy the worse case scenario a = 1.05. For high count data it is safe to use
the average ratio instead of the maximum ratio.
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3.3. Validation of Condition (27)
We generate noisy normalization factors using white Gaussian noise with unit mean and
variance of 0.0025 (equivalent to the counting statistics of 400 events). We reconstruct 50
independent data sets with the ideal normalization factor and 50 noisy normalization factors
(no other error is introduced to the system matrix). From these reconstructions we calculate
the variations caused by Poisson noise and the variations caused by the noisy normalization
factors.

Table 2 shows that the effect of noisy normalization factors (or attenuation correction factors)
is independent of count level of the original data. When count level is at 0.1M (the maximum
value in the sinogram is about 20), the effect of the noisy normalization factors is insignificant.
However, when count level is at 10M (the maximum value in the sinogram is about 2000), the
effect of the noisy normalization factors becomes greater than that of Poisson noise. This
follows exactly the theoretical prediction in (27).

4. Conclusions and Discussion
We have derived an analytical formula for calculating the error propagation from the system
matrix to the final reconstructed image in iterative reconstruction. The theoretical expression
has been used to determine the required accuracy of the system matrix in emission
reconstruction. Computer simulation results show that the theoretical predictions match the
measured results reasonably well at low-noise situations. The residual errors in the theoretical
predication are caused mainly by the nonlinear property of the reconstruction algorithm,
because we use the first-order Taylor series approximation. Using high-order approximations
would improve the theoretical predictions, but expressions become more complicated quickly.
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Figure 1.
(a) The scaled Hoffman brain phantom and (b) a noisy reconstruction with β = 100.
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Figure 2.
Comparison of the measured Δx and theoretically predicted Δx caused by a 50% perturbation
along a center LOR. Top left: theoretically predicted Δx; top right: measured Δx; bottom:
vertical profiles through the center of the theoretical (solid line) and the measured (‘×’) image.
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Figure 3.
Comparison of the measured Δx and theoretically predicted Δx caused by a 50% perturbation
along an off-center LOR. Top left: theoretically predicted Δx; top right: measured Δx; bottom:
vertical profiles through the center of the theoretical (solid line) and the measured (‘×’) image.
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Figure 4.
Comparison of the measured Δx and theoretically predicted Δx caused by a 50% perturbation
along a column of the system matrix (a center voxel). Top left: theoretically predicted Δx; top
right: measured Δx ; bottom: vertical profiles through the center of the theoretical (solid line)
and the measured (‘×’) image.
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Figure 5.
Comparison of the measured Δx and theoretically predicted Δx caused by a 50% perturbation
along a column of the system matrix (an offset voxel). Top left: theoretically predicted Δx; top
right: measured Δx; bottom: vertical profiles through the center of the theoretical (solid line)
and the measured (‘×’) image.
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Figure 6.
Comparison of the measured Δx and theoretically predicted Δx resulting from 20% white
Gaussian noise in the system matrix. Top left: theoretically predicted Δx; top right: measured
Δx; bottom: vertical profiles through the center of the theoretical (solid line) and the measured
(‘×’) image.
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Table 1
Comparison of the variations caused by Poisson noise and system modeling errors. (See text for details.)

Total Counts FWHM (β) Poisson Noise Measured MSE Predicted MSE

0.1M 2.5 mm (100) 0.2068 0.1378 0.1254
1.7 mm (10) 1.7722 1.1930 0.8883
1.4 mm (1) 8.2431 6.7784 3.5624

1M 2.5 mm (100) 0.0211 0.0064 0.0063
1.7 mm (10) 0.1988 0.0320 0.0320
1.4 mm (1) 1.1999 0.4436 0.3393

10M 2.5 mm (100) 0.0021 0.0004 0.0004
1.7 mm (10) 0.0201 0.0014 0.0014
1.4 mm (1) 0.1289 0.0134 0.0140
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Table 2
Comparison of the variations caused by Poisson noise and noise in normalization factors. (See text for details.)

Total Count FWHM (β) Poisson Noise Measured MSE Predicted MSE

0.1M 2.5 mm (100) 0.2130 0.0056 0.0056
1.7 mm (10) 1.8158 0.0505 0.0519
1.4 mm (1) 8.3067 0.2806 0.3199

1M 2.5 mm (100) 0.0214 0.0055 0.0055
1.7 mm (10) 0.2015 0.0541 0.0545
1.4 mm (1) 1.2078 0.3331 0.3511

10M 2.5 mm (100) 0.0021 0.0055 0.0055
1.7 mm (10) 0.0201 0.0541 0.0542
1.4 mm (1) 0.1296 0.3426 0.3546
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