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ABSTRACT We develop a continue time Monte Carlo algorithm to simulate single RNAs unfolded by a time-dependent
external force on the secondary structure level. Two recent unfolding RNA experiments carried out by Bustamante group are
mainly investigated. We find that, in contrast to popular two-state assumption about the RNAs free energy landscape along the
molecular extension, the molecules used in the experiments do not present apparent energy barriers. The strong cooperative
folding and unfolding transitions of the RNAs observed in the experiments and in our simulations arise from the interaction of
the molecules and the light trap. In addition, we also investigate the properties of Jarzynski’s remarkable equality, whose
experimental test has received considerable attention.

INTRODUCTION

RNA folding, which includes thermodynamic and dynamic

folding, is one of the central problems in biophysics. Many

experimental techniques have been applied in the RNA folding,

such as x-ray crystallograph, NMR spectroscopy, etc. Recently,

single-molecule manipulation techniques developed in the past

decade provide a novel way to solve the important problem

(1–3). Their common principle is to exert an external force on

single molecules, and then to record the molecular end-to-end

extensions (force-extension curves). Compared to the conven-

tional methods that only yield time-averaged snapshots of RNA

structures, current single-molecule technique is able to track

RNA folding and unfolding trajectories on a single-molecule

level in real time (1). These experiments may shed new light

on the RNA folding problem. Until now, RNAs investigated

by this technique include simple secondary structure units of

RNA (1), complex tertiary structural ribozyme (2), and 1540-

base long 16S ribosomal RNA with pseudoknots (3).

The single RNAs manipulation experiments address a

challenging issue for theorists: whether or how can we make

use of the known secondary structural RNA knowledge to

explain or predict the phenomena observed in the experi-

ments? Many theoretical efforts have been devoted to under-

standing this issue (4–8). However, these theories or models

are too simple to be useful in real experiments; free energy

data about RNA secondary structures obtained by thermo-

dynamic experiments (9) were often neglected. Moreover,

they just only studied equilibrium behaviors. The intriguing

nonequilibrium phenomena were not investigated seriously.

Computational simulation should be a good choice to over-

come these shortcomings. But we noted that, compared to

enormous simulations for force unfolding proteins (10–13),

simulations for RNAs were few (3) although the biological

importance of the latter is the same as the former. Recently

we proposed a continuous time Monte Carlo (CTMC) method

to simulate force unfolding single RNAs to fill this gap

(14,15). We mainly focused on thermodynamic and kinetic

behaviors of single RNAs under a constant mechanical force.

Our simulation particularly calculated folding and unfolding

rate constants at different forces, and the results agreed with

the experiment very well. Unfortunately, the method cannot

correctly account for the fact that in many real experiments,

e.g., the mixed ensembles that we are concerned with here, the

mechanical force is often time-dependent (1,16). In our initial

simulations, a rough velocity estimation v ¼ dx/dt was used

(15), where dx is the displacement of a light trap after a dwell

time dt. The major problem of the approximation is that we

cannot uniquely choose dx and dt except that the ratio between

them is a constant. Hence, nonequilibrium behaviors simu-

lated by the method may be problematic. In this paper, we will

show that this flaw could be naturally solved by a time-

dependent CTMC approach.

The organization of the article is as follows. In the next section,

we simply review our previous force unfolding single RNAs

model, and then show how to extend it to the time-dependent

force cases using the time-dependent CTMC method. Because

the thermodynamic quantities, such as the free energy differences

are necessary in the discussion of nonequilibrium behaviors, an

exact partition function method for the mixed ensemble with

vanishing velocity of light trap (6) is reformulated. In the Results

section, we first study the RNA unfolding thermodynamics

with the simulation and the partition function method to con-

firm the correctness of the simulation. In the following part,

we investigate the kinetics of RNAs, which includes the force-

extension curves in far-from equilibrium, the free energy

reconstruction from nonequilibrium data, and a comparison of

three free energy estimators. Finally we give our conclusion.

MODEL AND METHOD

Force unfolding RNA model

Same with the experiments (1,16), our discussion is restricted to RNA

secondary structures. The mixed ensemble is sketched in Fig. 1. The position

of the center of the light trap is moved according to a time-dependent
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relationship z(t) ¼ zo 1 vt, where z(t) is the distance between the centers of the

light trap and the bead held by the micropipette, zo is the offset at time t ¼ 0,

and v is the constant velocity. We suppose that the changes of the extensions

of RNA and the handle proceed along one direction, and the physical effect of

the beads is negligible. Any state of the system at time t then can be specified

with three independent quantities, the extension of the RNA xss, the end-to-

end distance of the handle xds, and the RNA secondary structure S, i.e., the

system in i-state at time tðSi; x
ds
i ; xss

i Þt . Here xtw is not included because the

sum of individual extensions satisfies the constraint condition,

zðtÞ ¼ x
tw
1 x

ds
1 x

ss
: (1)

Hence, unfolding of single RNA proceeds in space

SðSÞ3 ð0; ldsÞ3 ð0; lssÞ; (2)

where SðSÞ is the set of all secondary structures of a given RNA sequence S,

lds, and lss are the contour lengths of the handle and the RNA molecule,

respectively. To describe the RNA unfolding as a time-ordered series of the

conformations in the space, a relation M, which specifies whether two

conformations are accessible from each other by an elementary ‘‘move’’

must be reasonably defined. We proposed the following move set (15),

ðSi; x
ds

i ; x
ss

i Þt/ðSj; x
ds

i ; x
ss

i Þt9; i 6¼ j

ðSi; x
ds

i ; x
ss

i Þt/ðSi; x
ds

i 7d; x
ss

i 6dÞt9;

ðSi; x
ds

i ; x
ss

i Þt/ðSi; x
ds

i 6d; x
ss

i Þt9: (3)

The first kind of move is removal or insertion of single basepair while

fixing the extensions xds and xss. The other two kinds are to, respectively,

move the positions of the end of the handle and the end of single-stranded

RNA with a small displacement d, while the secondary structure is fixed

simultaneously. Given the system state i at time t, the whole energy of it can

be written as

EiðtÞ ¼ DG
0

i 1 uðxtw

i Þ1W
dsðxds

i Þ1W
ssðxss

i ; niÞ; (4)

where DG0
i is the free energy obtained from folding the RNA sequence into

the secondary structure Si, and the last three terms are the elastic energies

of the optical trap, the handle, and the single-stranded part of the RNA,

respectively (15). The light trap here is simply assumed to be a harmonic

potential with a spring constant ktw. The loading rate then is ktwv.

Time-dependent CTMC algorithm

Given the conformational space, the RNA unfolding is modeled as a Markov

process in it. Previous works (14,15,17) have demonstrated that CTMC

simulation (18) was an excellent approach toward the stochastic process.

As a variant of the standard Monte Carlo method, CTMC method is very

efficient and fast because of lacking of waiting times due to rejection.

Moreover, the ‘‘time’’ in the method could be real if the transition prob-

abilities were calculated by first principles or empirically. Because we are

considering time various external force, a time-dependent CTMC is essential

(19).

The key formula in the time-dependent CTMC is that, given the system at

i-state at current time t, the probability density p( j, t9|i, t) that the next state is

j and occurs at time t9 is

pð j; t9ji; tÞ ¼ k
t9

ij exp �
Z t9

t

+
l

k
t

ildt

� �
; (5)

where ktik is transition probability from the i-state to the neighboring k-state

at time t (19), and the sum is over all neighbors of the current state.

According to Eq. 5, the time t9 for the next state to occur then can be

obtained by solving equation,

r1 ¼ exp �
Z t9

t

+
l

k
t

ildt

� �
; (6)

where r1 is a uniform random number in the interval [0, 1]. For a time-

independent situation, Eq. 6 reduces to the most common expression (15)

r1 ¼ exp �ðt9� tÞ+
l

kil

� �
: (7)

The next state j is chosen if another uniform random number satisfies

r2 # +
j

l¼1

kt9

il

�
+

l

kt9

il : (8)

For general ktik, solving Eq. 6 often requires time-consuming numerical

integration and root finding. Here we simply assume that they have sym-

metric expressions, rule (20)

k
t

ij ¼
1

to

exp �b

2
½EjðtÞ � EiðtÞ�

� �
; (9)

where b ¼ 1/kBT, kB is the Boltzmann constant, T is the temperature, and

to scales the time axis of the unfolding process. In addition to that, the

transition probabilities obey the detailed balance condition locally in time

(21,22), we find that the complicated formula of the right side of Eq. 6 has an

analytical expression if the light trap is a harmonic potential. Great effort

spent in the numerical integration therefore can be completely avoided.

FIGURE 1 Sketch of the mixed ensemble and the native states of the

RNA molecules P5ab, P5abcDA, and P5abc studied in this work. The

molecules are attached between the two beads (larger black points) with a

RNA:DNA hybrid handle (black dashed curves). The center of the light trap

is moved with velocity v. The total distance at time t is z(t) ¼ xtw 1 xds 1 xss.
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Partition function method in equilibrium

If the moving velocity of the light trap vanishes, an exact partition function

method can calculate the molecular average extension and the average force

at a given distance z (6). The method is an extension of the partition function

method proposed for RNA secondary structural prediction (23). Different

from the experimental measurement of the free energy with slow pulling

velocity (quasiequilibrium process) (16), we obtain the equilibrium infor-

mation by this exact method. Considering coincidences of formulas and

new physical quantities needed here, we rewrite the formulas proposed by

Gerland et al. (6).

The central idea of the exact method is that the partition function over all

secondary structures of a given RNA can be calculated by dynamic

programming (23). Given the partition function Q(i, j, m) on the sequence

segment [i, j] with exterior bases m, its recursion formula is given by,

Qði; j;mÞ ¼ 1dm;j�i11 1 qbði;D1 j � mÞ

1 +
j�1

k¼i

+
k�i11

l¼1

Qði; k; lÞ

3qbðk1 1; l1D1 j � mÞ; (10)

where D¼ 2, the partition function qb(i, j) on the sequence segment [i, j] for

which the i and j bases are paired; Vienna Package 1.4 provides the

calculation codes (24).

Let the partition function of the RNA molecule with n nucleotides at

extension x (including the handle) be Zn(x). Then the function can be

written as

ZnðxÞ ¼ +
n

m¼1

Z lds

0

Z mbss

0

dx
ds
dx

ss
dðx � x

ds � x
ssÞ

Qð1; n;mÞexp½�bWðxds
; x

ss
;mÞ�; (11)

where

Wðxds
; x

ss
; nÞ ¼ W

dsðxdsÞ1W
ssðxss

; nÞ: (12)

The molecular free energy landscape along x then is

GoðxÞ ¼ �kBT ln ZnðxÞ: (13)

To calculate the average force Æ f æ and the average extension Æxæ at given

distance z, we first have to calculate the free energy G(z) of the whole

partition function ZnðzÞ including the light trap by

ZnðzÞ ¼
Z z

0

dxZnðxÞexp½�buðz� xÞ�; (14)

and

GðzÞ ¼ �kBT lnZnðzÞ: (15)

Hence the Æ f æ and Æxæ are, respectively, given by

Æ f æ ¼ @GðzÞ=@z; (16)

and Æxæ ¼ z � Æ f æ/ktw.

Parameters and measurement

We carry out simulations at the experimental temperature T ¼ 298 K (1,16).

The elastic parameters used here are: the persistence length of the handle

Pds ¼ 53 nm, lds ¼ 320 nm, bss ¼ 0.56 nm, Kuhn length of single-stranded

part of RNAs Kss ¼ 1.5 nm, and ktw ¼ 0.2 pN/nm. We use the single-

stranded DNA parameters for the single-stranded part of RNAs because they

have similar chemical structures. The displacement d¼ 1 Å. The free energy

parameters for the RNA secondary structures are from the Vienna Package

1.4 (24) in standard salt concentrations [Na1] ¼ 1 M and [Mg21] ¼ 0 M. In

addition to the standard Watson-Crick basepairs (AU and CG), GU basepair

is allowed in our simulations. Formation of isolated basepairs is forbidden

because of their instability. The instant force fi(t) acting on the RNA mole-

cule at i-state is calculated by

fiðtÞ ¼ ktw½zðtÞ � x
ds

i � x
ss

i �; (17)

and the instant molecular extension is xds
i 1 xss

i .

RESULTS

Single RNAs thermodynamics

A comparison between our simulation in equilibrium and the

partition function method is necessary to directly confirm

correctness of our method. We simulate the average force-

extension curves of the three RNA molecules in Fig. 1 with

standard approach: average physical quantity A is calculated

according to

ÆAæ ¼ t
�1

Z t

0

AðtÞdt; (18)

where t ¼ 106; see the symbols in Fig. 2. We let t0 ¼ 1 for

convenience here. The force-extension curves obtained by

the exact method are plotted with different kinds of curves in

the same figure. We can see that these two independent cal-

culations agree very well.

Although the two methods agree with each other well, the

values of the unfolding forces have apparent discrepancies

with the experimental measurements. For example, in the

absence of Mg21 the values are 13.3, 11.3, and 8.0 pN for

P5ab, P5abcDA, and P5abc molecules in the mixed ensem-

ble, respectively (1). It is not unexpected because we do not

take account the effect of ionic concentration in our model.

Hence, we choose a reasonable ionic correction of RNA free

FIGURE 2 Comparison of the exact (lines) and the simulation (symbols)
force-extension curves in equilibrium for P5ab, P5abcDA, and P5abc in the

mixed ensemble.
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energies (25). Unfortunately, we still do not get good results;

see Table 1. There are two possible causes leading to such

discrepancies. One is that the ionic correction or free energy

parameters for RNA are not precise enough to be used in the

force unfolding cases. The other is that polymer elastic

parameters are not good enough. We prefer the latter to the

former. In addition to RNA free energy measured and tested

for almost 40 years, the persistent length of small ssDNA in

ionic environment is still debatable (28). For instance, we

calculate the unfolding forces of the three molecules with

Kss ¼ 2.2 nm and indeed find that they are closer to the

experimental values. As a further demonstration, we also list

other values measured in previous experiments and compare

them with theoretical predictions in the same table.

Single RNAs kinetics

Force-extension curves

If one knows the force-extension curves in equilibrium, a

way to check whether the unfolding proceeds in equilibrium

or not is to see the coincidence of unfolding trajectories and

equilibrium curves. Otherwise we have to check the coin-

cidence of folding and unfolding trajectories. Fig. 3 A shows

such an example: P5ab is stretched with the velocity v¼ 5 3

10�3 Å from the offset zo ¼ 350 nm to z ¼ 450 nm, and then

relaxed with the same velocity. Here the dimension of the

velocity is distance instead of distance/time for the dimen-

sionless t0 ¼ 1 assumed at the beginning. Apparently, the

trajectories are not coincident, i.e., force-hysteresis, which

indicates that the molecule is driven from thermodynamic

equilibrium occurs.

Until now we did not point out what values of the velocity

correspond to equilibrium or a near-equilibrium situation.

It is necessary for in the real experiments, the equilibrium

information, e.g., free energy differences, is obtained by a

slow pulling velocity (16). To solve the problem, we unfold

the three RNA molecules with two slower velocities,

1 3 10�4 and 1 3 10�5 Å. Because enormous data would

be generated if the time trajectories were fully recorded, we

only show the data per unit times 105 and 106 (see Fig. 3, C

and D). For the faster velocity, we find that, except P5ab

case, the unfolding forces for the others do not equal the

equilibrium values, whereas for the slower case, the curves

of simulations agree with the exact curves. It means that the

unfolding of the three molecules with the later velocity has

been in near equilibrium regime. In addition, two features in

Fig. 3 D are of interest to us: 1), compared with the curves

obtained by the time averaging in equilibrium, the curves

recorded at time points are very rough even before and after

the unfolding; and 2), although the whole extension z(t)
monotonically increases with time, the extensions of the

molecules may still jump between two distinct values, such

as P5ab and P5abc molecules. Indeed, similar phenomena

were also observed in the experiment (1). They indicate the

fluctuations of the extensions and RNA structures under the

external force. We have known from the experiments (1,16)

that P5abc unfoldings are near-equilibrium and far from equi-

librium at the loading rates 2–5 and 34–52 pN/s, respectively

(similar values for P5abcDA). Our simulations showed that

the unfoldings of the same molecule are, respectively, near-

equilibrium and far from equilibrium at the loading rates

ktw10�5/t0 and ktw10�4/t0. Let them equate to the experi-

mental loading rates; correspondingly, we then estimate the

constant to � 10�7s. We will scale the time with this pa-

rameter in the following. The timescale obtained in this work

is very different from previous to � 10�5s (15), which was

from the simulations in the constant force ensemble. A

possible cause is that a different kinetic move set was used

therein.

Fig. 4 shows 100 trajectories with two loading rates, 20

and 1000 pN/s for P5ab and P5abc molecules. The tra-

jectories are stretched from the same offset zo ¼ 350 nm after

thermal equilibrium until the terminal extension z¼ 450 nm.

For both the loading rates, below and above the unfolding

forces, the force-extension curves are dominated by the

double-stranded handle. But the values of the unfolding forces

apparently fluctuate and dependent on the rates and molecular

types. When the pulling speed is faster, or the loading rate is

larger (1000 pN/s), the average unfolding force increases

correspondingly. This phenomenon has been theoretically

predicted earlier (29). We note that at the same loading rate,

TABLE 1 The unfolding forces fu of the different molecules under different experimental conditions

Molecule Temperature (K) Na1 (mM) Mg21 (mM) f 1
u ðpNÞ f 2

u ðpNÞ f 3
u ðpNÞ f exp

u ðpNÞ

P5abc 298 250 0 12.2 11.4 10.0 7.0–11.0

poly(dA-dU) 293 150 0 12.3 11.0 9.3 9.0

P5abcDA 298 250 0 15.8 14.8 13.2 11.4 6 0.5

P5abcDA 298 250 10 – 15.4 13.8 12.7 6 0.3

P5ab 298 250 0 18.4 17.4 15.7 13.3 6 1.0

P5ab 298 250 10 – 18.0 16.2 14.5 6 1.0

CG hairpin 293 150 0 25.8 24.4 22.4 17.0

poly(dC-dG) 293 150 0 25.1 23.8 21.7 20.0

The experimental data are from the published lectures (1,26,27). The theoretical values are from the exact partition function method; fu
i, i ¼ 1, 2, 3 represent

the unfolding forces without the ionic correction, with the ionic correction on the free energy, and with the ionic and the Kuhn length corrections,

respectively. We do not show the P5abc unfolding force for it is not reversible in Mg21 due to the presence of tertiary interactions.

1898 Liu et al.

Biophysical Journal 90(6) 1895–1902



the trajectories of P5ab are closer to its equilibrium force-

extension curve than the trajectories of P5abc. It means that

the relaxing process of the former is faster than the latter. This

fact has also been observed in the experiment (1).

Free energy reconstruction

Recently, Hummer and Szabo (30) extended the remarkable

Jarzynski equality (21) to extract unperturbed molecular free

energy landscape Go(x) along the molecular extension x by

the following expression

GoðxÞ � Gðt ¼ 0Þ ¼ �b
�1

logÆdðx � xðtÞÞexpðDwtÞæ; (19)

where Dwt ¼ wt � ktw(x(t) � vt)2/2, G(t ¼ 0) is the free

energy of the whole system in equilibrium at initial time, and

wt ¼ ktwv vt
2
=21 zot �

Z t

o

xðt9Þdt9
� �

: (20)

FIGURE 3 (A) One of the time trajectories of unfolding

(right arrow) and refolding (left arrow) for P5ab with

velocity 5 3 10�3 Å. Force hysteresis is observed. (B) The

force-extension curves simulated by approximation veloc-

ity approach (15): dx ¼ 10 Å, the dwell time dt ¼ 105,

hence the pulling velocity is 1 3 10�4 Å. (C) With the

same velocity, the unfolding force-extension curves sim-

ulated by the time-dependent CTMC. We can see that the

approximation approach works well if smaller dwell time

chosen. The less noisy of the former is from a time-average

in the dwell time (15). (D) The force-extension curves

simulated by the current approach; the pulling velocity is

1 3 10�5 Å in this case. The smooth curves in these panels

are the exact force-extension curves of the molecules in

equilibrium.

FIGURE 4 Unfolding trajectories of P5ab (A,B) and

P5abc (C,D) with loading rates 20 and 1000 pN/s. Curves

(superposition of 100 curves per figure) are represented by

100 points with the equal time interval. For clarity we do

not connect them with lines. The white curves in these

panels are the exact force-extension curves of the mole-

cules in equilibrium.
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It is interesting to construct the free energy landscapes of the

real RNA molecules. Equation 19 implicates that the free

energy landscape can be reconstructed just by one stretching.

But considering that for finite stretching trajectories, we only

sample a small window around the molecular equilibrium

position at the whole extension z(t). Therefore, a weighted

histogram method was proposed (30),

GoðxÞ � Gðt ¼ 0Þ ¼ �b
�1

log

+
ti

Ædðx � xtÞexpð�bwtiÞæ
Æexpð�bwtiÞæ

+
ti

exp½�buðxðtiÞ; tiÞ�
Æexpð�bwti

Þæ

;

(21)

where the sum is over many time slices t9, and the average is

over the repeated trajectories at each given time slice. For

each trajectory, we choose the discrete time ti ¼ iDt, i¼ 1, ���,
100, here Dt ¼ 10/v, i.e., the time moving the light trap 1 nm

(or every point in Fig. 4).

Fig. 5 shows the finally reconstructed free energy land-

scapes for the two molecules at two loading rates 20 and

40 pN/s. The exact free energy landscapes obtained by the

partition function method are also plotted there. We see

that the precisions of the reconstructions are satisfactory. We

also note that the landscapes are unexpectedly trivial: neither

of them presents apparent energy barrier. Ritort et al. (31)

have investigated Jarzynski’s equality by modeling RNA

molecules as a two-level system with an intermediate barrier.

Our calculations contradict their assumption. The strong

unfolding-refolding cooperativity observed in the experiments

(1,16) and in our simulations actually arises from the interac-

tion of the RNA molecules and the light trap; the addition of

their potentials is a two-level system (see the respective insets
in the figure). Therefore, the two-level system, although it is a

good approximation in the RNA folding study, should not be

simply copied to the force unfolding cases.

Free energy difference estimators

In addition to Jarzynski’s equality (JE), there are two other

common estimators of the free energy difference: the mean

work (MW) and the fluctuation-dissipation theorem estima-

tors (FD) (32). Similar to the experiment (16), a comparison

among the three estimators using our simulation should be

interesting. Instead of the molecular free energies, we will

use the whole free energies (the molecules and the light trap)

for simplicity. Their definitions are:

JE estimator DGJEðzÞ ¼ �b
�1

logÆexpð�bwzÞæN;

MW estimator DGMWðzÞ ¼ ÆwzæN;

FD estimator DGFDðzÞ ¼ ÆwzæN � bs
2

w;

where

DGiðzÞ ¼ GiðzÞ � GiðzoÞ; (22)

i ¼ MW, FD, and JE, and sw is the standard deviation of the

work distribution (32) (we here replace time t by the whole

extension z due to the linear relation between them). To get

an intuitive observation about the estimators, we calculate

the free energy differences between the estimators and the

exact free energies,

DGiðzÞ � DGðzÞ: (23)

The differences of P5ab and P5abc with the loading rates 20

and 40 pN/s, respectively, are shown in Fig. 6, A and B, and

N ¼ 1000.

There are two common features in the figure. First, the free

energy differences for each estimator are not uniform along

the molecular extension. For example for JE estimator, the

differences are maximum around the unfolding extensions

such as 415 nm for P5ab. We conclude that nonequilibrium

behaviors of the same molecule are not uniform along its

FIGURE 5 Comparison of the free energy landscapes of

the two molecules P5ab and P5abc reconstructed from the

Jarzynski equality and the exact landscapes calculated

from the partition function method. The loading rates are

20 and 40 pN/s, and the number of trajectories for each

case is 1000. The insets are the free energy landscapes of

the whole systems composed of the RNA molecules and

the light trap, which are from the partition function method.

Note that we do not show the scales of the extensions and

free energies.
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extension, even if the RNA is unfolded with the same

loading rate. Then for both the molecules, the JE estimator is

always better than the MW at any loading rates. For the P5ab

case, the FD estimator is more or less better than the JE at the

extension z. 415 nm. This trend is more apparent as P5ab is

unfolded with smaller loading rate 20 pN/s. In contrast, the

JE estimator for P5abc is superior to the FD estimator over

the entire extension range at the two loading rates.

These interesting observations can be understood from the

distributions of the dissipated works

wdis ¼ wz � DGðzÞ: (24)

Fig. 6, C and D, show the histograms at a given distance z ¼
430 nm, respectively. We find that for P5ab cases at the

loading rates, the distributions agree well with Gaussian

functions whose means and variances are obtained from the

same data. This agreement is not unexpected: When a system

is in the near-equilibrium regime, it always has a Gaussian

dissipated work distribution, and in particular, an important

equality, (32)

sw ¼ 2b
�1Æwdisæ; (25)

holds (in our data set sw ¼ 2.86 (kBT)2 and Æwdisæ ¼ 1.57

kBT). Indeed, the force-extension curves of P5ab at lower

rates have implicated this conclusion (see Fig. 3 A); whereas

for the P5abc cases, we cannot obtain similar results because

the system is driven far from equilibrium at the given loading

rates (see Fig. 6 D).

Because the above analysis is carried out at a given

N-value over a specific data set, we do not consider the errors

caused by the value of N and the difference of samples. Gore

et al. (33) have studied the issues in the large N limit and in

the near-equilibrium regime. Our simulations also demonstrate

correctness of their conclusions (F. Liu, unpublished data).

CONCLUSION

In this work, we improve our previous stochastic model to

correctly take into account the time-dependent force by using

the time-dependent CTMC method. We mainly consult with

two recent RNA force unfolding experiments carried out by

the Bustamante group (1,16). The simple RNA thermody-

namic and kinetic properties under mechanical forces have

been investigated. Combined with our previous effort for

the constant force ensemble, our results show that, in contrast

to protein cases, using the single polymer elastic theory and

the RNA secondary structure free energy knowledge, we can

successively simulate various behaviors of force unfolding

RNAs under different experimental setups from equilibrium

to far-from equilibrium. We hope that our simulations would

be more useful in RNA unfolding studies in the future.

The computation of this work was performed on the HP-SC45 sigma-X

parallel computer of the Institute of Theoretical Physics and the Interdis-

ciplinary Center of Theoretical Studies, Chinese Academy of Sciences. F.L.

FIGURE 6 (A,B) The differences between the three free

energy estimators and the exact energies for P5ab and

P5abc at two loading rates 20 (solid symbols) and 40 pN/s

(crossed symbols): MW (circle and plus sign), FD (square

and multiplication sign), and JE (diamond and star); here

N ¼ 1000. (C, D) Histograms of the dissipated works at

extension z ¼ 430 nm for P5ab and P5abc molecules at the

two loading rates. The solid lines are Gaussian functions

with mean and variance from the same data set, the dotted

lines are for 20 pN/s, and the dashed lines are for 40 pN/s.
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