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Complex traits are constructed during
development by an intricate array of

factors, and interactions among factors, in-
cluding DNA, RNA, proteins, developmen-
tal modules, and various aspects of the biotic
and abiotic environment. As a result, it is
development that structures the relation-
ship between the genotype and phenotype
and thereby determines genetic architec-
ture. The genotype–phenotype relationship
plays a central role in phenotypic evolution
because it determines how selection at the
level of the phenotype is translated into
evolutionary change at the level of the ge-
notype (see ref. 1). Theoretical approaches
to understanding phenotypic evolution have
primarily focused either at the molecular
genetic level, modeling evolution as changes
in allele frequencies (the ‘‘population genet-
ics’’ tradition), or at the gross phenotypic
level, modeling evolution as changes in
mean trait values by using the statistical
relationship between molecular genetic
variation and patterns of phenotypic varia-
tion (the ‘‘quantitative genetics’’ tradition).
Both of these traditions have successfully
advanced our understanding of phenotypic
evolution, but both approaches are also in-
herently limited because they require an
assumption of a relatively simple genotype–
phenotype relationship. Thus, they are
limited in their ability to incorporate the
emerging data on the intricate patterns of
genetic and developmental interactions that
underlie the often remarkably complex
genotype–phenotype relationship (2). For
complex traits, this generally means that
factors influencing trait expression, such as
the intricate patterns of gene interactions or
genotype-by-environment interactions, are
either assumed absent or are included in a
greatly simplified form (1).

Although empirical research on the ge-
netic architecture and developmental basis
of trait expression has advanced at an ex-
traordinary rate, formal links between the
wealth of data that has been emerging and
the process of phenotypic evolution have
lagged behind. More recently, theoretical
approaches have begun to focus at the level
between the gross phenotypic and molecu-
lar genetic levels to examine the connection
between patterns of development and evo-

lution (e.g., refs. 3–7). These models have
examined the impact that the developmen-
tal and epigenetic processes that underlie
patterns of phenotypic variation have on a
number of evolutionary processes, such as
the evolution of genetic variation, canaliza-
tion, and integration. Although these mod-
els have provided great insights into these
processes, which have been difficult to un-
derstand using traditional population or
quantitative genetic approaches, no ‘‘unify-
ing theory’’ of phenotypic evolution has
emerged. However,
Rice (8) has produced
what could prove to be
the critical model that
leads to this unifying
theory. Rice’s model is
a general theory of
phenotypic evolution,
which provides the
link between patterns
of development and
processes of phenotypic evolution. The
model is analogous to the Fisher–Bulmer–
Lande models that form the foundations of
quantitative genetics (1), but it allows one to
model phenotypic evolution from patterns
of developmental variation instead of sta-
tistical genetic variation. The model can also
be applied to discontinuous genetic data,
which also makes it amenable to analyses
that are usually in the realm of traditional
population genetic theory. In many ways,
the Rice model surpasses previous models
of phenotypic evolution because it can be
applied to a broader array of empirical and
theoretical problems. Using an extraordi-
narily eloquent approach, Rice has man-
aged to derive a model that can be applied
to an arbitrarily complex pattern of devel-
opment, with any number of factors (genet-
ic, developmental, or environmental) and
any form of selection acting on any number
of traits. In fact, the single major simplifying
assumption of the model is the form of
inheritance, which assumes a linear relation-
ship between the value of characters in
parents and their offspring. However, this is
unlikely to be a limiting assumption, and,
regardless, will be overcome in a forthcom-
ing extension of the theory. Perhaps what
makes the Rice model particularly novel is

that it embraces the complexity of genetics
and development, rather than avoid-
ing complexity by invoking simplifying
assumptions.

An intuitive understanding of the Rice
model can best be achieved through the use
of the metaphor of the phenotype landscape
(see ref. 9). The surface of a phenotype
landscape defines the phenotype associated
with a particular combination of underlying
factors (e.g., alleles present at loci, gene
expression values, size of developmental

modules, hormone
levels, environmental
variables such as tem-
perature, etc.). When
the underlying factors
are genetic, the land-
scape represents the
genotype–phenotype
mapping function. The
topographical features
of the landscape are

determined by the developmental system
that governs the interactions between the
underlying factors. The number of underly-
ing factors contributing to phenotypic vari-
ation defines the number of dimensions of
space in which the landscape exists. In the-
ory there is no limit to the number of
underlying factors that can influence the
expression of a particular trait, and, thus,
landscapes can exist in very-high-dimen-
sional space (i.e., hyperspace). The descrip-
tion of the topography of a three-dimen-
sional landscape is most intuitive, but the
same descriptors can also be applied to
hyperdimensional landscapes, although the
intuitive interpretation of terms like ‘‘slope’’
or ‘‘curvature’’ become increasingly abstract
as the dimensionality increases. However,
this does not alter the usefulness of Rice’s
model, although it does mean that one
should be cautious when interpreting the
topography of hyperdimensional landscapes
because descriptors like hilly or rugged,
which have intuitive meanings in three-
dimensional space, may be misleading when
applied to higher-dimensional space (see
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ref. 10). Fig. 1 shows a hypothetical land-
scape, where the phenotype of an individual
is determined by the values of two underly-
ing factors.

The landscape provides a concise sum-
mary of the patterns of genetic effects, gene
interactions, developmental interactions,
environmental effects, and genotype–
environment interactions that produce the
relationship between variation in underlying
factors and the phenotype. The location of
each individual on the landscape is deter-
mined by the value of its underlying factors.
In theory, the surface of the landscape can
be defined for any possible combination of
values of the underlying factors that define
the dimensions of the landscape, even if
some combinations do not actually exist.
Thus, a population is expected to be limited
to a local region of the landscape at any
point in time. To account for this fact, the
topography of the landscape is evaluated at
the mean of the underlying values in the
Rice model. The topography is captured in
a set of derivatives that define how the
phenotype changes as a function of changes
in the values of the underlying factors (or
combination of factors) in the local region of
the landscape. This set of derivatives is
represented by the tensor Dn (where n is the
rank of the tensor). Although tensors may
not be familiar to many people, some special
types of tensors probably are. When n � 1,
the tensor is rank 1, which is a vector. The
vector D contains the gradient of the land-
scape (i.e., the steepness) associated with
each of the underlying factors. The gradient
vector determines the linear effects of fac-

tors on the expression of the trait. The
gradient vector also determines the contri-
bution of the underlying factors to pheno-
typic variation (see Fig. 1); steeper regions
correspond to areas of high phenotypic vari-
ance and less steep regions correspond to
lower variance (11). Genetic parameters
that are used in the description of evolution
in the quantitative genetics tradition can
also be defined using the gradient in a local
region (7). For example, the additive genetic
variance corresponds directly to the gradi-
ent of the landscape when the underlying
factors are genetic (7). Rice uses this rela-
tionship when describing the connection
between his model and the earlier quanti-
tative genetic models (see more below). The
rank 2 tensor is a matrix of second deriva-
tives on the surface, which can be inter-
preted as quadratic curvature of the surface.
When a landscape is curved so that the
gradient is not constant in a region, the
underlying factors contribute to nonadditive
components of genetic variance such as
dominance and epistasis (6, 7). Rice utilizes
this relationship to derive an example of the
evolution of dominance.

Evolution is described by changes in the
phenotype distribution associated with
movement of the population on the surface
of the phenotype landscape. The phenotype
distribution is captured in the tensor Pk,
where the rank of the tensor (k) designates
which moment of the phenotype distribu-
tion that P corresponds to. When k � 1, P
is a vector of trait means, and when k � 2,
P is the phenotypic variance–covariance
matrix. To model evolution on the land-

scape, a description of the relationship be-
tween phenotypes and fitness is required.
The landscape metaphor can also be in-
voked when describing the relationship of
traits and fitness (treating fitness as a trait),
and in that case, the landscape is referred to
as the individual selection surface (see ref.
12). The geometry of the selection surface is
captured in Rice’s model by partial deriva-
tives of fitness with respect to the trait
values, which includes higher-order partial
derivatives that capture nonlinear relation-
ships between traits and fitness. This model
of selection jibes well with evolutionary the-
ory because the partial derivatives of the
fitness surface evaluated at the population
mean are already important components of
modern selection theory (13). The first-
order partial derivatives are the directional
selection gradients [represented by the vec-
tor � in selection theory (13)], whereas the
second-order partial derivatives are the non-
linear, quadratic gradients [i.e., stabilizing,
disruptive, or correlational gradients, rep-
resented by the matrix � (13)]. However,
rather than focusing on the shape of the
fitness surface, Rice utilizes a tensor of
selection differentials (Q), which represent
the consequences of a particular fitness
function in terms of how selection alters
some moment of the phenotype distribution
within a generation (where the rank of Q
indicates which moment of the phenotype
distribution it corresponds to). The within-
generation changes described by Q are
translated into across generational changes
by using a matrix of heritabilities and genetic
correlations (H), whose elements are the
partial regression of the value of an under-
lying factor in offspring on the value of a
factor in parents.

The Rice model is particularly innovative
and likely to be of great utility because it
allows one to examine the evolution of any
moment of the phenotypic distribution,
making it a far more general theory than the
traditional quantitative genetic models of
phenotypic evolution, which focuses almost
exclusively on the evolution of the mean (the
first moment). Although some quantitative
genetic models have examined the evolution
of phenotypic variances and covariances
(i.e., second moments of the distribution;
e.g., ref. 14), those models are based on very
limiting assumptions. Even the previous
models that have used the phenotype land-
scape approach (or some analog) to analyze
evolution of phenotypic variance–covari-
ance structure or other evolutionary genetic
problems have invoked restrictive assump-
tions (e.g., ref. 7).

Fig. 1 gives an illustration of how the
topography of the phenotype landscape is
related to patterns of phenotypic variation.
This illustration roughly corresponds to
Case 2 presented in Rice’s paper. A popu-
lation existing at two different points in time
is represented by the shaded ovals on the

Fig. 1. An example of a phenotype landscape. The expected phenotypic value of an individual (�) is a
function of the value underlying factors 1 and 2 (u1 and u2) that interact during trait development. A
population is represented by the shaded ovals at two different positions on the surface. The variance in
the underlying factors is the same at both locations (indicated by the size of the ovals), but the mean values
of the factors are different. The population starts in a steep region of the landscape, where the underlying
factors are translated into a large phenotypic variance by development (indicated by the distribution in
Inset A). Canalizing selection moves the population to a much flatter region, where the underlying factors
have a much smaller contribution to phenotypic variance (indicated by the distribution in Inset B). The
mean phenotypic value is the same at both locations on the landscape.
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surface. At both locations on the landscape
the variances of the underlying factors are
the same, but the means are different. The
population begins in a steep region of the
landscape, where the phenotypic variance is
relatively large (Inset A). Canalizing selec-
tion slides the population along a phenotype
isocline to a flatter region of the landscape,
where the phenotypic variance is much
smaller (Inset B). Despite the fact that the
population has the same variance in under-
lying factors (e.g., the same amount of mo-
lecular genetic variation) and the same
mean phenotype at both locations on the
landscape, the phenotypic variance changed
dramatically. This example demonstrates
the power of the model; a complex evolu-
tionary problem like the evolution of canal-
ization can be modeled using the same
simple framework that can be used to pre-
dict the evolution of the mean.

Rice’s model has the opportunity to do
for evolutionary studies of development
what Lande’s multivariate quantitative ge-
netic models (e.g., ref. 15) did for evolution-
ary quantitative genetics (see ref. 16). Be-
fore Lande’s general multivariate model,
quantitative genetic theory had primarily
been limited to studies of the genetics of
agricultural improvement. Lande’s model
brought the quantitative genetics frame-
work to the forefront of evolutionary biol-
ogy and lead to great insights into multi-
variate phenotypic evolution. However, the
Rice model is not simply an alternative to
multivariate quantitative genetic theory, it is
a generalization of the theory, or, more
precisely, it is a more general theory that
encompasses quantitative genetics as a spe-

cial case. This is clearly demonstrated in the
first special case examined by Rice, where
the model simplifies to the multivariate
quantitative genetic model by invoking the
appropriate set of assumptions. Assuming
an additive (planar) phenotype landscape
and a quadratic fitness function, Rice dem-
onstrates how the model reduces to the
classic ‘‘breeder’s equation,’’ where changes
in the trait means across generations are
predicted from the matrix of trait heritabil-
ities and genetic correlations (H) and the
vector of selection differentials (Q).

Despite the attractiveness of Rice’s model
as a mathematical theory, it remains to
be seen to what degree it has an impact
on empirical genetic and developmental
studies of evolution. Future work describing
methods that can be easily adopted by em-
piricists will be required before researchers
can embrace the model and use its frame-
work when interpreting data. This is partic-
ularly important because the mathematics
of the model are rather complex and may be
unfamiliar to a large proportion of the em-
pirically based researchers. However, this
should not be seen as a shortcoming of the
model. Advances in theory have generally
relied on later publications to bridge the gap
from formal mathematical theory to empir-
ical applications. Bridging this gap often
requires detailed methods of how statistical
or mathematical computer packages can be
used to estimate the relevant parameters.

Although it remains to be seen whether
formal methods will emerge to combine the
Rice model with empirical studies of devel-
opment, it is clear that the model can inter-
face well with the sorts of data that are

derived from developmental studies, such
as changes in trait values as a function of
factors like morphogen concentrations (e.g.,
ref. 17). Developmental modules of all sorts
are often useful underlying factors because
their contribution to the gross phenotype is
often relatively straightforward, and exper-
imental analyses of epigenetic interactions
between modules may be feasible. It is also
often relatively straightforward to examine
how the expression of a trait changes as a
function of various environmental variables
(e.g., ref. 18), allowing one to incorporate
environmental factors as dimensions of the
phenotype landscape. In addition, Rice dis-
cusses how the model can incorporate the
sort of discontinuous data associated with
allelic polymorphisms at discrete loci. Thus,
the theory can also be used to model and
analyze population genetic dynamics. Along
these lines, Rice suggests that underlying
factors such as QTL or even gene expression
patterns estimated from microarrays could
be used to estimate the local geometry of the
landscape, providing a way to integrate the-
oretical studies with cutting edge genetic
data. Perhaps most interesting is the fact
that the model can be applied to all of these
problems simultaneously, because one can
combine all factors that contribute to phe-
notypic variation. The ability to predict
evolutionary changes in all aspects of the
multivariate phenotype distribution by using
theory that integrates the complex develop-
mental systems that build traits is likely to
provide great insights into the evolution of
complex traits, and may eventually emerge
as a unifying theory of trait evolution.
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