Abstract
Previous studies have shown that lymphocytes carry cell surface receptors for sulphated polysaccharides (SPS), and SPS recognition may play a role in lymphocyte migration and positioning in vivo. This paper describes attempts to isolate and characterize the endogenous glycosaminoglycans (GAGs) of murine spleen and determine whether splenic lymphocytes carry cell surface receptors for these GAGs. A procedure was devised for isolating GAGs from murine spleen in good yield and high purity and the GAG preparation was then radiolabelled for subsequent binding studies. It was found that the splenic GAGs bound to murine splenocytes in a saturable, rapid and reversible manner with only a small subpopulation of the splenic GAG preparation being involved in binding. This reactive species was chondroitinase ABC-resistant and nitrous acid-sensitive, indicative of a heparan sulphate/heparin-like molecule. Furthermore, using immunofluorescent flow cytometry studies it was demonstrated that the majority of spleen cells have receptors for these GAGs. Subsequent ion-exchange fractionation and SDS-PAGE analysis of chondroitinase ABC-resistant GAGs confirmed that the splenic GAG recognized by splenocytes was a heparan sulphate/heparin molecule of approximately 20,000 MW with a binding affinity to splenocytes of approximately 5 X 10(-8) M. Additional binding inhibition studies indicated two possible binding sites for splenic GAGs on the splenocyte surface, one being fully inhibited by a range of SPS such as heparin (both coagulant and anticoagulant forms), pentosan sulphate, fucoidan, dextran sulphate, lambda- and iota-carrageenan, and the second being partially inhibited by kappa-carrageenan. The possible relevance of these heparan sulphate/heparin receptors on splenocytes to lymphocyte positioning in vivo is discussed.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahuja K. K. Fertilization studies in the hamster. The role of cell-surface carbohydrates. Exp Cell Res. 1982 Aug;140(2):353–362. doi: 10.1016/0014-4827(82)90124-0. [DOI] [PubMed] [Google Scholar]
- Andrews P., Milsom D. W., Ford W. L. Migration of lymphocytes across specialized vascular endothelium. V. Production of a sulphated macromolecule by high endothelial cells in lymph nodes. J Cell Sci. 1982 Oct;57:277–292. doi: 10.1242/jcs.57.1.277. [DOI] [PubMed] [Google Scholar]
- Andrews P., Milsom D. W., Stoddart R. W. Glycoconjugates from high endothelial cells. I. Partial characterization of a sulphated glycoconjugate from the high endothelial cells of rat lymph nodes. J Cell Sci. 1983 Jan;59:231–244. doi: 10.1242/jcs.59.1.231. [DOI] [PubMed] [Google Scholar]
- Berman J. W., Basch R. S. Amplification of the biotin-avidin immunmofluorescence technique. J Immunol Methods. 1980;36(3-4):335–338. doi: 10.1016/0022-1759(80)90138-6. [DOI] [PubMed] [Google Scholar]
- Bleiberg I., MacGregor I., Aronson M. Heparin receptors on mouse macrophages. Thromb Res. 1983 Jan 1;29(1):53–61. doi: 10.1016/0049-3848(83)90125-1. [DOI] [PubMed] [Google Scholar]
- Bolwell G. P., Callow J. A., Evans L. V. Fertilization in brown algae. III. Preliminary characterization of putative gamete receptors from eggs and sperm of Fucus serratus. J Cell Sci. 1980 Jun;43:209–224. doi: 10.1242/jcs.43.1.209. [DOI] [PubMed] [Google Scholar]
- Bradfield J. W., Born G. V. Lymphocytosis produced by heparin and other sulphated polysaccharides in mice and rats. Cell Immunol. 1974 Oct;14(1):22–32. doi: 10.1016/0008-8749(74)90165-8. [DOI] [PubMed] [Google Scholar]
- Brenan M., Parish C. R. Modification of lymphocyte migration by sulfated polysaccharides. Eur J Immunol. 1986 Apr;16(4):423–430. doi: 10.1002/eji.1830160419. [DOI] [PubMed] [Google Scholar]
- Butcher E. C., Scollay R. G., Weissman I. L. Lymphocyte adherence to high endothelial venules: characterization of a modified in vitro assay, and examination of the binding of syngeneic and allogeneic lymphocyte populations. J Immunol. 1979 Nov;123(5):1996–2003. [PubMed] [Google Scholar]
- Butcher E. C., Scollay R. G., Weissman I. L. Organ specificity of lymphocyte migration: mediation by highly selective lymphocyte interaction with organ-specific determinants on high endothelial venules. Eur J Immunol. 1980 Jul;10(7):556–561. doi: 10.1002/eji.1830100713. [DOI] [PubMed] [Google Scholar]
- Chin G. W., Hay J. B. Distribution of radiolabelled lymph cells in lymph nodes and the migratory properties of blood lymphocytes in sheep. Int Arch Allergy Appl Immunol. 1984;75(1):52–57. doi: 10.1159/000233590. [DOI] [PubMed] [Google Scholar]
- Chin Y. H., Carey G. D., Woodruff J. J. Lymphocyte recognition of lymph node high endothelium. IV. Cell surface structures mediating entry into lymph nodes. J Immunol. 1982 Nov;129(5):1911–1915. [PubMed] [Google Scholar]
- Chong A. S., Parish C. R. Cell surface receptors for sulphated polysaccharides: a potential marker for macrophage subsets. Immunology. 1986 Jun;58(2):277–284. [PMC free article] [PubMed] [Google Scholar]
- Coombe D. R., Jakobsen K. B., Parish C. R. A role for sulfated polysaccharide recognition in sponge cell aggregation. Exp Cell Res. 1987 Jun;170(2):381–401. doi: 10.1016/0014-4827(87)90315-6. [DOI] [PubMed] [Google Scholar]
- Davidson W. F., Parish C. R. A procedure for removing red cells and dead cells from lymphoid cell suspensions. J Immunol Methods. 1975 Jun;7(2-3):291–300. doi: 10.1016/0022-1759(75)90026-5. [DOI] [PubMed] [Google Scholar]
- Dietrich C. P., Nader H. B., Straus A. H. Structural differences of heparan sulfates according to the tissue and species of origin. Biochem Biophys Res Commun. 1983 Mar 29;111(3):865–871. doi: 10.1016/0006-291x(83)91379-7. [DOI] [PubMed] [Google Scholar]
- Farndale R. W., Buttle D. J., Barrett A. J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986 Sep 4;883(2):173–177. doi: 10.1016/0304-4165(86)90306-5. [DOI] [PubMed] [Google Scholar]
- Glabe C. G., Grabel L. B., Vacquier V. D., Rosen S. D. Carbohydrate specificity of sea urchin sperm bindin: a cell surface lectin mediating sperm-egg adhesion. J Cell Biol. 1982 Jul;94(1):123–128. doi: 10.1083/jcb.94.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glabe C. G., Harty P. K., Rosen S. D. Preparation and properties of fluorescent polysaccharides. Anal Biochem. 1983 Apr 15;130(2):287–294. doi: 10.1016/0003-2697(83)90590-0. [DOI] [PubMed] [Google Scholar]
- Glabe C. G., Yednock T., Rosen S. D. Reversible disruption of cultured endothelial monolayers by sulphated fucans. J Cell Sci. 1983 May;61:475–490. doi: 10.1242/jcs.61.1.475. [DOI] [PubMed] [Google Scholar]
- Glimelius B., Busch C., Hök M. Binding of heparin on the surface of cultured human endothelial cells. Thromb Res. 1978 May;12(5):773–782. doi: 10.1016/0049-3848(78)90271-2. [DOI] [PubMed] [Google Scholar]
- Inaba K., Steinman R. M. Accessory cell-T lymphocyte interactions. Antigen-dependent and -independent clustering. J Exp Med. 1986 Feb 1;163(2):247–261. doi: 10.1084/jem.163.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JANSEN C. R., CRONKITE E. P., MATHER G. C., NIELSEN N. O., RAI K., ADAMIK E. R., SIPE C. R. Studies on lymphocytes. II. The production of lymphocytosis by intravenous heparin in calves. Blood. 1962 Oct;20:443–452. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lindahl U., Bäckström G., Jansson L., Hallén A. Biosynthesis of heparin. II. Formation of sulfamino groups. J Biol Chem. 1973 Oct 25;248(20):7234–7241. [PubMed] [Google Scholar]
- Lindahl U., Hök M. Glycosaminoglycans and their binding to biological macromolecules. Annu Rev Biochem. 1978;47:385–417. doi: 10.1146/annurev.bi.47.070178.002125. [DOI] [PubMed] [Google Scholar]
- Parish C. R., Coombe D. R., Jakobsen K. B., Bennett F. A., Underwood P. A. Evidence that sulphated polysaccharides inhibit tumour metastasis by blocking tumour-cell-derived heparanases. Int J Cancer. 1987 Oct 15;40(4):511–518. doi: 10.1002/ijc.2910400414. [DOI] [PubMed] [Google Scholar]
- Parish C. R., Hogarth P. M., McKenzie I. F. Evidence that Thy-1 and Ly-5 (T-200) antigens interact with sulphated carbohydrates. Immunol Cell Biol. 1988 Jan;66(Pt 3):221–230. doi: 10.1038/icb.1988.28. [DOI] [PubMed] [Google Scholar]
- Parish C. R., Rylatt D. B., Snowden J. M. Demonstration of lymphocyte surface lectins that recognize sulphated polysaccharides. J Cell Sci. 1984 Apr;67:145–158. doi: 10.1242/jcs.67.1.145. [DOI] [PubMed] [Google Scholar]
- Parish C. R., Snowden J. M. Lymphocytes express a diverse array of specific receptors for sulfated polysaccharides. Cell Immunol. 1985 Mar;91(1):201–214. doi: 10.1016/0008-8749(85)90044-9. [DOI] [PubMed] [Google Scholar]
- Rylatt D. B., Parish C. R. Protein determination on an automatic spectrophotometer. Anal Biochem. 1982 Mar 15;121(1):213–214. doi: 10.1016/0003-2697(82)90578-4. [DOI] [PubMed] [Google Scholar]
- Sasaki S., Suchi T. Mobilization of lymphocytes from lymph nodes and spleen by polysaccharide polysulphate. Nature. 1967 Dec 9;216(5119):1013–1014. doi: 10.1038/2161013a0. [DOI] [PubMed] [Google Scholar]
- Stevens S. K., Weissman I. L., Butcher E. C. Differences in the migration of B and T lymphocytes: organ-selective localization in vivo and the role of lymphocyte-endothelial cell recognition. J Immunol. 1982 Feb;128(2):844–851. [PubMed] [Google Scholar]
- Stoolman L. M., Rosen S. D. Possible role for cell-surface carbohydrate-binding molecules in lymphocyte recirculation. J Cell Biol. 1983 Mar;96(3):722–729. doi: 10.1083/jcb.96.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thurn A. L., Underhill C. B. Heparin-induced aggregation of lymphoid cells. J Cell Physiol. 1986 Mar;126(3):352–358. doi: 10.1002/jcp.1041260305. [DOI] [PubMed] [Google Scholar]
- Tucker R. P. The role of glycosaminoglycans in anuran pigment cell migration. J Embryol Exp Morphol. 1986 Mar;92:145–164. [PubMed] [Google Scholar]
- Vidovic M., Hill C. E., Hendry I. A., Parish C. R. Binding sites for glycosaminoglycans on developing sympathetic neurones. J Neurosci Res. 1986;15(4):503–511. doi: 10.1002/jnr.490150407. [DOI] [PubMed] [Google Scholar]
- Wenzl S., Sumper M. Sulfation of a cell surface glycoprotein correlates with the developmental program during embryogenesis of Volvox carteri. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3716–3720. doi: 10.1073/pnas.78.6.3716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodruff J. J., Clarke L. M., Chin Y. H. Specific cell-adhesion mechanisms determining migration pathways of recirculating lymphocytes. Annu Rev Immunol. 1987;5:201–222. doi: 10.1146/annurev.iy.05.040187.001221. [DOI] [PubMed] [Google Scholar]
- Yamaguchi M., Kinoshita S. Polysaccharides sulfated at the time of gastrulation in embryos of the sea urchin Clypeaster japonicus. Exp Cell Res. 1985 Aug;159(2):353–365. doi: 10.1016/s0014-4827(85)80009-4. [DOI] [PubMed] [Google Scholar]