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ABSTRACT

We present a machine learning method (a hierarchical network of k-nearest neighbor classifiers) that uses an RNA sequence
alignment in order to predict a consensus RNA secondary structure. The input to the network is the mutual information, the
fraction of complementary nucleotides, and a novel consensus RNAfold secondary structure prediction of a pair of alignment
columns and its nearest neighbors. Given this input, the network computes a prediction as to whether a particular pair of
alignment columns corresponds to a base pair. By using a comprehensive test set of 49 RFAM alignments, the program KNetFold
achieves an average Matthews correlation coefficient of 0.81. This is a significant improvement compared with the secondary
structure prediction methods PFOLD and RNAalifold. By using the example of archaeal RNase P, we show that the program can
also predict pseudoknot interactions.

Keywords: RNA; secondary structure; mutual information; machine learning; alignment

INTRODUCTION

Predicting the secondary structure of a set of RNA
sequences remains a challenging task. The approaches
used so far can be divided into three groups: thermody-
namic approaches (they try to find the RNA secondary
structure with the lowest or near lowest free energy accord-
ing to an energy model), comparative approaches (sequence
alignments are used to identify pairs of columns that exhi-
bit compensatory base changes), and hybrid approaches
that combine both thermodynamic and comparative infor-
mation in order to compute a prediction.

Among the thermodynamic methods for RNA secondary
structure prediction, dynamic programing is most often used.
Early descriptions of dynamic programing algorithms for
RNA secondary structure prediction can be found in (Nussi-
nov et al. 1978; Waterman and Smith 1978; Nussinov and
Jacobson 1980). A widely used program for secondary struc-
ture prediction is mfold (Zuker and Stiegler 1981; Jaeger et al.
1989; Zuker 1989, 2003; Walter et al. 1994; Mathews et al.
1999). It is based on a dynamic programming algorithm that

uses energy parameters that take into account Watson-Crick
and GU base pairs, various types of loops and terminal un-
paired nucleotides and mismatches. One should also men-
tion the program RNAstructure. Like mfold, it uses a dynam-
ic programming algorithm with an energy model based on
thermodynamic parameters (Mathews et al. 2004). We use for
the work described in this paper the program RNAfold
(Hofacker et al. 1994). This program uses energy rules de-
scribed in (Mathews et al. 1999). It also uses an algorithm for
computing the partition function resulting in probabilities
assigned to base pairs (McCaskill 1990).

Dynamic programming algorithms have the advantage
that they can find the global minimum free energy of an
RNA sequence according to the energy model relatively fast.
The disadvantages are that not all energy rules fit into the
framework of dynamic programming, and pseudoknots are
often not considered (although dynamic programming
algorithms including pseudoknots have been described)
(Rivas and Eddy 1999; Reeder and Giegerich 2004). In
addition, kinetic properties of the RNA molecule are ig-
nored (how easily is a state accessible from other states; is a
certain state an energetic ‘‘trap’’ with a high energy bar-
rier?). These limitations can, in principle, be overcome by
choosing a global optimization scheme such as that used in
genetic algorithms (Shapiro and Navetta 1994; Shapiro et
al. 2001a,b).
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Compensatory base changes in RNA are an important
property of two columns of a sequence alignment that can
be indicative of the two nucleotides forming a base pair.
Different measures have been developed for finding pairs of
columns with significant compensatory base changes. One
important concept is the mutual information. It is a mea-
sure that indicates if two columns in an alignment are better
described by a joint evolution model or by two independent
evolution models. Several approaches have been described
that deal with the problem of a small number of sequences,
which leads to an overestimation of the mutual informa-
tion due to sampling noise (Basharin 1959; Schneider et al.
1986). The concept of mutual information takes the align-
ment columns ‘‘as is’’ and does not take phylogenetic rela-
tionships between the sequences into account. This concept
has been extended to explicitly use phylogenetic informa-
tion (Muse 1995; Chen et al. 1999; Akmaev et al. 2000;
Parsch et al. 2000).

Another method for RNA secondary structure prediction
is the program PFOLD. It computes a consensus secondary
structure given a sequence alignment. It uses an evolutionary
model and a stochastic context-free grammar (SCFG) in
order to compute a maximum likelihood secondary struc-
ture for the given alignment (Knudsen and Hein 1999, 2003).

Several approaches that combine thermodynamic and
comparative information have been described: For exam-
ple, the Bayesfold method (Knight et al. 2004) uses a Baye-
sian approach in order to compute base-pair probabilities
given three sources of information (mutual information,
fraction of complementary base pairs, and average RNAfold
pairing probabilities). Juan and Wilson (1999) describe a
method that scores a potential base pair by using a linear
combination of terms originating from thermodynamic
structure predictions (using RNAfold), a score for covaria-
tion in the alignment, and a correction term for loops of
different lengths. Similarly, Hofacker et al. (2002) also use a
linear combination of the average pairing energy associated
with a base pair and a covariation score. This method is
called RNAalifold and is available in the form of a Web
server. Ruan et al. (2004a,b) present the ILM Web server in
which the user can specify the relative weight of a thermo-
dynamic and comparative score.

The prediction of paired residues using a machine learn-
ing approach is well established in the area of protein
structure prediction. Fariselli et al. (2001), for example,
use a neural network to combine input values of sequence
similarity, correlated mutation, and predicted secondary
structures in order to compute a contact prediction.

The task of the method presented in this article is to
compute the RNA consensus secondary structure or, in
other words, to predict if any two columns of an alignment
correspond to a base pair. The basic approach is to combine
different sources of information (mutual information, ther-
modynamic secondary structure prediction, fraction of
complementary base pairs) in order to predict for each

pair of columns whether they correspond to a base pair or
not.

The new aspect of our method is that it also takes into
account information from neighboring columns (Fig. 1).
Furthermore, we present a novel method that involves non-
linear reweighting of superposed RNAfold probability
matrices. Also, we use an innovative classifier system that
turned out to be very robust: a hierarchical network of k-
nearest neighbor classifiers (Fig. 2). We show that our clas-
sifier system turns out to be very successful in predicting
RNA secondary structures and is able to predict pseudo-
knot interactions. The performance of our method is eval-
uated by using a comprehensive set of 49 RFAM
alignments.

ALGORITHM

Mutual information with small sample correction

The mutual information of two alignment columns is a
measure of correlated mutations. The information R of a
set of characters (here a column in the alignment) is the
decrease in uncertainty H after reading that set of charac-
ters. The mutual information DRij of two alignment col-
umns i and j is the information from that column pair
taken together minus the information of the alignment
columns taken separately. The formula used is

DRij = Rij � Ri � Rj

with

Ri ¼ Hg ið Þ � H ið Þ ¼ Hg ið Þ þ
X4

k¼1

Pk ið Þ log2 Pk ið Þ

and

Rij ¼ Hg i; jð Þ �H i; jð Þ

¼ Hg i; jð Þ þ
X16

w¼1
Pw i; jð Þ log2 Pw i; jð Þ

Pk(i) denotes the probability of finding a character of type k
at position i; Pw(i,j) is the probability of finding one of the

FIGURE 1. Schematic plot of feature positions used as input for
prediction with respect to base pairs i,j. Dark gray and black indicate
positions used for mutual information and fraction of complementary
pairs; light gray, feature positions used only for mutual information.
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16 possible character pairs w at positions i and j. The
probabilities are approximated by frequencies (Pk(i): num-
ber of found characters of type k divided by the to-
tal number of non-gap characters in column i; Pw(i,j):
number of two-character words found of type w divided
by the total number of non-gap characters in columns i and
j). Sequences that contain a gap character at either position
i or j (or both) are ignored for the computation of Pw(i,j) as
well as Pk(i) and Pk(j). The value Hg(i) represents the ex-
pected uncertainty at position i in the alignment. In the
limit of an infinite number of sequences with the possible
characters having the same probability of occurrence, Hg is
equal to 2 bits for four characters (single column) and 4
bits for 16 characters (two combined columns).

For a small number of sequences, the expected uncer-
tainty is smaller, because it is more likely that the characters
in the alignment column are not evenly distributed. We
correct for this ‘‘sampling noise’’ in a fashion similar to that
described in (Schneider et al. 1986, Stephens and Schneider
1992). For more than a given number of sequences (50
sequences in the case of single columns, 500 sequences in
the case of column pairs), we use the approximate correc-
tion term � s�1

2 ln 2ð Þn with s = 4 for a single column and s = 16
for two columns (the alphabet sizes are s = 4 because of the
four-letter alphabet ACGU and s = 16 because of the 16
possible base pairs). The variable n in this case is the
number of sequences that have a nongap character at posi-
tion i (and j). For alignment columns with <50 nongap
characters (500 character pairs in the case of the two-col-
umn uncertainty), we compute the expected uncertainty
as follows: The algorithm iteratively generates random
sequences and computes the corresponding uncertainty.
This loop is terminated if the standard deviation of
the resulting mean uncertainty is <0.01. This procedure
approximates the expected uncertainty for a small number

of sequences better than the approximate correction term
and is computationally feasible even for a 16-letter alpha-
bet. We find that for >70 sequences, the difference between
the result of the random sequence method and the approx-
imate correction term is <0.01 bits. The current implemen-
tation generates random sequences by using the same
probability (one of four) for each nucleotide type. It
might be interesting to extend this algorithm to consider
the nucleotide frequencies that are observed in the align-
ment.

k-nearest neighbor algorithm

We use a machine learning algorithm to make a prediction
whether any two nucleotides form a base pair or not. This
can be viewed as a classification problem. The method used
in our approach is a hierarchical network of k-nearest
neighbor classifiers. The k-nearest neighbor algorithm is a
well-known classification method. If one wants to classify
(i.e., determine the ‘‘class’’ of) a query vector, one simply
determines which class most of the ‘‘k’’ known feature
vectors that are closest to the query vector belong to. Even
more, the counts for the different classes obtained from the
closest known vectors can serve as an approximation to the
probability that the query vector belongs to a certain class.
We use as a distance measure the Euclidean distance
between two vectors.

Let there be, for example, two classes ‘‘A’’ and ‘‘B’’ and a
value of k = 10. If there is a query vector q, one first
determines the 10 vectors of the training data (a set of
vectors for which one knows to which class they belong)
that are closest to q. If seven of the closest vectors belong to
class A, we assign an approximate probability of 70% to the
chance that query vector q belongs to class A. One problem
with this approach is that the k closest training vectors get
an equal weight when the probability that the query vector
belongs to a certain class is estimated. Intuitively, it makes
sense to weight training vectors that are closer to the query
vector higher than training vectors that are further away.
This leads to the use of (empirical) distance-weighting
functions that determine the weight of the individual
‘‘votes’’ of the k-nearest neighbors.

A k-nearest neighbor algorithm with a distance-
weighting function is a very effective inductive inference
method (Mitchell 1997). It can be used to classify fea-
ture vectors. As a distance weighting function, we use a
Gaussian function with a standard deviation of 0.2. We
set the parameter k equal to 15 for all k-nearest neighbor
classifiers except for the classifier named ‘‘M’’ in Figure
2, which uses a value of k = 10. The distance weighting
function makes the classifiers less sensitive to the chosen
value of k. Also, we later replace for some classifiers the
k-nearest neighbor value computation with a look-up
table, which allows us to use k = 1 (see section Noise
Reduction of Classifiers). We use the ‘‘voting-results’’ of

FIGURE 2. Structure of network of k-nearest neighbor classifiers. The
classifier network computes a prediction whether or not a given pair of
columns of an alignment corresponds to a base pair of the consensus
secondary structure. It needs a set of features derived from a sequence
alignment and an RNAfold consensus probability matrix. A–I indicate
classifiers of level 1. Each classifier uses three features derived from the
alignment. J–M indicate classifiers of level two and three. Each classi-
fier of that level has as input the output from three classifiers of the
previous level. N indicates a final classifier that has as input (1) the
output from the classifier of the previous level and (2) the RNAfold
consensus probability value for the given pair of columns.
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the k-nearest neighboring training vectors with respect
to a query vector as an estimate of the confidence of the
classification.

The first level of classifiers forms a prediction by using a
vector of features. The features are values derived from the
alignment that describe a pair of alignment columns and its
neighboring columns. The used features are as follows: (1)
the mutual information of two alignment columns; (2) the
fraction of nucleotides that form complementary base pairs
(in this article, complementary base pairs are defined by
Watson-Crick base pairs and also GU base pairs); and (3) a
nonlinear consensus of the RNAfold prediction probability
matrices (described in section Thermodynamic Consensus;
also called NL-RNAfold in this article).

There is a rationale for each of the different features: The
mutual information is a measure of how mutations in the
two columns are correlated. The fraction of complementary
nucleotides is also an important feature, because one
expects in a pair of alignment columns that correspond to
a base pair, a bias toward complementary pairings. Figure 2
shows the architecture of the classifier network. The net-
work considers in the first stage the mutual information
and the fraction of complementary base pairs, while the
results from RNAfold are only considered in the last stage.

The classifier system computes a prediction as to whether
any two nucleotides i and j form a base pair (the indices
denote the column numbers in the given alignment). It uses
a 14-dimensional feature vector that describes the columns
i and j and its four nearest neighboring diagonal and anti-
diagonal columns. The mutual information and the frac-
tion of complementary base pairs are given for the central
element (columns i, j) and the four nearest anti-diagonal
neighboring elements (columns i + 2,j � 2; i + 1,j � 1; i,j;
i � 1,j + 1; i � 2,j + 2).

Only mutual information is stored in the feature vector for
the four diagonal positions i + 2,j + 2; i + 1,j + 1;
i � 1,j + 1; i � 2, j + 2. The rationale for also using diag-
onal elements is that it provides a possible ‘‘base line’’ in the
sometimes quite noisy mutual information matrix. The idea
is that the algorithm is specifically looking for anti-diagonal
‘‘stripes’’ corresponding to stems of the secondary structure.
Providing the algorithm with diagonal elements gives it the
chance to distinguish ‘‘amorphous’’ areas with high mutual
information (maybe due to gaps and sampling noise) from
patterns that resemble anti-diagonal lines. Using the diagonal
elements leads to a total of 5 3 2 + 4 = 14 possible fea-
tures. The positions that are chosen as features are shown
in Figure 1. We only have a few hundred positive training
feature vectors that correspond to a true base pair. Because
of this small number of training cases, it is problematic to use
a machine learning algorithm with a 14-dimensional feature
vector (danger of overfitting and memorizing effects). There-
fore we use the procedure described in the next paragraph to
reduce the number of dimensions of the feature vectors used
for training.

The 14 features of the original feature vectors yield
14 3 13 3 12/3! = 364 possible triplets of features. We
further require that every feature triplet contains either
the mutual information or the fraction of complementary
nucleotides associated with the columns i,j. Lastly, no two
chosen classifiers are allowed to have two features in com-
mon. Given these constraints, we identify nine classifiers
with the help of the AdaBoost algorithm. In short, the
AdaBoost algorithm is an iterative method to find an opti-
mal set of ‘‘weak learners’’ from a set of classifiers. The
algorithm chooses in the first iteration the classifier with
the highest prediction accuracy (smallest number of mis-
classified training vectors). The training vectors that were
misclassified with the chosen classifier are given a higher
weight for the subsequent iteration. For the next iteration,
the classifier with the next highest accuracy is chosen; again
the accuracy value is biased to give the training vectors
that were misclassified in the previous iterations a higher
weight. For a more detailed description of the algorithm,
see Freund and Schapire (1996). We obtain in this way in
the first stage nine k-nearest neighbor classifiers. Each of
these initial classifiers generates a prediction (in the form of
an estimated probability) as to whether or not an observed
feature triplet corresponds to a true base pair.

The predictions of the nine classifiers of the initial stage
are pooled in a hierarchy of levels of classifiers. Each level
consists of n/3 classifiers, n being the number of classifiers
from the previous level. Each classifier uses as input the
output of three randomly chosen classifiers from the pre-
vious level. Each level consists of three times less classifiers
than the previous level, until at the third level there is
only one classifier left that computes the final prediction
not using thermodynamics. The RNAfold consensus value
together with that resulting value forms the input of the last
k-nearest neighbor classifier. In this way the system avoids
ever encountering a feature vector that has more than three
dimensions. A schematic view of this network of classifiers
can be seen in Figure 2.

Many schemes for a fast implementation of the k-nearest
neighbor algorithm have been developed. They concentrate
on devising a data structure for the training data that allows
one to find the k-nearest neighbors faster than a linear
‘‘brute-force’’ search. We use for the k-nearest neighbor
search the ANN library using the k-d tree algorithm (Arya
and Mount 1993; http://www.cs.umd.edu/�mount/ANN/).

Thermodynamic consensus

Our system also uses what we call an RNAfold consensus
probability matrix: It is a matrix generated from superposed
aligned probability matrices generated by RNAfold. We use
the program RNAfold from the Vienna RNA package, ver-
sion 1.5 (Hofacker et al. 1994). The consensus matrix is
computed as follows: Our system runs RNAfold for each
sequence of the alignment provided by the user. RNAfold
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computes a base-pair probability matrix for each sequence
by using a partition function (McCaskill 1990). The result-
ing probability matrices are aligned according to the se-
quence alignment, averaged, and stored in a result matrix.
Each element of this result matrix is weighted with a factor
equal to a logistic function applied to the fraction f of
sequences that have a nonzero prediction probability at
that position:

p i; jð Þ  p i; jð Þ � ex

1þ ex

with

x = s � (f � f0)

The center point f0 of the logistic function is set to 2/3,
corresponding to 66.7% of the sequences having a nonzero
prediction probability at that point. The scaling factor s is
set to 0.1. This consensus score turned out to be very ef-
fective for computing the secondary structure. While the
logistic function does not have a sharp cutoff, it down-
regulates potential base pairs that appear in <66.7% of the
sequences. We call this method ‘‘NL-RNAfold’’ as opposed
to ‘‘L-RNAfold,’’ which corresponds to a simple average of
the aligned probability matrices. The information from the
RNAfold consensus probability matrix is used only at the
last stage of the KNetFold prediction cascade (see Figs. 2, 5).
Results of using the nonlinear as well as the linear consensus
matrix as a predictor can be seen in Table 1 (labeled NL-
RNAfold and L-RNAfold).

Noise reduction of classifiers

We found that it is important to reduce the noise of the
individual classifiers by using a ‘‘monotonization’’ proce-
dure: All classifiers of level two or higher should react to an
increase of one of its input values (an element of the input
vector that is a prediction from a classifier from a previous

level) with an increased or constant output value. By using
a set of query vectors representing a cube [0,1] 3 [0,1] 3

[0,1] with step size of 0.025, we queried the response of
three classifiers from level two (labeled ‘‘J’’, ‘‘K’’ and ‘‘L’’ in
Fig. 2) and one classifier from level 4 (labeled ‘‘N’’ in Fig. 2).
We found that the responses of the individual classifiers are
often quite noisy, because an increase of an element of the
input vector could sometimes result in a decrease in the
output value of the classifier. We reduced that problem by
applying a monotonization procedure. The output of the
query data was subject to an iterative procedure that makes
the response of the classifier more monotonic. This proce-
dure is best explained for a one-dimensional function
of integer values. For a nonmonotonic function with one
variable, one can obtain two different monotonic increasing
functions: One function can be obtained by replacing the
values of f(n) for which f(n) < f(n � 1) with its ‘‘left’’
neighbor f(n � 1); the other function can be obtained by
replacing the values of f(n) for which f(n) > f(n + 1) with
its ‘‘right’’ neighbor f(n + 1). Taking an average of those
two functions results in a function with reduced nonmo-
notonic behavior. This concept can readily be extended
to higher dimensions. The resulting ‘‘smoothed’’ classifier
responses are used in lookup tables for the classifiers. The
lookup tables replace the initial ‘‘raw’’ k-nearest neighbor
training data. We found that these smoothed classifiers
result in a higher prediction accuracy.

Treatment of gaps in the alignment

The basic idea of the classifier system is to detect anti-di-
agonal lines in different square matrices. The anti-diagonal
patterns potentially correspond to stems in the consensus
secondary structure. If an alignment contains a lot of gaps,
the anti-diagonal lines can become discontinuous, making
it harder for the classifier to detect them. We deal with this
problem in the following way: The training is performed on
a set of ‘‘collapsed’’ alignments (by collapsing we mean

TABLE 1. Table showing results for a set of 49 RFAM seed alignments

49 Alignments with 20–40 sequences 49 Alignments with five sequences

Matthews Selectivity (%) Sensitivity (%) Matthews Selectivity (%) Sensitivity (%)

KnetFold 0.811 6 0.032 82.15 6 3.33 81.07 6 3.18 0.742 6 0.042 76.22 6 4.21 73.08 6 4.14
NL-RNAfold 0.726 6 0.035 69.80 6 3.82 77.41 6 3.15 0.742 6 0.042 76.22 6 4.21 73.08 6 4.14
PFOLD 0.705 6 0.041 82.34 6 4.02 62.65 6 4.37 0.670 6 0.045 78.08 6 4.69 59.36 6 4.53
RNAalifold 0.578 6 0.051 67.51 6 5.73 50.87 6 4.77 0.660 6 0.051 72.63 6 5.33 61.34 6 5.03
L-RNAfold 0.641 6 0.045 63.35 6 4.52 66.22 6 4.37 0.591 6 0.045 59.53 6 4.61 60.10 6 4.39
Intermediate 0.234 6 0.053 30.40 6 6.58 19.29 6 4.72 0.009 6 0.010 2.04 6 2.04 0.49 6 0.49

The results show the average Matthews correlation coefficient computed with the script provided as part of BRaliBase I (Gardner and Giegerich
2004). The row values are as follows: KNetFold, method presented in this article; NL-RNAfold, result from superposed RNAfold probability
matrices using a nonlinear weighting scheme (see Algorithm section); PFOLD, prediction according to PFOLD program; RNAalifold, results
from the RNAalifold server; L-RNAfold, results using average RNAfold probability matrices; and Intermediate, intermediate prediction results
not using thermodynamic information (corresponds to output of classifier M in Fig. 2 and plot ‘‘Intermediate’’ in Fig. 5).

346 RNA, Vol. 12, No. 3

Bindewald and Shapiro



removing all alignment columns that correspond to a gap
with respect to a certain sequence; see section Test and
Training Data). Testing of the method is performed on
alignments that are not collapsed. However, to reduce the
effective number of gaps in an alignment, the following
procedure is performed: A set of 10 sequences is randomly
chosen from the sequences of the original alignment. The
alignment is collapsed with respect to each of the chosen
sequences (all columns are removed that correspond to a
gap in the chosen sequence). The KNetFold method is
applied to each of the 10 different collapsed alignments
individually. A prediction of a collapsed alignment (a
square matrix with scores) is expanded to the original
alignment size by introducing rows and columns with
zeros at the positions that correspond to a gap in the chosen
sequence. The 10 resulting prediction matrices are in a last
step averaged to form the final prediction matrix.

Applied filters

Several filters are applied to the resulting output of the
classifier system:

1. The growth-filter is applied to the output of the classifier
called ‘‘M’’ in Figure 2. If the output of that classifier is for a
position i,j > 0.2 and a neighboring position (either posi-
tion [i + 1,j � 1] or [i � 1,j + 1]) with a smaller classifier
score has a fraction of complementary base pairs >0.5, then
the prediction matrix element of that neighboring position
is set equal to the matrix element of the position i,j. This
filter is iteratively applied until no changes in the prediction
matrix can be made. This filter is designed to handle cases of
long stems with very few positions with compensatory base
changes.

2. A ‘‘winner-takes-all’’ filter allows one nucleotide to base
pair only with one other nucleotide. If a nucleotide is
predicted to be base-pairing with more than one nucleotide,
only the highest scoring interaction of that nucleotide is
kept in the final prediction. This filter can be deactivated,
in case one is interested in finding alternative conforma-
tions.

3. Optionally, predicted stems can be required to have at
least a minimum length of two base pairs. The default is
a minimum stem length of only one base pair.

4. As a final step, a cutoff is applied such that all elements
of the prediction matrix that are higher than the cutoff
are considered a predicted base pair. We determined
cutoffs for the methods KNetFold, NL-RNAfold, and
L-RNAfold that correspond to a maximum average Mat-
thews correlation coefficient (AMCC) of the training set.

Test and training data

We use the ‘‘full’’ alignments and consensus secondary struc-
tures provided by RFAM, version 6.1 (Griffiths-Jones et al.
2003, 2005), for training the system. The training set consists
of the 43 alignments shown in Table 2 (for RF00002, the
RFAM seed alignment instead of the full alignment is used
because the full alignment consists of >60000 sequences).
These are alignments with �30 sequences, with the length
of the first sequence being <500 nucleotides. If the alignment
consists of >40 sequences, only 40 representative sequences
of each alignment are used. The representative sequences are
constructed by iteratively removing the sequences with the
highest sequence similarity with respect to another sequence
of the alignment until only 40 sequences are left. The align-
ments of the training set are ‘‘collapsed’’; the columns that
correspond to a gap in the first sequence of the alignment are
removed. The idea of preferring collapsed alignments with
fewer gaps is that the objective is to train a classifier to
recognize small continuous anti-diagonal ‘‘stripes’’ in square
matrices. Using alignments with a lot of gaps can lead to dis-
continuous anti-diagonal lines, which in turn could worsen
the prediction accuracy of the classifier. The predictions for
the test set (described below) are made for alignments that
were not collapsed. However, as described in the section
Treatment of Alignment Gaps, the prediction algorithm
uses collapsed alignments as an intermediate step to deal
with the problem of ‘‘gappy’’ alignments.

The training is performed as follows: For each alignment
of the training set, feature vectors are computed for all
possible pairs of alignment columns. The feature vectors
of all alignments form the initial set of training vectors. This
set of training vectors is the training data for the classifiers
of the first level. However, each classifier uses only a three-
dimensional projection of the training data and uses a
clustering algorithm such that no >40 feature vectors are
<0.0001 to a representative vector of that cluster. This
prevents a large number of virtually identical vectors from

TABLE 2. The 43 RFAM entries used for training

RF00002 RF00003 RF00004 RF00008 RF00011 RF00012 RF00015 RF00017 RF00019 RF00020
RF00026 RF00031 RF00032 RF00037 RF00045 RF00048 RF00050 RF00061 RF00094 RF00100
RF00102 RF00106 RF00162 RF00163 RF00164 RF00167 RF00168 RF00169 RF00171 RF00175
RF00176 RF00181 RF00198 RF00199 RF00209 RF00210 RF00214 RF00215 RF00216 RF00233
RF00250 RF00260 RF00374

The set consists of alignments with at least 30 sequences with a length not >500 nucleotides.
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dominating the k-nearest-neighbor training vector set. Each
vector of the training data set is used as a sample input
vector for the network in which the first level of classifiers
have been defined as described above. The results of the first
level classifiers are then used as training vectors for the
classifiers of the second level and so forth.

For evaluating the performance of our method, we gen-
erate 10 different subsets of the training data set and pro-
duce 10 different sets of training vectors. For each align-
ment to be predicted, a training vector set that does not
contain information about the current target alignment is
chosen. In this way we avoid memorizing effects, because
testing and training sets are not overlapping.

The test set consists of the 49 RFAM alignments shown in
Table 3. The alignments are ‘‘seed’’ alignments taken from
RFAM, version 7.0. Because the PFOLD Web server cur-
rently has a limit that allows not >40 sequences to be
submitted, we used only 40 representative sequences of
each alignment in order to fairly compare our system with
PFOLD. The representative sequences are constructed as
described above. If an alignment consists of <40 sequences,
no sequences are removed. The 49 RFAM entries corre-
spond to alignments consisting of at least 20 sequences
and a file size of <10 kilobytes. The file size restriction is
a requirement of the RNAalifold server and is applied after
an optional ‘‘thinning’’ of the alignment to 40 representa-
tive sequences. The lengths of the alignments of the test set
range between 26 and 242 nucleotides.

RESULTS

Computing cost

The majority of the computing time is spent applying the
network of classifiers to each possible pair of columns of the
alignment. The classifier system itself does not change, so
we expect a quadratic increase of compute time with respect
to alignment length. We found for the set of 49 alignments
an average computing time of 92 sec per run (using an Intel
Xeon 3GHz Linux PC; not counting the run-time of RNA-
fold). This corresponds to an average time span of 920 sec if
one uses 10 iterations over different collapsed alignments
(see section Treatment of Alignment Gaps).

By fitting a quadratic function to the obtained run-times (as
a function of the length of the alignment), we obtain an

approximate formula for the run-time t measured in seconds:
t = 0.0046 3 length2. This corresponds to a run-time of 46 sec
for an alignment with a length of 100 nucleotides and a run-
time of 1150 sec for an alignment with a length of 500 nucleo-
tides. These time spans have to be multiplied by the number of
collapsed alignments that are used as an intermediate step (this
number is set to 10 for the results presented in this article).

Prediction accuracy

When comparing the predicted base pairs to a reference
secondary structure (in our case the consensus secondary
structure provided by RFAM), one can compute the num-
ber of true-positive, true-negative, false-positive, and false-
negative base-pair predictions (tp, tn, fp, fn, respectively).
We use as accuracy measures the Matthews correlation
coefficient (MCC), as well as the selectivity and the
sensitivity according to Gardner and Giegerich (2004).
The definitions for the sensitivity X and the selectivity Y are

X ¼ tp

tpþ fn
Y ¼ tp

tpþ fp� �ð Þ

The selectivity Y is also often called specificity (Baldi et al.
2000), but we follow in this article the nomenclature accord-
ing to Gardner and Giegerich (2004). The difference com-
pared with the standard definition of the selectivity is the
term x. This term represents base pairs that are not present in
the reference structure but are nonetheless considered com-
patible. Compatible base pairs are defined as predicted base
pairs that are not true positives but are also not inconsistent
(with one or both of the bases being part of another base pair
in the reference structure) or contradicting (non-nested with
respect to the reference structure). The number of compatible
base pairs x reduces the effective number of false positives
and makes the selectivity measure more ‘‘forgiving.’’ The
definition of the MCC is modified in a similar fashion (the
standard definition of the MCC does not contain the term x):

MCC ¼ tp � tn� fp� �ð Þ � fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tpþ fp� �ð Þ tpþ fnð Þ tnþ fp� �ð Þ tnþ fnð Þ

p

The MCC can be approximated by the geometric mean
of sensitivity and selectivity for the purpose of RNA sec-

TABLE 3. The 49 RFAM entries used for testing

RF00001 RF00005 RF00008 RF00015 RF00031 RF00032 RF00037 RF00041 RF00045 RF00048
RF00049 RF00062 RF00066 RF00095 RF00097 RF00098 RF00102 RF00105 RF00163 RF00164
RF00167 RF00169 RF00175 RF00181 RF00198 RF00199 RF00214 RF00215 RF00233 RF00238
RF00250 RF00260 RF00309 RF00374 RF00375 RF00376 RF00386 RF00389 RF00436 RF00451
RF00465 RF00467 RF00468 RF00469 RF00480 RF00481 RF00485 RF00497 RF00506

The entries represent alignments with at least 20 sequences and a file size of <10 kilobytes when using not >40 representative sequences.
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ondary structure comparison (Gorodkin et al. 2001). To
compute these values, we use the perl script ‘‘compare_
ct.pm’’ made available by Gardner and Giegerich (2004)
on the BRaliBase I homepage. We multiply the obtained
values for selectivity and sensitivity by a factor of 100 to
obtain percentage values.

We applied our prediction method to all 49 alignments
of our data set (see section Test and Training Data). In
Table 1 we show the results for alignments consisting of 20–
40 sequences and for alignments consisting of five
sequences each. We also plot in Figure 3 the prediction
accuracy for all 49 test cases. Each curve is sorted such
that the ‘‘best’’ values are plotted leftmost. Shown are
graphs of the results of different prediction schemes: ‘‘A,’’
our full network of k-nearest neighbor classifiers (‘‘KNet-
Fold’’); ‘‘B,’’ the nonlinear RNAfold consensus (‘‘NL-RNA-
fold’’); ‘‘C,’’ PFOLD; ‘‘D,’’ RNAalifold; and ‘‘E,’’ the in-
termediate results corresponding to the output of classifier
‘‘M’’ in Figure 2 and the ‘‘Intermediate’’ matrix in Figure 5.
One can see that KNetFold has for this data set the highest
prediction accuracy.

The average Matthews correlation coefficient (AMCC)
using the set of 49 alignments (with 20–40 sequences each)
is, with our system, 0.811 6 0.032 (cf. Table 1, left side). This
can be compared with the value of 0.726 6 0.035 for the non-
linear RNAfold consensus (called here NL-RNAfold). A pair-
wise t-test of the MCCs obtained with KNetFold and with
NL-RNAfold results in a single-sided P-value of 1.1 3 10�6.
In other words, the improvement of the KNetFold results
compared with the NL-RNAfold results is statistically signifi-
cant. The result of NL-RNAfold is significantly higher
compared with the result of the average RNAfold probability
matrix method (called here L-RNAfold), with 0.641 6 0.045.
The PFOLD results for these alignments correspond to an
AMCC of 0.705 6 0.041. RNAalifold yields an AMCC of
0.578 6 0.051.

We also compute results for the same set of 49 RFAM
entries with only five representative sequences per align-
ment (Table 1, right side). By using this second set of align-
ments with a smaller number of sequences, we wanted to
see how the prediction accuracies of the various methods
are affected by the number of sequences in the alignment.
Not surprisingly, the prediction accuracies are generally
lower compared with the results for the alignments that
contain 20–40 sequences. In the case of KNetFold, the
AMCC is 0.742 6 0.042, that is a difference of 0.069 com-
pared with the results obtained when using the set of larger
alignments. This result is identical to the results obtained
from NL-RNAfold. The method NL-RNAfold is remarkably
resilient to a decrease in the number of sequences in the
alignment (there is a difference of �0.016 AMCC between
the two sets of alignments). The program RNAalifold exhi-
bits an interesting behavior: Its results are more accurate for
the alignment set consisting of only five sequences (average
Matthews coefficient of 0.660 6 0.051) compared with the
alignment set consisting of 20–40 sequences (average Mat-
thews coefficient of 0.578 6 0.051).

Furthermore, we investigated how the homology level of
alignments affects the prediction accuracy. We divided the
set of 49 alignments into a high-homology set (>80% aver-
age pairwise sequence similarity) and a low-homology set
(<80% average pairwise sequence similarity). The resulting
AMCC is 0.793 6 0.049 for the high-homology set and
0.825 6 0.043 for the low-homology set.

How does the prediction accuracy depend on the length
of the alignment? We plotted the Matthews coefficients
obtained from the alignments of the test set as a function
of the alignment length (data not shown). Visual inspection
of the plot revealed no obvious dependency of the predic-
tion accuracy as a function of alignment length. Therefore,
it appears that the accuracy is more dependent on the set of
sequences being studied than their length. However, we did
note that all ‘‘perfect’’ predictions (MCC of 1.0) correspond
to alignments with a length of <120 nucleotides.

Another point that deserves attention is the quality of the
used ‘‘standard of truth’’ of the consensus secondary struc-
tures provided by RFAM. An RFAM entry can have either
the status ‘‘Predicted’’ or ‘‘Published.’’ An RFAM consensus
secondary structure with the Published status has been
reported in a publication. A published structure might be
based on experimental results, but this is not a requirement.
On average, one expects RFAM entries with the status
Published to be more ‘‘trustworthy’’ than are entries with
the status Predicted. Our test set of 49 alignments consists
of 34 entries with the status Published and 15 entries with
the status Predicted. We computed the average prediction
accuracy for both subsets independently. We obtain an
AMCC of 0.834 6 0.033 for RFAM entries with the status
Published and of 0.759 6 0.073 for RFAM entries with the
status Predicted. This difference in prediction accuracy
might be due to inaccuracies in the predicted consensus

FIGURE 3. Prediction accuracy for the test set of 49 RFAM align-
ments. A indicates method presented in this article (KNetFold); B,
nonlinear RNAfold consensus probability matrix (NL-RNAfold); C,
PFOLD Web server; D, RNAalifold; E, intermediate result (corre-
sponds to output of classifier M in Figure 2 and ‘‘Intermediate’’ in
Table 1). The data shown correspond to the results of RFAM align-
ments in the test set. For each method, the highest prediction accura-
cies are plotted leftmost. If the original RFAM alignment contained
>40 sequences, a ‘‘thinned’’ alignment consisting of 40 representative
sequences was used instead.

www.rnajournal.org 349

RNA structure prediction from sequence alignments



structures provided by RFAM or due to the fact the RFAM
entries that do not correspond to published secondary
structures correspond to ‘‘harder’’ cases.

Example: Secondary structure prediction of archaeal
RNase P

As an example of a secondary structure prediction, we present
the results for archaeal RNase P. We use the ‘‘seed’’ alignment
according to RFAM entry RF00373 (Brown 1999). A second-
ary structure prediction for RNase P (projected onto the
sequence of Methanobacterium thermoautotrophicum DH; ac-
cession code GenBank AF295979) (Smith et al. 1997) is
shown in Figure 4. The helices are labeled according to pre-
vious publications (Haas et al. 1994; Harris et al. 2001). The
results are in good agreement with the structure published in
Harris et al. (2001), which we use here as a reference struc-
ture. Compared with that published structure, most predicted
helices are identical. Two pseudoknot interactions (P4 and
P6) are predicted, in agreement with the reference structure.
The helix P17 (G222:A234, length 3) is not predicted by our
program. In addition to the reference structure, our program
predicts four single base-pair interactions that are shown in
Figure 4 as solid lines.

DISCUSSION

It is instructive to visualize the flow of information starting
from the input features to the final prediction. This is
shown in Figure 5 for the example of U2 spliceosomal RNA (RFAM entry RF00004). The data correspond to a

single run (no averaging over different collapsed align-
ments) using the RF00004 seed alignment that was col-
lapsed with respect to its first sequence. One can see that
even though the matrices corresponding to the mutual in-
formation and the fraction of complementary nucleo-tides
(diagrams called in Fig. 5 ‘‘Mutual Information’’ and
‘‘Complementary’’) are very ‘‘noisy,’’ the classifier system
generates a reasonably cleaned up contact matrix (diagram
called ‘‘Intermediate’’) even without using the thermody-
namic prediction generated by RNAfold.

It is clear that comparative information can improve the
prediction accuracy of an energy-based RNA prediction
algorithm. This is reflected in the results shown in Figure
3 (cf. curves A, B, and E) and in Table 1 (cf. rows ‘‘KNet-
Fold,’’ ‘‘NL-RNAfold,’’ and ‘‘Intermediate’’). Even though
the prediction using only the mutual information and frac-
tion of complementary base pairs does poorly compared
with the complete KNetFold method, it increases the pre-
diction accuracy when used in combination with the NL-
RNAfold consensus.

The results in Table 1 also show that the part of the
classifier system responsible for detecting compensatory
information basically ‘‘does not work’’ if only five sequences
are present in the alignment (see Table 1, row ‘‘Intermedi-
ate’’). We found for this case, that the intermediate classifier

FIGURE 4. RNA secondary structure prediction for archaeal RNase P
(sequence of Methanobacterium thermoautotrophicum DH, GenBan-
k:AF295979). The labeling of the helices is according to references
Haas et al. (1994) and Harris et al. (2001). Most helices are in agreement
with the structure published in Harris et al. (2001). Two pseudoknot
interactions are predicted. Part of the picture was generated with the
help of the program STRUCTURELAB (Shapiro and Kasprzak 1996).

FIGURE 5. U2 spliceosomal RNA: example of processing matrices of
features to a final secondary structure prediction. The matrices shown
correspond to possible interactions of the positions of the first sequence
in the RFAM seed alignment for RF00004. The 5¢ end of the alignment
corresponds to the lower left corner of the shown matrices. The matrices
are as follows: Mutual Information, mutual information between two
alignment columns; Complementary, fraction of Watson-Crick and GU
base pairs; RNAfold, RNAfold consensus probability matrix; Intermedi-
ate, output matrix of classifier network not using RNAfold; Prediction,
final prediction produced by the classifier network; and Reference,
reference structure provided by RFAM.
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(corresponding to the output of classifier ‘‘M’’ in Fig. 2 and
the plot ‘‘Intermediate’’ in Fig. 5) does not detect any
correct base pairs for all alignments of the test set (Mat-
thews coefficient of 0.0) with the exception of tRNA
(RFAM entry RF00005), which has a Matthews coefficient
of 0.485. The overall KNetFold method can still be useful
with a small number of sequences, but its accuracy is in this
case similar to the accuracy of the non-linear superposition
of RNAfold probability matrices.

For quite a few cases, the nonthermodynamic component
of the system adds little new information. This corresponds to
the part of curve E in Figure 3 with height zero. In these cases,
no clear compensatory base changes could be identified. The
causes might be that (1) the regions in question are so highly
conserved that no mutual information can be detected, even
though it corresponds to a complementary pair of nucleo-
tides. (2) The two alignment columns in question correspond
to a conserved G (or U) in one column and alternating C and
U (or A and G) in the other column. This leads to a mutual
information of zero (or close to zero), even though there is a
bias toward complementary base pairs. For this case it might
also be interesting to explore other compensatory scoring
functions, such as the covariance score presented in Hofacker
et al. (2002). (3) The sequences are too dissimilar so that no
good sequence alignment can be obtained. (4) Not enough
sequences are known, so that the mutual information data is
very noisy due to sampling errors. (5) The missing compara-
tive information might also be an inherent property of that
biological system: It could mean that certain stems are really
present in some strains and not in others. (6) For noncanon-
ical base pairs, our distinction between complementary base
pairs (AU, GC, and GU) and noncomplementary base pairs is
arguably somewhat artificial. A probabilistic approach might
improve the situation.

We could not identify a strong trend of the prediction
accuracy as a function of sequence homology. We believe
that this might be due to two counteracting effects: A high
level of sequence homology might lead on average to
higher-quality alignments. On the other hand, if the average
pairwise sequence similarity is too high, it presumably leads
to a lower amount of compensatory base changes. The
question of prediction accuracy as a function of the homol-
ogy level of the alignment warrants further investigation,
however, because the extreme cases of alignments with close
to perfect conservation, on one hand, and ‘‘spurious’’ align-
ments, on the other hand, are not part of our test set.

Another observation is that the nonlinear superposition
of RNAfold probability matrices (‘‘NL-RNAfold’’) yields
surprisingly good results. It is a relatively simple procedure
to reweight the elements of the average RNAfold probability
matrix with a logistic function, but it results in a signifi-
cantly higher AMCC (cf. rows for L-RNAfold and NL-
RNAfold in Table 1).

In summary, our system combines thermodynamic
information and compensatory information to compute a

secondary structure prediction (represented in Table 1 and
Fig. 3 by methods ‘‘NL-RNAfold,’’ ‘‘Intermediate,’’ and
‘‘KNetFold,’’ respectively). The average prediction accuracy
of the thermodynamic component (‘‘NL-RNAfold’’) of the
system is much higher compared with the compensatory
component. By using a network of k-nearest neighbor clas-
sifiers, we were nonetheless able to obtain a RNA secondary
structure predictor that performs better than each of its
components. The method has been evaluated with a set of
49 RFAM alignments and has been compared with the
program PFOLD and RNAalifold. To the best of our
knowledge, this represents currently the largest test data
set used to compare RNA secondary structure prediction
methods.

Conclusion

Different concepts of comparative sequence analysis
(mutual information, fraction of complementary base
pairs, and conserved thermodynamically predicted con-
tacts) have been combined in one classifier system. We
show that for a test set of 49 RFAM alignments, the result-
ing prediction accuracy is higher compared with the pro-
grams PFOLD, RNAalifold, and an RNAfold consensus. We
also show that the method is able to predict pseudoknot
interactions. We believe that state-of-the-art classifiers that
combine thermodynamic and comparative information
represent a powerful methodology that will form the
basis of many future RNA secondary structure prediction
approaches.
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