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We present a combined computational and experimental method
for the rapid optimization of proteins. Using B-lactamase as a test
case, we redesigned the active site region using our Protein Design
Automation technology as a computational screen to search the
entire sequence space. By eliminating sequences incompatible with
the protein fold, Protein Design Automation rapidly reduced the
number of sequences to a size amenable to experimental screen-
ing, resulting in a library of ~200,000 mutants. These were then
constructed and experimentally screened to select for variants with
improved resistance to the antibiotic cefotaxime. In a single round,
we obtained variants exhibiting a 1,280-fold increase in resistance.
To our knowledge, all of the mutations were novel, i.e., they have
not been identified as beneficial by random mutagenesis or DNA
shuffling or seen in any of the naturally occurring TEM -lactama-
ses, the most prevalent type of Gram-negative B-lactamases. This
combined approach allows for the rapid improvement of any
property that can be screened experimentally and provides a
powerful broadly applicable tool for protein engineering.

computational protein design | protein engineering | mutagenesis |
directed evolution | B-lactamase

he increased use of enzymes and other proteins in the

chemical, agricultural, and pharmaceutical industries has
generated considerable interest in the design of proteins with
new and improved properties. Two different but complementary
technologies have been applied to this goal: (i) rational design,
which relies on structural and mechanistic knowledge and hu-
man expertise; and (if) directed evolution methods such as
error-prone PCR, phage display, and DNA shuffling, which use
random mutagenesis or recombination to create diversity and
then experimentally screen the libraries generated for desired
properties (1). Directed evolution has been successfully used on
awide range of proteins (2-7). However, this approach is limited
by the number of sequences that can be screened experimentally
(about 10'* for library panning and 107 for high-throughput
screening). Rational design has also been applied with some
success (8-10), but it was not until computational methods were
developed that it could be used comprehensively.

Computational techniques use protein design algorithms to
perform in silico screening of protein sequences (11-17). By
taking advantage of the speed of computers, these methods allow
a vast number of sequences to be screened (=~108°). The ability
to search such large sequence spaces drastically increases the
possibility of finding novel proteins with improved properties.
Computational techniques have also been developed to enhance
the efficiency of directed evolution methods (18, 19).

One computational design tool that has proven effective is
Protein Design Automation (PDA) (13). PDA begins with the
three-dimensional structural model of the protein to be designed
and predicts the optimal sequence that will adopt this fold,
allowing all or a specified set of residues to change. The fitness
of sequences is scored by using physical potential functions that
model the energetic interactions of protein atoms (20); stable
low-energy sequences are given the best scores. By using ex-
tremely efficient search algorithms, up to 108 sequences can be
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accurately screened within hours (21-23). Multiple simultaneous
mutations can be made, and novel sequences that are very
different from wild type can be discovered. PDA has shown
tremendous success in designing proteins with improved stability
and conformational specificity (13, 14, 24-28) and has even been
used to engineer a catalytic site into a previously nonreactive
protein (29).

In these studies, only a few optimal sequences calculated by
PDA were made and tested experimentally. The utility of PDA
can be extended significantly, however, if it is used to generate
a library of sequences, all of which are predicted to be stable and
fold into a predetermined structure. Unlike random libraries,
where most of the mutations are deleterious, the mutant se-
quences in the PDA library are computationally screened to
eliminate destabilizing mutations and sequences inconsistent
with the proper fold. The selected sequences are then experi-
mentally screened for desired properties such as improved
catalytic activity, substrate specificity, or receptor binding.
Therefore, PDA is a computational prescreen to decrease the
sequence space many orders of magnitude, while maintaining
broad diversity, to a number easily amenable to experimental
screening. By coupling PDA with experimental screening, we
combine the advantages of computational design with those of
directed evolution: namely, access to a vast sequence space and
the ability to improve any protein property that can be captured
by a screen.

In this paper, we demonstrate the feasibility of this approach
by using it to increase the resistance of bacteria toward the
antibiotic cefotaxime by optimizing TEM-1 B-lactamase, the
most prevalent plasma-encoded B-lactamase in Gram-negative
bacteria.

Methods

Structure Preparation. The crystal structure of TEM-1 B-lacta-
mase (Protein Data Bank no. 1BTL) (30) was used as the starting
point for modeling. All water molecules and the sulfate group
were removed; the side chains of residues N132, N154, N170,
H122, and H289 were flipped to form a better hydrogen bond
network; and the disulfide bond between C77 and C123 was
formed manually. The program BIOGRAF (Molecular Simula-
tions, San Diego) was used to generate explicit hydrogens, and
50 steps of conjugate gradient minimization were performed by
using the Dreiding II force field (31) without the electrostatics
term. The minimization is done to make the structure compat-
ible with our force-field parameters and results in very slight
changes to the coordinates.

Construction of Mutant Library. To facilitate introduction of the
mutations into the TEM-1 gene, a pCR-Blunt (Invitrogen) vector
containing the TEM-1 gene was digested with Xbal and HindIII,
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Fig. 1.

Protein optimization strategy. A set of residues or region of the protein structure is selected to be designed. PDA is used to computationally screen the

entire designed sequence space and determine the GMEC for the fold. Starting from the GMEC, the Monte Carlo search is then used to explore the sequence
space and generate a list of near-optimal sequences. An amino acid probability table is obtained from the list and cutoffs are applied to define a PDA library
of mutant sequences for experimental screening. The PDA library is translated into a DNA library, which is cloned and expressed. An experimental screen is used
to select clones with improved properties; these are then characterized. Results can be fed into additional cycles.

treated with T4 DNA polymerase, and religated. Site-directed
mutagenesis was performed by using QuikChange as described
by the manufacturer (Stratagene) to remove the existing Xbal
and HindIIl sites. New Xbal and HindIII sites were then
introduced by site-directed mutagenesis at nucleotides 163 and
841, respectively, of the TEM-1 gene in the vector. A polyhisti-
dine (6XHis) sequence was then added to the 3’-end of the
TEM-1 ORF to facilitate immunodetection of the proteins,
thereby creating the vector pXR293. The his-tag was found to
have no effect on B-lactamase activity. Escherichia coli TOP10
cells transformed with pXR293 were confirmed to grow on
media containing 100 ug/ml ampicillin and 50 pg/ml kanamy-
cin. The B-lactamase protein expressed from this construct is
termed TEM-1 in this report.

The mutated B-lactamase genes were constructed essentially
as described by Prodromou and Pearl (32) and Chalmers and
Curnow (33). Oligonucleotides corresponding to the gene were
synthesized as 40-50 mers with ~15-nt overlaps. At each mu-
tational position, multiple oligonucleotides were included in the
reaction, and the genes were synthesized by using recursive PCR.
They were then digested with Xbal and HindIII and subcloned
into pXR293. This vector was then transformed into E. coli
TOP10 cells (Invitrogen) for expression.

Selection of Cefotaxime-Resistant Mutants. E. coli cells expressing
the mutant library of TEM-1 genes were grown on plates
containing increasing concentrations of cefotaxime, and the
minimum inhibitory concentration (MIC) for survival was de-
termined. The cefotaxime concentrations used were: 0.01, 0.025,
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0.05, 0.1, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, and 128 ng/ml. Assays
were conducted at 25 and 30°C to ensure soluble expression of
the designed proteins. Cells were plated at low density (<1,000
per plate) to ensure that the observed resistance was not due to
confluence. Clones demonstrating the highest resistance were
picked, and the B-lactamase protein was identified with immu-
noblot analysis (34) by using pooled 5- and 6-his polyclonal
antibodies (Qiagen, Valencia, CA). The TEM-1 gene of the most
resistant variants was sequenced to identify the mutations. New
genes containing the mutations identified for PDA-1, -2, and -3
were constructed, and MICs were determined to confirm the
initial screening results.

Results

Protein Optimization Strategy: Combining PDA with Experimental
Screening. The overall strategy for protein optimization is shown
in Fig. 1. PDA is used to computationally design a protein and
define a library of mutant sequences at specific positions. PDA’s
optimization algorithms are then run to screen all possible
sequences for the global optimal sequence and conformation for
the target fold, the one with the lowest energy as determined by
the scoring function. This conformation is termed the global
minimum energy conformation (GMEC). Starting from this
optimal structure, a search algorithm such as Monte Carlo (35,
36) simulated annealing is used to explore sequence space and
generate a list of other near-optimal sequences. The Monte
Carlo list is rank-ordered by energy score and may contain as
many sequences as desired (e.g., the best 1,000). An amino acid
probability table is then generated from the list by counting
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Fig. 2. Reduction of sequence space for PDA design of TEM-1 B-lactamase.
Computational screening with PDA and judicious application of cutoffs re-
duced the sequence space 18 orders of magnitude for the 19 residues explicitly
considered and more than 300 orders of magnitude for the entire protein. This
conformational screen specified a library for experimental screening of
~200,000 mutant sequences, enriched for structural integrity.

amino acid occurrences at each of the designed positions.
Different cutoffs or weighting functions can be applied to define
a library of a desired size, appropriate for experimental screen-
ing. Structure or sequence alignment information, experimental
data, and diversity considerations may also be taken into account
in defining the mutant library.

Recursive PCR with overlapping oligonucleotides is then used to
synthesize the genes containing all of the mutant sequences in the
PDA-defined library. The genes are pooled and cloned, and the
mutant proteins are expressed in an appropriate host such as E. coli.
The mutant proteins are screened experimentally for desired
properties, and the best mutants are isolated and characterized.
These results can be used as feedback for additional rounds of
computational design, library generation, and screening.

Reduction of Sequence Space. The use of PDA as a computational
screen allows us to access a vast sequence space and, by
eliminating sequences predicted to be destabilizing or inconsis-
tent with the proper fold, reduce it to a size amenable to
experimental screening. The reduction of sequence space ob-
tained for TEM-1 B-lactamase, our test case, is shown in Fig. 2.
If we were to consider the entire B-lactamase protein (263
residues) and allow all 20 amino acids at each position, we would
need to screen 2029 or ~1.4 X 103#? sequences. By focusing the
design to a particular region (19 residues near the active site) and
using a slightly restricted set of amino acids (19), we reduced this
to 7 X 102 sequences, a number that can easily be screened
computationally, but not experimentally. We then chose cutoffs
for the Monte Carlo list and the probability table that would
define a library within the limits of experimental screening. In
this case, we specified a library of ~200,000 mutant sequences,
a reduction of 18 orders of magnitude for the residues explicitly
considered and an overall reduction of more than 300 orders of
magnitude for the entire protein.

Computational Design of B-Lactamase. The hydrolysis of B-lactam
antibiotics, catalyzed by B-lactamase, is a common mechanism by
which bacteria become resistant to antibiotics (37). The most
prevalent plasmid-encoded B-lactamase in Gram-negative bacteria
is the class A TEM-1 B-lactamase (38). This enzyme hydrolyzes
ampicillin efficiently but is inefficient at hydrolyzing the cephalo-
sporin cefotaxime. Our goal was to use PDA to design B-lactamase
variants that confer increased resistance toward cefotaxime.
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Optimizing the area around the active site is likely to have a
significant effect on enzyme activity and substrate specificity (37,
39). Although more distant mutations can also be effective (40),
the rationale for how to select such positions is less obvious.
Designing residues around the active site also serves as a
stringent test of the ability of PDA to predict nondisruptive
mutations. We therefore focused our design on residues within
5 A of the active site residues S70, K73, S130, E166, and K234.
These criteria resulted in 19 positions that were allowed to
change: M69, T71, F72, V74, V103, Y105, A126, 1127, N132,
A135, N136, L169, N170, M211, D214, K234, S235, G236, and
1247. All 20 amino acids, except cysteine and proline, were
considered at these positions. The catalytic residues (S70, K73,
S130, and E166) were not allowed to change their amino acid
identities; however, their conformations could vary. An ex-
panded version of the backbone-dependent rotamer library of
Dunbrack and Karplus (41) was used in all of the calculations,
and the DEE algorithm was used to find the GMEC. The
computational details, residue classification, and potential func-
tions used are described in previous work (13, 14, 20, 42).

Definition of Mutant Library. Optimization with PDA predicted an
optimal sequence with nine mutations. Starting from this
GMEC, we applied Monte Carlo simulated annealing to produce
a rank-ordered list of the 1,000 lowest energy sequences. A
probability table was generated from this list by counting the
amino acid occurrences at each of the 19 designed positions
(Table 1). A 10% cutoff was then applied to the probability table
to define a library of mutant sequences for experimental screen-
ing; that is, for a given position, an amino acid identity was
included in the library if it had a 10% or greater probability of
occurrence. To ensure that the library spanned the complete
sequence space from the wild-type enzyme to the most distantly
related PDA mutant, we always included the wild-type identity
at all designed positions, even if it did not appear in the Monte
Carlo list. With a 10% cutoff, this gave us a library of 172,800
unique sequences; a 20% cutoff would have resulted in a much
smaller library of 4,806.

Construction of Genes for Mutant Library. Recursive PCR with
overlapping oligonucleotides was used to synthesize the TEM-1
B-lactamase genes containing all 172,800 mutant sequences in
the PDA library. Synthetic oligonucleotides containing the
designed mutations were pooled to create desired diversity at
each site. Two separate reactions were performed: one that
contained only a proofreading DNA polymerase (Pfu DNA
polymerase), termed the nonerror prone reaction, and one that
contained both Pfu DNA polymerase and TagDNA polymerase,
termed the error-prone reaction. The mutated genes were
cloned and transformed into E. coli.

Validation of Mutant Library. Sixty individual clones from the
nonerror-prone library were sequenced by standard techniques.
The plasmids contained intact ORFs with the desired mutations.
No additional mutations were detected. With a sample size of 60,
we were able to find all of the specified mutations at each
designed position. It is impossible to find all combinations of the
mutations within this small sample (the library contained
172,800 unique sequences), but none of the clones were identical
and we were unable to detect a statistically significant bias
toward any particular mutation at any position. This result
indicates that we have developed an efficient method for con-
verting a PDA-defined library into an experimental library
containing all of the mutated genes required to encode the
desired mutant sequences.

Experimental Screen for B-Lactamase Activity. Experimental librar-
ies of ~500,000 individual E. coli colonies expressing the mu-
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Table 1. PDA probability table for designed positions of TEM-1 g-lactamase

Position WT Amino acid probabilities predicted by PDA, %
69 M D: 61.2 A 276 G 197 S 15
71 T T. 100.0
72 F F: 875 Yo 12
74 \ V: 853 Bz 8.8 D: 3.0 L 1.7
103 \ Q: 8641 K 11 Fi 320
105 Y Q 523 N: 13.3 I 122 S: 104 E: 83 D: 24
126 A A: 9586 S: 44
127 I b 742 L: 256
132 N M: 971 L 249
135 A A 933 G: 39 S: 2.8
136 N M: 8456 D: 97 V: 54
169 L Ar 817 E: 13.6 D: 26 S: 21
170 N L: 944 M: 4.0 F: 1.0
211 M M: 996
214 D D: 100.0
234 K M: 295 Er 255 I 244 E: 148 Q 30 V: 26
235 S D: 757 21.9
236 G G: 825 S: 1541 A 24
247 | L 993

Amino acids included when applying different probability cutoffs are indicated as follows: 20% cutoff in dark gray, 10% cutoff
in light gray, and 1% cutoff in white background. In defining the PDA library, the 10% cutoff was used and the wild-type amino
acid identity was added if it did not appear in the Monte Carlo list. This specified a library of 172,800 unique sequences.

tated B-lactamase genes were pooled and plated onto increasing
concentrations of cefotaxime in a single round of selection, and
the MIC for survival was determined. This number of colonies
is about three times the size of the PDA-defined library and was
used to ensure that the pooled DNA library contained at least
one copy of each mutant sequence (within a 95% level of

Table 2. Antibiotic resistance of TEM-1 B-lactamase variants
No. of

confidence) (43). Clones from the nonerror-prone library had a
MIC of 64 pg/ml, which is a 640-fold increase in resistance
compared with the wild-type value of 0.1 pg/ml. Clones from the
error-prone library had a MIC of 128 ug/ml, a 1,280-fold
increase in resistance (see PDA-1 and -2, Table 2). Because our
approach allows us to assay the complete PDA library diversity

Cefotaxime Ampicillin
No. of novel
Variant Mutations mutations mutations MIC, png/ml Fold increase* MIC, ng/ml Fold decrease*
TEM-1 (WT) — — — 0.1 — 4,096" —
PDA-1 M69D, V103Q, Y105N 8 8 64 640 100* 40
N132M, L169A, N170L
§235D, G236S
PDA-2 V103Q, Y105N, 1127L 6 6 128 1,280 100* 40
L169A, S235Y, G236S
PDA-3 M69D, V103Q, N132M 6 6 64+ 640 ND ND
L169A, N170L, S235D
TEM-15 E104K, G238S 2 — 16 160 4,0965 1
ST-1 E104K, G238S, M182T 4 — 256 2,560 ND ND

A18V

Resistance measured at 25°C unless specified otherwise. ND, MIC not determined.

*Fold increase/decrease in resistance is relative to wild type (TEM-1).
*Value reported by Cantu and Palzkill (44).
*MIC assay done at 30°C.

SValue reported by Shannon et al. (49). Boldface indicates novel mutations (not reported to significantly improve cefotaxime resistance in any TEM-g-lactamase;
refs. 2, 45, and 46; Jacoby, G. and Bush, K., www.lahey.org/studies/temtable.htm).
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in a single round, we were able to use very stringent selection
conditions and directly obtain highly resistant variants. The
identification of incrementally improved sequences was not
necessary.

Substrate Specificity. We also measured resistance to ampicillin
and found no growth at 100 pg/ml, significantly less than the
MIC of 4,096 ug/ml reported for the wild type (43). This result
suggests that our screens identified clones whose resistance to
cefotaxime had dramatically improved, whereas their resistance
to ampicillin was reduced at least 40-fold. The relative substrate
specificity toward cefotaxime vs. ampicillin was thus enhanced
25,000- to 50,000-fold.

PDA Mutants Are Novel. The most active mutant from each library
was isolated and sequenced. PDA-1 had eight mutations (M69D,
V103Q, Y105N, N132M, L169A, N170L, S235D, and G236S), all
designated in the PDA library (see Table 1). PDA-2 had five
PDA-designed mutations (V103Q, Y105N, I127L, L169A, and
G236S) and one random mutation (S235Y). The S235Y mutation
was not predicted by PDA due to steric clashes. Protein backbone
motion, which is required to relieve the clash, is not considered in
the computation. None of the mutations in PDA-1 or -2 have been
identified by full gene random mutagenesis or DNA shuffling
studies (2, 39, 45, 46) or have been observed in the 105 naturally
occurring TEM B-lactamases (G. Jacoby and K. Bush, www.lahey.
org/studies/temtable.htm). Orencia et al. (47) discussed the emer-
gence of antibiotic resistances in B-lactamases and showed that
there is an overlap between the mutations discovered by directed
evolution and those occurring in natural evolution. PDA, however,
accesses the entire designed sequence space including all possible
combinations of mutations and therefore can produce multiple
simultaneous mutations. PDA is therefore more likely to identify
novel mutants with desired properties. The lone random mutation
in PDA-2 (S235Y) was in the active site region, suggesting that the
novel context of the PDA-designed mutants allowed this previously
unobserved, but beneficial, mutation to emerge.

Two of the mutations in PDA-1 (V105N and G236S) were
reverted to wild type to create a backcross mutant (PDA-3). This
PDA-3 sequence is present in the library defined with a 20% cutoff
but is absent if a 10% cutoff is used (see Table 1). PDA-3 exhibited
the same cefotaxime resistance as PDA-1 (Table 2), indicating that
a smaller PDA-library (4,806 vs. 172,800 sequences) can also
generate mutants with significantly improved activity. Additional
backcrosses were done to examine the role of the other six muta-
tions in PDA-1. No single mutation was primarily responsible for
the improved resistance, and no simple additivity was apparent,
suggesting that the mutations are coupled. This conclusion is
supported by extensive replacement mutagenesis studies of three-
residue segments around the active site (39). They found a mutant
(E168G, L169A, and N170G) that included one of our mutations
(L169A), but it showed only a marginal (2-fold) improvement in
cefotaxime resistance. Although they also tested most of our other
mutations, no increased resistance was found for any of these. This
lack of improved resistance indicates that the broader context of
many simultaneous mutations provided by our approach was
required to find our highly active sequences.

Comparison with Other Mutants. To compare the activity of our
PDA-designed mutants with those obtained in other studies, we
introduced some previously reported mutations into our wild-
type gene, including E104K/G238S (comparable to TEM-15) (2,
46) and A18V/E104K/M182T/G238S (comparable to ST-1) (2,
46). TEM-15 is a naturally occurring B-lactamase that is active
against cefotaxime, and ST-1 is a highly active TEM-1 variant
discovered from three rounds of DNA shuffling. We tested the
ability of these mutants to confer resistance to cefotaxime. Wild
type had a MIC of 0.1 ug/ml, comparable to the values reported

15930 | www.pnas.org/cgi/doi/10.1073/pnas.212627499

Fig. 3. Location of mutations in PDA-1 and -2 (green) vs. those obtained by
DNA shuffling (2) and random hypermutagenesis (46) (magenta). The wild-
type TEM-1 B-lactamase structure is illustrated, and the side chains of the
mutated positions are shown. The catalytic serine (570) is depicted in blue. The
average distance between the C, atoms and the catalytic nucleophile (0,570)
in our PDA-1 and -2 mutations was 8.0 and 8.6 A, respectively, vs. 16.0 Aforthe
mutations in ST-2 and -3 (Stemmer’s best mutants) (2) and 12.1 A for 3D.5
(Zaccolo and Gherardi’s best mutant) (46). This difference in distances illus-
trates that the mutations found by PDA are near the designed active site area,
whereas those found by DNA shuffling and random hypermutagenesis are
farther away.

by others; TEM-15 and ST-1 had MICs of 16 and 256 ug/ml,
respectively, also in line with previously published work (Table
2) (2, 44, 46, 48-50).

Location of Mutations. The mutations in all our variants are
located in or near the active site, because our computational
design restricted changes to this region. Directed evolution
methods, however, tend to produce mutations spread over the
entire protein structure. For example, almost all of the mutations
in the best mutants obtained by DNA shuffling (2) and random
hypermutagenesis (46) are located far from the active site (Fig.
3). It is possible that these techniques seldom produce mutations
close to the active site, because they rely on incremental changes;
a single change in the first round of screening must be beneficial
to be passed to the second round. However, point mutations in
the active site area are usually disruptive. Our approach, on the
other hand, allows multiple simultaneous mutations in a single
round, which can have compensating or even synergistic effects.

Sequence Space Coverage. Most of the mutations observed in our
PDA variants require a minimum of two nucleotide changes, and
one, M69D, can be made only by a triple nucleotide change (Table
3). Double- or triple-nucleotide changes within a single codon are
very difficult to achieve by using random mutagenesis techniques
such as error-prone PCR or single-gene DNA shuffling. This
limitation is demonstrated by the fact that each of the mutations
found in the directed evolution studies (2, 45, 46) as well as those
observed in the 105 naturally occurring TEM variants (G. Jacoby
and K. Bush, www.lahey.org/studies/temtable.htm) could be ob-
tained by a single nucleotide change. If one considers all of the
substitutions that are possible for each of the 20 amino acids, on
average only seven can be achieved by a single nucleotide change.
The sequence space coverage is further reduced by codon prefer-
ences, biases for transitions over transversions, and A < T over
G < C mutations. These restrictions severely limit the sequence

Hayes et al.



Table 3. Minimal number of nucleotide changes required for amino acid mutations in TEM-1 B-lactamase variants

Position
Variant 18 42 69 92 103 104 105 127 132 169 170 182 235 236 238 240 241 254
TEM-1 (WT) A A M G A\ E Y | N L N M S G G E R D
TEM-15 K,1 S,1
ST-1* V,1 K,1 T,1 S.1
ST-2%t, ST-3* G,1 S,1 K,1 T S,1 H,1
ST-4* K,1 T,1 S,1
3D.5%* K,1 T1 S,1
3A.6M* s1 K1 H1 G1
PDA-1 D,3 Q.2 N,1 M,2 A2 L2 D,2 S,1
PDA-2 Q.2 N,1 L1 A2 Y, 1 S,1
PDA-3 D,3 Q.2 M,2 A2 L2 D,2

*Stemmer (2).
THas additional silent mutations.

*Zaccolo and Gherardi (46). Mutations requiring two or more nucleotide changes are shown in bold.

space accessible to these methods and suggest why our approach,
which does not suffer from these limitations, is more likely to
produce novel functional sequences.

Discussion

The purpose of this study is to show that a combined approach,
using PDA as a computational screen to rationally reduce the
sequence space before experimental screening, can rapidly lead
to novel protein variants with improved properties. We used
PDA to identify sequences compatible with the protein fold and
then experimentally screened the resulting sequence library to
obtain variants with novel properties. As a test case, we rede-
signed the active site of B-lactamase and then selected for
variants with improved resistance to cefotaxime. In a single
round, we obtained variants that exhibit a 1,280-fold increase in
resistance and, to our knowledge, are novel.

Our approach has some key distinctions from purely experimen-
tal techniques. By using an efficient computational screen, we are
able to access an extremely large region of sequence space and
rapidly reduce it to a number amenable to experimental screening.
Experimental libraries will always be restricted to sampling a
miniscule portion of sequence space due to limitations on the sheer
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cell-based assays for improved protein therapeutics, while still
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ment of any protein property that is amenable to experimental
screening and has broad applications in the chemical, agricul-
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