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Regulation of metal absorption in the gastrointestinal tract

'Chemical composition determines physical structure. Physical
structure determines physiologicalfunction. 'A F Hofmann

In this century industrial changes have greatly increased
our exposure to many metals but fortunately their
intestinal absorption is highly selective. For example, only
0O1% of the toxic metal aluminium is absorbed,' whereas
the group 1A elements such as sodium and potassium are
nearly completely absorbed.2 3
The principles underlying the absorption of metals are

relevant to many nutrients and drugs, but the specific
factors that regulate the absorption of metals are deter-
mined by their atomic structure, because this determines
the chemical properties of the element and therefore its
physiological function and metabolism. Hence, we start
with simplified in vitro models and develop them to
describe the complex mechanisms that determine selec-
tivity of metal absorption from the gastrointestinal tract.

Solubility
The solubility ofmost metals changes with pH and because
there is typically a decrease in proton concentration of
about four orders of magnitude within the lumen from the
stomach to the proximal small bowel, pH has been a major
focus of most simple in vitro studies in which the chemical
speciation of metals has been studied under 'simulated'
gastrointestinal conditions. Gastric acid favours the dis-
solution of many metals,4 although notably not bismuth,
which is largely insoluble in dilute hydrochloric acid due
to the formation of precipitated bismuth oxychloride.5
Many of the acid soluble cations (aluminium, copper, iron,
zinc, etc) are least soluble at the neutral pH encountered
in the small bowel. This is due to their 'hydrolytic' nature,
which means that water molecules, coordinated around the
metal ion, lose protons at around neutral pH to form a
hydroxy-metal species. Such a process is consistent with
Le Chatelier's principle, that, as an acidic solution is
neutralised and hence protons are lost, so further protons
are released by the water molecules coordinated around
the metal in an attempt to maintain the equilibrium.
Ultimately, the hydroxy-metal species polymerises, liber-
ating further protons, and if a neutral pH is maintained
a turbid white precipitate of metal-hydroxide is rapidly
observed. This process may be summarised in the two
equations below:

Mm+(H20)n (kmH ) Mm+(H20)n-m(OH-)m

equation (I)

xMm+(H2O). m(OH-)m (-yH 0) Hydroxy-metal polymer ('precipitate')

equation (II)

Although it has been suggested that such precipitation
explains the poor absorption of elements such as
aluminium,6 7 this does not explain the much better

absorption of, say, copper or zinc. Indeed, this pre-
cipitation theory ignores endogenous secretions that con-
siderably modify the chemistry of these metals in the
gastrointestinal tract and, while the hydrolytic nature of a
metal is one factor in determining its absorption, gross
metal-hydroxide precipitates do not occur in the gastro-
intestinal lumen.

Endogenous secretions
Bile, gastric, and pancreatic juices and succus entericus are
all secreted into the gastrointestinal lumen. Each of these
contain a complex mixture of compounds, many of which
will influence the chemistry of ingested metal ions. Using
high resolution nuclear magnetic resonance spectroscopy,
we have identified many potential low molecular weight
'weak' ligands within these secretions at mM concen-
trations.8 They typically include short chain organic acids,
such as acetate and lactate, and many aminoacids such as
glycine, histidine, and phenylalanine.
A ligand may be considered weak if it has some affinity

for a metal, but in a competitive situation at equilibrium
the two do not significantly bind. For example, at neutral
pH, a weak ligand would not effectively compete with
hydroxide (from water) to prevent hydroxy-polymerisation
ofhydrolytic metals (equations I and II above), but it could
slow the rate of this polymerisation and considerably
reduce the particle size of the final species. We have shown
this during the formation of aluminium hydroxide particles
in the presence of 50 mM bicarbonate.8 9 Bicarbonate is
sufficiently small and mobile to interfere, at least
transiently, with the hydrolysis (equation I, above) and the
subsequent condensation reaction that is required for
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Figure 1: A solution ofaluminium chloride at acidicpH was precipitated,
in the presence and absence of bicarbonate, by adjusting thepH to neutral
(titrated andpH metered). Intensity oflight scattering by the resultant
suspensions showed that the presence of bicarbonateyielded more and
smaller particles (that is, increased intensity) that took longer to form.
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polymerisation to proceed (Fig 1). Indeed, the concen-
tration and heterogeneity of the low molecular weight
compounds that are secreted into the gastrointestinal
lumen should be sufficient to slow the rate of hydroxy-
polymerisation of any ingested hydrolytic metal. Pre-
cipitation would still occur in vitro, but in vivo, the
situation is more complex. Low molecular weight 'strong'
ligands that will significantly bind with metals in com-
petitive situations, such as citrate and malate, are found
endogenously in the gastrointestinal tract,'0 but only at low
concentrations and so will also compete with hydrolysis
only to a degree comparable to that of the weak ligands
found at their much higher concentrations. Likewise,
potentially strong ligands of high molecular weight,
including the proteins albumin, lactoferrin, and trans-
ferrin, which are largely exsorbed in the succus entericus, are
probably partly degraded in the bowel lumen and quan-
titatively would not significantly bind metal ions. However,
another secretion that will actually prevent hydroxy-metal
precipitation is mucus glycoprotein (mucin). This is con-
tinuously secreted in large amounts and binds to metals
comparatively strongly, greatly influencing their absorption.

Luminal mucins
Mucins are large glycosylated proteins that form both
soluble and insoluble phases within the gastrointestinal
tract." The insoluble phase is chiefly the mucosally
adherent gelatinous layer termed mucus, although in-
soluble mucin strands are also found throughout the
lumen. The soluble phase includes dissolved and partially
degraded mucins and, for example, is present in gastric
juice at 0-2 g/1.12 Mucins have large capacities for the
binding of metal ions, although trivalent metals are bound
more strongly than those that are divalent and monovalent
metals are only ionically (that is, poorly) bound.'3 Our
recent in vivo work with aluminium, which is a good
example ofan hydrolytic metal, has shown that the element
almost exclusively binds to mucins throughout its transit
of the small intestinal lumen'4 (Fig 2). The precise
mechanism of this interaction is unclear, but initially
probably proceeds through the terminal sialic acid residues
of luminal mucins.`' These could either bind at multiple
sites the hydroxy-metal species as they polymerise, or,
particularly for the non-hydrolytic metals (for example,
Ca21 or Mg2' at physiological pH), interact directly, but
more weakly, with the metal ion. Indeed, the luminal
iron binding glycoprotein, gastroferrin, which was much
investigated 20-30 years ago, is almost certainly made up
of partly degraded soluble mucins from the stomach and
maintains high affinity for metals and metal-ion hydroxy
colloids at intestinal pH.16 1'

Gross precipitation of hydrolytic metals is therefore
prevented and the polyhydroxy-metal species remains in an
easily dissociable form available for uptake. Thus essential
hydrolytic elements, such as copper, iron, manganese, and
zinc, are effectively absorbed. This stabilisation of poly-
hydroxy-metal species has been well studied for the
hydroxy-ferric-fructose system, in which an extended
fructose network maintains iron in solution and prevents
precipitation. 8 The resultant hydroxy-ferric-fructose
complex is, in comparison to other ferric compounds,
easily able at neutral pHs to donate its iron to stronger
binding sites. It is probable that soluble mucins similarly
stabilise the hydroxy metal polymers as they start to form
in the gastrointestinal lumen.
Although not as available or mobile as simple ions (Na+,

Mg2+, etc) the hydrolytic metals are nevertheless main-
tained in the gastrointestinal lumen in a form that is
considerably more available than the metal-hydroxide

-*

Figure 2: (A) Solochrome azurine stain ofa section ofproximal small
bowel of rat (shown red) gavaged with aluminium (shown blue).
Aluminium is colocalised with mucus, both at the mucosal surface and
in the lumen. The areas ofaluminium that appear particulate are not,
under high power, discrete precipitates but dense areas of aluminium,
probably as metal-hydroxy colloid, interacting with luminal mucins
(original magnification X 100). (B) Villi (shown red) with mucosally
adherent mucus that has bound aluminiumfrom the intestinal lumen
(shown blue) (original magnification X400).

precipitates. A selective process is then required at the
mucosal surface to allow the absorption of essential metals
and the rejection of toxic metals. The first major regulatory
factor is the mucosally adherent mucus layer.

Mucus
Mucus is a gelatinous layer that is both a defence barrier
and transport medium at the mucosal surface, and is
composed of a network of mucins with occasional non-
mucin components including polysaccharides, lipid,
secretory IgA, and lactoferrin.`' Mucus secretory cells are
particularly numerous in the stomach where a thick layer
of mucus (mean 180 ,um in humans20) protects against
autodigestion, and, indeed, in the antrum, the pyloric
glands are composed almost exclusively ofmucus secretory
cells.2' In the small bowel the mucus layer is thinner22
(mean 50 ,um in humans) and produced mainly by the
goblet cells,2' although secretions from the enterocytes and
from duodenal Brunner's glands24 may also contribute to
this structure. In mucus both the greater concentration of
adherent mucins relative to luminal mucins and the
increased spacial proximity of the sialic acid binding
groups will favour the extraction of metals from the
contents of the intestinal lumen into the mucus layer
(Fig 2). This mucus layer, however, is continually shed and
replaced by further secretion. Hence the ability of metal
ions to permeate this layer and reach the mucosa will
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depend on their mobility through mucus, which in turn is
governed inversely by their strength of binding to the
mucus gel (M3`>M2`>MW) and directly by their rates of
ligand exchange (typically MW>M2`>M3`). Hence the
general rule is that the rate of absorption of metals is in
the order MW>M`+>M3`, exemplified by poor absorption
of Fe3` compared with that of Fe2`.
However, the bowel is more selective than this and

before systemic absorption intramucosal factors further
regulate absorption of metals.

Mucosalfactors
Absorption may occur either trans or paracellularly. The
paracellular pathway25 is inefficient (typically <1% of an
ingested dose), although certain 'penetration enhancers'26
that relax the junctions between enterocytes may increase
permeability either by inducing cytoskeletal contraction,
such as with glucose27 and some amino acids,26 or by
lowering the concentration of intercellular free calcium,
such as with EDTA and citric acid.28 Thus in the small
bowel the pore size of the tight junction may be increased
from 0 5-1 nm to 5 nm29 and there is evidence that the
junctions surrounding goblet cells are more permeable
than those surrounding enterocytes.30 In the stomach still
larger complexes may be translocated paracellularly3' but
this is unlikely to be of any quantitative importance.32

In considering the mechanisms of absorption of different
metals, transport as a function of the metal-ion or of the
metal-species must be distinguished. For example, endo-
cytosis ofhaem iron or metal containing particles is related
to the properties of the haem complex or particulates
rather than to the properties of the constituent elements.
Hence, although intestinal paracellular 'leakage' is the
dominant means of mucosal permeation for the poorly
absorbed polyvalent metals,33 the absorption of mono- or
di-valent metals is mainly by the more specific transcellular
route. This is traditionally considered as either facilitated
transmembrane assimilation or passive transmembrane
diffusion.

It is commonly considered that there are membrane
'shuttles' to transport metals actively from the lumen into
the enterocyte although evidence for these remains elusive.
Recently a 230-240 kDa membrane integrin has been
noted to associate with ferric iron34 but further data are
lacking and the significance of this interaction remains
unclear. Moreover, membrane proteins are not required
for transport because chelating substances within the
enterocyte would create a gradient facilitating the transport
of metals from the lumen. Intracellular ferritin and trans-
ferrin have been proposed as such mucosal agents for
iron,35 36 although intracellular ferritin is chiefly produced
in response to iron, while a transferrinanaemia causes iron
overload rather than depletion.37 More recently, a 56 kDa
protein 'mobilferrin' has been proposed as an iron binding
protein within the enterocyte cytosol,38 but it is unlikely
that it can compete for iron in the presence of the
much higher in vivo concentrations of free calcium. It is
plausible that there is no facilitated transport for M3+ to
protect against toxicity (for example, A13+) and that prior
reduction of Fe3+ is required for efficient transport; indeed
such a 'ferrireductase' enzyme has recently been charac-
tenised and partially purified from the membranes of
human duodenal microvilli.39 This would reduce the small
amount of Fe3+, that traverses the mucus, to Fe2+,
facilitating the uptake of iron.

Metallothioneins are rapidly inducible intracellular M2+
chelating agents,40 while a further cysteine rich intestinal
protein has been recently investigated for its role in zinc
absorption.4' These, and undoubtedly many other M2+

binding agents, form a complex network of metal-ligand
interactions with the different cations that not only permits
the assimilation of M2` from the lumen, but also controls
their systemic release. Thus, although cadmium and zinc
are both comparatively well absorbed into the enterocyte,
cadmium binds strongly to metallothionein and is there-
fore largely not released systemically, while zinc is less
irreversibly bound and can more efficiently shuttle into the
blood.42

Conclusion
In conclusion, the absorption of metals is determined by:
(a) the degree of solubilised metal entering the small
bowel, (b) the extent of hydrolysis at pH 5-7, (c) the rate
of transport through the mucus layer, and (d) mucosal
control. The great differences in the absorption of metals
can largely be explained on the basis of their chemical
properties, namely of Na+, K+, Li+ (non-hydrolytic, very
weakly bound, kinetically active) >Ca2+, Mg2+ (non-
hydrolytic at intestinal pH, relatively weakly bound,
kinetically active) >Zn2+, Cu2+ (hydrolytic, relatively
strongly bound, kinetically active) >Cd2+, Hg2+ (hydro-
lytic, relatively strongly bound, kinetically active but
mucosally controlled) Fe3` (hydrolytic, strongly bound,
kinetically less active), >AI'+ (hydrolytic, strongly bound,
kinetically slow).
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