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ABSTRACT A fundamental step in the replication of a viral particle is the self-assembly of its rigid shell (capsid) from its
constituent proteins. Capsids play a vital role in genome replication and intercellular movement of viruses, and as such,
understanding viral assembly has great potential in the development of new antiviral therapies and a systematic treatment of
viral infection. In this article, we assume that nucleation is the underlying mechanism for self-assembly and combine the
theoretical methods of the physics of equilibrium polymerization with those of the classical nucleation to develop a theory for the
kinetics of virus self-assembly. We find expressions for the size of the critical capsid, the lag time, and the steady-state
nucleation rate of capsids, and how they depend on both protein concentration and binding energy. The latter is a function of the
acidity of the solution, the ionic strength, and the temperature, explaining why capsid nucleation is a sensitive function of the
ambient conditions.

INTRODUCTION

There is little doubt that the assembly of virus capsids from

the coat proteins is a thermodynamic process, if not for all

then certainly for a large class of virus (1–7). Indeed, for

many viruses, including Hepatitis B virus (HBV), Human

Papilloma virus (HPV), Cowpea Chlorotic Mottle virus,

Brome Mosaic virus, Broad Bean Mottle virus, Sindbis virus,

and Tobacco Mosaic virus (TMV), the coat proteins spon-

taneously form capsids in aqueous solution under the right

conditions of concentration, salinity, pH, and temperature

(4,8–14). Often these capsids have a morphology identical to

that of the native virion, but nonnative structures may

emerge too (9). Although still poorly understood, the phe-

nomenon of capsid polymorphism was recently explained in

terms of a conformational switching of the coat proteins

(2,7).

Plausibly, the main driving force for capsid assembly is

the hydrophobic interaction between apolar patches on the

coat proteins (4,15–18), which has to be strong enough to

overcome the Coulomb repulsion between the net electrical

charge on them (15,16,18,19). Other types of interaction may

also contribute to the stability of virus capsids, of which the

most prominent are the complexation with the oppositely

charged genome (real or synthetic) (9,11,20,21), and hydro-

gen bonds or salt bridges involving, e.g., Caspar carboxylate

pairs on neighboring coat proteins (1,3,22). The strength of

the net attractive interaction between the coat proteins

inferred from equilibrium assembly studies are remarkably

weak (4,23), however, and thought to prevent the growing

capsids from becoming kinetically trapped (24,25).

Kinetic studies of icosahedral capsids (and procapsids)

suggest that their assembly does not occur in a single step but

follows a cascade of lower-order reactions (10,24–26).

Experimental data and computer simulations point at nucle-

ation-and-growth as the prevailing assembly mechanism

(27–29), the kinetics of which is sensitive to the ambient

conditions. These conditions determine whether the docking

of coat proteins onto partially complete capsids is reversible

or (effectively) irreversible. The latter should be the case if

the quenching is (in some sense) deep or the bonding strong,

albeit for different reasons so (27). For relatively weak

bonding, coat proteins attaching to the growing capsid are

presumably able to rearrange themselves and to find a state

of a local equilibrium, arguably a crucial requirement for the

completion of well-formed capsids (28).

If the interactions between the virus coat proteins are not

strong and if they are initially freely dissolved, we would

expect the classical nucleation picture to (approximately)

hold, bearing in mind that capsid assembly is believed to be

akin to crystallization and to micelle formation (6). This

implies that there must be thermodynamically unfavorable

intermediate states that produce a kinetic bottleneck to the

formation of the capsids (30–32). If so, capsid assembly

kinetics should be sigmoidal and characterized by a lag time

before a significant production of capsids is reached. This

has indeed been observed in assembly studies of HPV

capsids (10) and of phage P22 (26) procapsids in the pres-

ence of scaffolding subunits, and arguably so in studies on

CCMV and HBV under mild quenching conditions (24,25).

Experimental observations on HBV assembly kinetics can

described qualitatively by a reaction cascade model put

forward by Zlotnick and collaborators (25,27), the governing

set of equations of which have so far only been solved

numerically. Since the model is similar in spirit to theoreti-
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cal models for surfactant micelle assembly (30) and the

homogeneous nucleation of crystals (31), it should be pos-

sible to apply notions from either field to capsid formation

and provide qualitative predictions without explicitly solving

the rate equations. Here, we do exactly that by invoking clas-

sical nucleation theory for a simplified version of the model,

valid in the limit where kinetic trapping does not occur and

conditions of local equilibrium are observed. Our nucleation-

and-growth model is consistent with the energy landscape

picture of the minimal model of capsomer interaction pre-

sented in (33). A better understanding of the capsid nucle-

ation kinetics could be instrumental in the design of antiviral

drugs that interfere with the polymerization pathway (34).

The theory we present in this article allows for a quan-

tification of the quench depth in terms of supersaturation of

the coat proteins relative to a critical capsid concentration

(15). It explains how the steady-state nucleation rate and the

lag time can be influenced by varying the concentration of

coat protein, the ionic strength, the temperature, and the pH.

We put forward that the differences in the scaling of the

nucleation rate with concentration found for coat proteins of

different viruses might be due to the unusual nucleation of

(quasi two-dimensional) objects of fixed size. It suggests that

more extensive experimentation is necessary, spanning a

larger range of concentration than hitherto done to ascertain

that the observed nonuniversal behavior is caused by dif-

ferences in coat protein structure (10,24–26). Finally, the

theory also provides a natural explanation for the hysteresis

observed in assembly and disassembly experiments (35), an

issue we address in more detail elsewhere.

The remainder of this article is organized as follows. In the

first section, entitled Equilibrium Theory of Virus Capsid

Assembly, we recapitulate the statistical theory of the

supramolecular assembly of spherical (icosahedral) capsid

shells (15,36–38), formulated slightly differently from the

usual theory of micellization, but in fact equivalent to it

(20,39). We confirm that capsid formation is indeed

reminiscent of a first-order phase transition and that capsid

formation must always be nucleated. In the next section,

Classical Nucleation Theory of Capsids, we apply the

classical nucleation theory to spherical shells that, for

simplicity, we presume to be incompressible. We calculate

the steady-state nucleation rate as well as the lag time, and

find it to be a nonuniversal function of the actual con-

centration and the critical capsid concentration of the equi-

librium state the system attempts to approach. In the last two

sections, Discussion and Conclusions, we discuss our findings

and their implications, and summarize our conclusions.

EQUILIBRIUM THEORY OF VIRUS
CAPSID ASSEMBLY

Let F denote the Helmholtz free energy of an aqueous solu-

tion of N-coat protein building blocks in a volume V. The

building blocks self-assemble into capsids of fixed aggrega-

tion number q � 1. We do not specify the kind of building

block: depending on the species they may be monomers,

dimers, or even pentamers or hexamers of the actual coat

proteins (5). Partially formed capsids are stable only in very

small amounts for reasons intimated in the Introduction and

elaborated below, so we ignore these for now (36). In-

corporating them in the equilibrium theory would make the

mathematics more cumbersome, but does not alter our con-

clusions in any significant way (see Appendix A). Hence, we

assume that there are an as-yet-unknown number of N1 free

monomers and of Nq fully formed capsids.

Within a mean-field approximation, the free energy is the

sum of an ideal free energy of mixing of the free monomers

and capsids, and a free energy accounting for the interactions

between proteins bound in the individual capsids. We ignore

other types of (nonbonded) interaction between the various

species, because, at the level of a (Flory-type) mean-field

theory, these do not couple to the self-assembly (40). The

reason is that the associated excess free energy is a function

of the overall concentration of material only, not how this

material is distributed over monomeric and polymeric spe-

cies.

We thus write (40)

bF ¼ N1 ln r1v� N1 1Nq ln rqv� Nq 1bqDgNq; (1)

where ri ¼ Ni/V denotes the number density of the

component with i ¼ 1, q is the aggregation number, and

b ¼ 1/kBT is the reciprocal of the thermal energy with kB

Boltzmann’s constant and T the absolute temperature. A

particular derivation of Eq. 1 is given in Appendix A. In Eq.

1, the quantity Dg # 0 is the effective, mean binding free

energy of a single subunit, tacitly assuming that it is a

quantity averaged over all q monomer units of a fully formed

capsid. (Recall that in icosahedral capsids the coat proteins

do not have identical but quasi-equivalent local environ-

ments (5).) We present a phenomenological estimate for the

free energy of binding in Appendix B, and merely note that

because interaction energies between pairs of protein are of

the order of a few kBT (18,41,42), this amounts to binding

energies jDgj of 10–20 kBT. (For HBV, Dg was found to be

closer to �20 than to �10 kBT (4,15).) The reference

volume, v, is of the order of the volume of a solvent mole-

cule, so for all intents and purposes, riv , 1 may be in-

terpreted as a mole fraction in a description that implicitly

includes the background solvent as part of the system (43).

As noted in Appendix A, the size of a solvent molecule must

be the smallest relevant physical length scale in the problem

because we have tacitly integrated it out of our description.

The equilibrium distribution of proteins over the assem-

bled and disassembled states follows by minimization of the

free energy subject to the conservation of mass, N ¼ N1 1

qNq. Putting (@F/@N1)N,V,b ¼ 0 results to

ln r1v� 1

q
ln rqv� bDg ¼ 0 (2)
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or

rqv ¼ r1ve
�bDg

� �q
; (3)

which is the familiar law of mass action. Equation 3

establishes a relation between equilibrium concentration of

capsids and free protein subunits. For very low concentration

of proteins, rv ¼ r1v1qrqv/0, most subunits remain free

in the solution, i.e., rqv � r1v and rv � r1v. However,

since rqv must always be smaller than unity, it is clear that

r1v can never exceed the quantity ebDg. Thus,

r�v ¼ e
bDg

(4)

is a critical density, equivalent to the critical micelle con-

centration in surfactant solutions (39). This critical capsid

density depends not only on the type of coat proteins but also

on the physical conditions of the solution, i.e., on the tem-

perature, ionic strength, acidity, and so on. See the Appendix

B. From Eqs. 3 and 4, we deduce that the transition from the

monomer to the capsid-dominated regime becomes sharp in

the limit where q/N, because in that case qrq ¼ r – r* if

r $ r* and rq ¼ 0 if r # r*.

Interestingly, capsid assembly resembles a phase transition,

provided we let q / N. As may be verified straightfor-

wardly, the heat capacity per monomer, DcV ¼ �kBN
�1b2

@2bF=@b2
� �

N;V
, calculated from Eqs. 1–4, exhibits a jump

from DcV ¼ 0 to DcV ¼ kB bDeð Þ2
when the critical density

r* crosses the monomer density r from above, where De is

the capsid binding energy (enthalpy). Such a jump is typical

of a phase transition in a mean-field theory (44), but cannot

help distinguish between a first- or second-order transition.

Note that for finite q there is no discontinuity, but the heat

capacity is sharply peaked—in fact, allowing for an accurate

measurement of r* and therefore of Dg (17). We refer to

Appendix C for details.

An important quantity in the development of the classical

nucleation theory is the difference between the chemical

potential of free protein subunits in the metastable solution

and bound proteins in the capsids. The chemical potential of

the free protein subunits in solution is

bm1 ¼ b
@F

@N1

� �
V;b;Nq

¼ ln r 1v; (5)

and similarly, the chemical potential of a capsid is

bmq ¼ b
@F

@Nq

� �
V;b;N1

¼ ln rqv1 qbDg: (6)

It can be easily shown (see Appendix A) that the optimal

distribution of proteins over the assembled and disassembled

states, given by Eq. 2, corresponds to the condition m1 ¼ mq/q.

In other words, the equilibrium condition is determined by

the requirement that the chemical potential of a subunit in the

capsid, mq/q, be equal to that of a subunit in solution m1. If

we consider an initial state in which no capsids and only

monomers are dispersed in the solution, that requirement

translates into

ln reqv ¼ bDg ¼ ln r�v; (7)

which determines the concentration of free subunits req at

which, from a purely equilibrium perspective, capsid self-

assembly will set in. It is worth noticing that this coexistence

concentration req coincides with the critical capsid density,

defined by Eq. 4.

We shall be needing Eqs. 5 and 6 in the theory presented

in the next section.

CLASSICAL NUCLEATION THEORY OF CAPSIDS

With a first-order phase transition it is often possible to

quench an initially stable phase (e.g., a vapor, liquid, or solu-

tion) through the thermodynamic condition of coexistence

sufficiently rapidly, so that the transition does not immedi-

ately occur and the phase becomes metastable. Quenching

does not necessarily involve a change in temperature; it may,

for example, involve a rapid change of pressure or any other

intensive variable that characterizes the system. The meta-

stable system may then be relatively slowly converted to a

stable one that contains the initial phase (the mother phase)

and a new phase. The dynamic process by means of which

this is achieved usually involves nucleation (already referred

to in the Introduction). A particularly simple example of the

conversion from metastability to stability is the condensation

of a vapor from an initial state of supersaturation to coexis-

tence with its corresponding liquid at the equilibrium or

saturation pressure.

The relative slowness of the conversion is due to a free

energy barrier (discussed in Introduction) which the system

must surmount in the process. The basic theory of the rate

of conversion, especially at the molecular level, is very dif-

ficult, and after many years is still a work in progress. How-

ever, considerable quantitative success has been achieved

by appealing to a modelistic approach (classical theory of

nucleation) in which the intermediate states of the conversion

are treated as coarse-grained renormalized versions of the de-

tailed molecular states. Take, e.g., the example of the con-

densation of a supersaturated (metastable) vapor into a

liquid. Normally it will proceed via fluctuations that produce

clusters of molecules that eventually grow into liquid drops.

In the coarse-grained classical theory, the smallest clusters

are then modeled as liquid drops that have the uniform

density and the surface tension of the bulk liquid and a sharp

interface with the vapor.

Within the model, thermodynamics shows that the free

energy of formation of a cluster containing n molecules may

be expressed as (31,32)

DGðnÞ ¼ nðml � mvÞ1sAn; (8)

in which ml is the chemical potential per molecule in the

drop, as if all of its material were at the pressure outside of

Nucleation Theory of Virus Capsids 1941
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the drop, while mv is the chemical potential in the vapor. The

value s is the surface tension of the drop and An is its surface

area. Since the vapor is supersaturated, its chemical potential

exceeds that of the liquid and the first term on the right of Eq.

8 is negative, while the second term is positive. However,

when n is small, the absolute value of the first term is smaller

than that of the second which, through its dependence on An,

increases only as n2/3. As a result, at small values of n, DG
increases as n increases but at larger values the negative first

term (the volume term that varies directly as n) overtakes the

surface term and causes DG to decrease. A maximum, repre-

senting the free energy barrier, is thus produced.

Cluster growth is described by a sequence of reversible

kinetic steps involving the gain and loss of single molecules.

With the aid of the principle of detailed balance the flux of

clusters through size space (n-space) may be described by a

Fokker-Planck equation (31,32). The actual rate of nuclea-

tion (rate of drop formation) is determined by the rate

(nucleation rate) at which clusters cross the top of the barrier.

Indeed, the cluster at the top of the barrier is the condensation

nucleus since it can grow spontaneously with a decrease of

free energy. When the barrier and its curvature are large

enough, the crossing rate can be determined by a steepest-

descents integration (involving only clusters in the neigh-

borhood of the nucleus) of the Fokker-Planck equation that

leads to an Arrhenius-like expression for the nucleation rate

that contains the barrier height in the exponential factor. The

preexponential factor contains the so-called Zeldovich factor

which, among other things, accounts for the concentration

of nuclei being less than the equilibrium value that would

obtain if clusters were not allowed to grow appreciably

beyond the nucleus size.

Turning to capsid assembly, we will, as promised, model

the process as a nucleation phenomenon. Using the frame-

work of nucleation theory, capsids, complete or partially

formed, will be treated as clusters of proteins or capsomers.

The capsid self-assembly does not set in, in general, at the

equilibrium concentration predicted by Eq. 4, mainly due to

the presence of a free energy barrier. When the concentration

of proteins exceeds a critical value, the chemical potential of

proteins in a capsid becomes smaller than in solution, and

this difference is, in fact, the thermodynamic driving force

for the capsid formation. Some differences from the standard

approach of classical nucleation theory (31,32) are that clus-

ters have a maximum size and that, since the capsid consists

only of a two-dimensional structure, surface tension will be

replaced by a line or rim tension. Rim tension contributions

will only appear in incomplete capsids. The rim proteins

have fewer contacts with their neighboring protein resulting

into a higher free energy. Other subtleties will be ignored.

For example, in Eq. 8, ml is the chemical potential that a

molecule in the drop would have if the interior of the drop

were at the pressure outside of the drop. An equivalent sub-

tlety would be expected in the capsid chemical potential, but

we will ignore it to keep the model as simple as possible.

Here, we consider an initial state in which the capsid sub-

units are molecularly dispersed, and a final state in which a

finite fraction of the subunits has assembled into capsids.

Following the standard ideas of classical nucleation theory,

we can then propose a thermodynamic expression—very

similar to Eq. 8—for the free energy of formation of a par-

tially formed capsid consisting of n units. Provided that the

capsids have a fixed radius of curvature R (i.e., the radius

of the capsid) even when incomplete, and that the shell is

laterally incompressible, the Gibbs free energy DG of a

growing capsid in contact with the metastable host disper-

sion becomes equal to (31)

DGðnÞ ¼ nDm1sl: (9)

Here Dm is the difference between the chemical potentials of

the protein subunits in the stable assembled and metastable

disassembled states; l is the contour length of the rim; and s

is the energy cost per unit length associated with the rim (and

it is in this sense, similar to a line tension). As in the case

of CNT, we will resort to a quasi-continuum approach. We

assume that a partially formed capsid is a spherical cap

characterized by an angle u (see Fig. 1). From simple

geometry, n ¼ q(1 – cos u)/2, and the length of the rim is l¼
2pR sin u. We can also express, l, in terms of the number of

units n as

l ¼ 4pR

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðq� nÞ

p
: (10)

FIGURE 1 Representation of the continuum model of a partially formed

capsid. R denotes the radius of the capsid and u is the angle that characterizes

the degree of completion of the capsid.
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Accordingly, the free energy of formation becomes DG(u) ¼
Dmq(1 – cos u)/2 1 2pRs sin u, or in terms of the number of

units in the partially formed capsid,

DGðnÞ ¼ nDm1 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðq� nÞ

p
; (11)

where

a ¼ 4pRs

q
(12)

is a measure of the rim energy. The first term in Eq. 11

promotes the formation of capsids, while the second term is

responsible for the barrier exhibiting nucleation of capsids.

The presence of the rim free energy is, in fact, also the reason

for partially complete capsids to be strongly suppressed in

equilibrium so that they can be approximately ignored in an

equilibrium description. (Numerical studies confirm this

(36).)

To calculate the barrier height, we locate the maximum

of the Gibbs free energy Eq. 11. Let G [ �Dm/a be a

dimensionless measure of the supersaturation or quench

depth. By setting @DG=@nð Þb¼ 0, we find for the barrier

height

DG� ¼ DG
0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
G

2
1 1

p
� G

� �
; (13)

with DG0
� [ qa=2, and for the critical nucleus size

n� ¼
q

2
1 � Gffiffiffiffiffiffiffiffiffiffiffiffiffi

G
2
1 1

p
� �

: (14)

We have plotted both quantities in Figs. 2 and 3, showing (as

expected) a monotone decrease of both the barrier height and

the size of critical nucleus with increasing supersaturation G.

We postpone a more detailed discussion of our findings to

the next section, where we also translate the theoretical pa-

rameter G into a more practical one.

As noted previously, the barrier height is the principal

determinant of the nucleation rate because of the unfavorable

Boltzmann weight r exp (� bDG*) of the critical nucleus

that acts as a kinetic bottleneck. Within a Becker-Döring

type of kinetics where single monomers sequentially attach or

detach, the steady-state nucleation rate per unit volume, J,

can be found to obey the Zeldovich form (31),

J ¼ n�Zr expð�bDG�Þ; (15)

with n
*

the so-called jump-frequency that is a function of the

diffusivity of the free monomers, and

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p
j@2

bDG=@n
2j

b;n¼n�

r

¼
ffiffiffiffiffiffi
ba

qp

s
ð11G

2Þ3=4
; (16)

the Zeldovich factor that accounts for the survival time of the

critical nucleus. Without derivation we also simply quote the

estimate for the lag time, t, before reaching steady-state

nucleation (31,32)

t ¼ 1

4pn�Z
2: (17)

Our predictions for the nucleation rate, Eq. 15, and for the lag

time, Eq. 17 are plotted in Figs. 4 and 5. The nucleation rate

increases, while the lag time decreases, with increasing super-

saturation. This agrees with experimental observation, and

with results of numerical model calculations (25,27,28).

The theory developed in this section is quite general and

can, in principle, be applied to any type of model for the ef-

FIGURE 2 The capsid nucleation barrier, DG
*
, scaled to its maximum

value at the critical density, DG
*

0, as a function of the dimensionless super-

saturation G as defined in the main text.

FIGURE 3 Ratio of the critical capsid nucleus, n*, and the aggregation

number of a complete capsid q as a function of the dimensionless super-

saturation G.
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fective interaction between capsid structural units. Indeed, its

main ingredients, Dm and s, can be expressed in terms of the

protein density, r, and the interaction energy, Dg. Based on

the equilibrium theory developed in the previous section

‘‘Equilibrium Theory of Virus Capsid Assembly’’, the

difference in chemical potentials in the limit q � 1 becomes

bDm ¼ bðmq=q� m1Þ ¼ bDg� ln rv ¼ �ln
r

r�
; (18)

where we have considered an initial state in which no capsids

and only free subunits are dispersed in the solution. A very

simple estimate of the line tension is s ¼ – cDg/r0, where c
denotes the number of bonds that a rim protein has fewer

than a core protein, and r0 is the effective diameter of a unit.

If, for simplicity, we assume that the structural units can be

approximated as disks of effective diameter r0, and further

assume full coverage of the spherical surface of a fully

formed capsid, then we have qp r0=2ð Þ2¼ 4pR2; or R=r0 ¼ffiffiffi
q

p
=4. Therefore, we can estimate the value of a as

a ¼ �pc
Dgffiffiffi
q

p : (19)

In more general terms, the value of a would be given by

a ¼ �bcDg=
ffiffiffi
q

p
, where b is a geometrical factor related to

the shape of the subunits and the structure (T number) of the

capsids. It is important to stress again that r* and therefore

Dg are experimentally accessible quantities (4,15).

DISCUSSION

The key quantities in a nucleation process are the barrier

height and critical nucleus size, given in our case by Eqs. 13

and 14. In this section we will analyze in more detail these

expressions and relate them with physical and experimen-

tally measurable quantities. Let us first analyze the behavior

upon the value of the quench depth. For shallow quenches

with G � 1, we find n*/q ; (1/2)�(1/2) G 1. . . and

DG�=DG
0
� ;1 – G1 ���. For deep quenches, implying strong

supersaturation G � 1, we have n*/q ;(1/4) G�2 � 1 and

DG�=DG
0
�;ð1=2ÞG�1 � 1. So, the critical nucleus is large,

up to half the size of a complete capsid if the quench is

shallow. Its size rapidly decreases with increasing supersat-

uration, shrinking to approximately a monomer size if

G.
~
ð1=2Þ ffiffiffi

q
p

. The free energy barrier also reduces in

magnitude with increasing supersaturation, ultimately to

become of the order of the thermal energy, in which case the

nucleation process becomes dominated by kinetic effects

represented by the preexponential factor.

The above theory is similar to that for the nucleation of a

macroscopic phase, as in the crystallization of a solid or the

condensation of a vapor. In classical nucleation theory, one

finds that n* ¼ 32py2x�3/3 and DG� ¼ 16py2jDmjx�3=3

provided the nuclei are spherical with y is the volume of a

molecule and x ¼ – Dm/s, where s is the surface tension of

the stable phase (31). Apart from a different scaling of the

various quantities with the thermodynamic driving force

bDm, the main difference between capsid nucleation and the

nucleation of a macroscopic phase is that in capsid assembly

neither the nucleation barrier nor the critical nucleus size

diverge when the supersaturation becomes vanishingly

small, i.e., when bDm / 0. The reason is that, in a way,

the novel phase grows on the surface of a sphere of fixed

size, where both reduced dimensionality and finite size

modify the predictions of classical theory.

The upper limit to the barrier height DG0
� ¼ qa=2 for

capsid nucleation may not be infinite, but it is still very large.

A simple order-of-magnitude estimate of the height is

DG0
� � � ffiffiffi

q
p

Dg, with jDgj � 10–20 kBT and q� 60–180 for

FIGURE 4 Nucleation rate J for a T¼ 3 virus capsid with q¼ 180, scaled

to its minimum value J0 as a function of the dimensionless supersaturation G.

Shown are results for different dimensionless binding free energies |bDg| ¼
5,10,15,20,25 (from bottom to top).

FIGURE 5 The lag-time t scaled to its maximum value t0 at the critical

density, as a function of the dimensionless supersaturation G.
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the smaller viruses with a T number less than or equal 3 (23).

(Here, we presume that the building blocks are single coat

proteins—this does not need be the case in practice (5).)

Hence, we expect barrier heights in the range 70–140 kBT for

the smaller viruses at weak supersaturation.

To clarify what shallow and deep quenches precisely are

in the context of capsid nucleation, we rewrite the supersat-

uration parameter G ¼ – Dm/a in terms of quantities that are

measurable in an actual experiment, even if this is true only

in principle. For our choice of assembly conditions, where no

capsids are present in the initial (metastable) state, we have

G ¼ �
ffiffiffi
q

p

pcbDg
ln

r

r�

� �
¼

ffiffiffi
q

p

pc
1 � ln rv

ln r�v

� �
; (20)

where we have made use of Eqs. 18 and 19. Note that Eqs. 13

and 20 show that the deeper we quench into the capsid-

dominated regime, the larger the value of G, and the lower is

the free energy barrier. In other words, the larger the final

fraction of protein assembled into capsids, the swifter will

have been the kinetics of nucleation. Again, this is in accord

with experimental observation on HBV, HPV, P22 procap-

sids, and CCMV (10,24–26). From Eq. 20 we are also able to

conclude that the critical nucleus size is reduced to the order

of a monomer for r/r* � exp(�bDg/2), which is of the order

of 102–104.

It is now clear that the height of the nucleation barrier,

DG* as well as the rate of nucleation, J, and the lag time, t,

are functions of the ratio of the logarithms of the actual and

the critical concentrations, and of the critical concentration

after the quench. For example, for deep quenches we find the

following simplified relation for the nucleation barrier

bDG� �
ðpcbDgÞ2

4 ln ðr=r�Þ
¼ �1

4
ðpcÞ2

ln r�v 1 � ln rv

ln r�v

� ��1

;

(21)

where we have inserted Eq. 20 as well as the relation

DG0
� ¼ �ð1=2Þpc ffiffiffi

q
p

ln r�v into the asymptotic behavior of

Eq. 13. Similar expressions may be obtained for the

nucleation rate and the lag time from Eqs. 15 and 17. We

are led to conclude that capsid nucleation kinetics must be

nonuniversal, for it depends not only on some measure of the

relative quench depth but also on the binding energy, Dg, and

the geometry of the capsid subunits. The averaged binding

energy Dg, or equivalently, the location of the critical con-

centration depends on the type of virus coat protein, the ionic

strength, the pH, the temperature, and so on. See, e.g., the

Appendix B.

Finally, it is worth mentioning that not only capsid

assembly but also capsid disassembly can be described in the

context of classical nucleation theory (31). We will analyze

the interesting problem of disassembly and of hysteresis else-

where in detail, and only mention that the rate of disassembly

is different from that of assembly because the critical nuclei

have different Boltzmann weights. (Even if the barrier to

nucleation were the same, in a disassembly experiment, the

number of critical nuclei is on the order of the aggregation

number of the complete capsid—which is smaller than in an

assembly experiment at equal concentration, because in that

case, the monomer density r entering the nucleation rate Eq.

15 must be replaced by the capsid density rq # r/q � r.)

CONCLUSIONS

By combining an equilibrium theory of virus capsid assem-

bly and homogeneous nucleation theory, we have obtained

predictions that reproduce the main features of assembly

kinetics of empty virus capsids under mild quenching

conditions as found in experiment and in numerical simu-

lation.

We find that both the lag time and the steady-state nucle-

ation rate of capsids are functions of the protein concentra-

tion and of the critical capsid concentration. The latter

quantity depends on the type of virus coat protein as well

as on the ambient conditions of ionic strength, pH, and tem-

perature through the impact that these have on the strength of

the interactions between the coat proteins. Hence, a useful

interpretation of capsid assembly (or disassembly) data does

not seem possible unless either the critical capsid concen-

trations or the average binding energies are known.

Matters are compounded by the lack of a universal scal-

ing of either the lag time or the nucleation rate with the

concentration of coat protein. This suggests that the different

power laws found for the nucleation rates of coat proteins of

different viruses (10,24–26) need not be entirely caused by

differences in the protein structure, but may also be due to

differences in the quenching conditions. Experiments span-

ning a larger range of concentrations than thus far performed

are required to resolve this issue.

Finally, capsid nucleation experiments in the presence of

genome seem to follow different kinetics from that seen in

the absence of genome. Since the genomes form complexes

with capsid proteins, it may be possible to study this phenom-

enon theoretically from the perspective of heterogeneous

nucleation theory (45). Work along these lines is currently

underway.

APPENDIX A: FREE ENERGY OF A
CAPSID SOLUTION

In this Appendix we provide more insight into the mean-field expression for

the Helmholtz free energy F given in Eq. 1. There are many ways to set up a

mean-field theory, but here we choose to invoke a cell model of the subject

system, consisting of a renormalized background solvent within which coat

proteins and partially formed capsids are dissolved. In this description,

intermolecular potentials between proteins and proteins, on the one hand,

and capsids and proteins, on the other, become potentials of mean force

(actually free energies). The sizes of the cells are chosen so that, at one time,

only the center of mass of a single protein or capsid fragment can occupy a

cell. Since the solvent enters the description only implicitly, a natural cell
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size would be the size of a solvent molecule. (For a more detailed discussion,

the reader is referred to (43).) In effect, we will deal with solutions of

proteins and capsids so dilute that they may be considered to form an ideal

solution within the background solvent.

The number of particles containing n coat proteins will be denoted by Nn,

whereas the number of cells will be denoted by M, and it is given by

M ¼ V

v
; (A1)

where V is the total volume of the system and v is the volume of a cell. If the

total number of protein molecules in the system is N, the conservation

condition, Eq. A2,

+
q

n¼1

nNn ¼ N (A2)

applies, where q represents the number of coat proteins in a fully formed

capsid. The internal partition function of a particle will be denoted by qq̂qn and

the partition function of a particle confined to a cell will then be given by

qn ¼ qq̂qn

v

L
3

n

; (A3)

where Ln � v1/3 is the thermal De Broglie wavelength

Ln ¼
h

ð2pnmkTÞ1=2
; (A4)

in which h is Planck’s constant and m is the mass of a coat protein. Then

v/Ln
3 is the translational partition function of the particle confined to a cell.

With these various definitions the partition function of the protein system in

the renormalized background may be written as

Q ¼ +
fNng

Yq

n¼1

M!

ðM � NnÞ!Nn!
ðqnÞNn ; (A5)

where the sum is over {Nn} representing all particle size distributions that

satisfy Eq. A2. The combinatorial factor in this equation represents the

number of distinguishable configurations of the particles over cells, whereas

the product of qn-values reflects the fact that the particles in the protein

system are in dilute enough concentration such that interactions between

them can be ignored.

The structure of Q should be self-evident. As usual, we shall be content

with representing Q by its maximum term and the equilibrium distribution of

Nn by the distribution corresponding to that maximum term. That distri-

bution, subject to Eq. A2, is easily found by the method of undetermined

multipliers to be

Nn ¼
Mqne

an

11 qne
an; (A6)

where a is the undetermined multiplier. Note that qn can be expressed, in

standard canonical ensemble form, as

qn ¼ exp � 1

kT
fn 1sn 1 tn½ �

� 	
; (A7)

where fn is the internal free energy of the particle, sn is line-tension free

energy of an incomplete capsid, and tn is the translational free energy of the

particle within a cell. Thus,

v

L
3

n

¼ e�tn=kT
: (A8)

Note that tn is negative, reflecting the increased entropy of a freely moving

(within v) particle.

The free energy of the protein system is

F ¼ �kT lnQ

¼ �kT +
q

n¼1

½M lnM � ðM � NnÞlnðM � NnÞ

� Nn lnNn 1Nn ln qn�:
This equation is obtained by taking the logarithm of the maximum term in

Eq. A5. Note that, using M ¼ (M – Nn) 1 Nn, it can be expressed as

F ¼ �kT lnQ

¼ kT +
q

n¼1

ðM � NnÞ ln
ðM � NnÞ

M
1Nn ln

Nn

M
� Nn ln qn


 �
:

(A9)

In the case that Nn/M � 1, i.e., when the protein solution is dilute, the first

term in square brackets on the right of Eq. A9 can be expanded in powers of

Nn/M, keeping the linear term, to yield

F ¼ �kT lnQ ¼ kT +
q

n¼1

Nn ln
Nn

M
� 11 fn 1sn 1 tn


 �
;

(A10)

where Eq. A7 has also been used. Defining

rn ¼
Nn

V
;

we finally obtain

F ¼ �kT lnQ ¼ kT +
q

n¼1

Nn½ln rNn
v� 11 fn 1sn 1 tnÞ�;

(A11)

which would be identical to Eq. 1 if the only terms in the sum were those for

n ¼ 1 and n ¼ q. Note that s1 ¼ sq ¼ 0 for free proteins and fully formed

capsids. In Eq. 1, Dg ¼ (fq 1 tq)/q and f1 1 t1 has been set equal to zero,

making Dg an excess free energy relative to the internal free energy of a free

monomer that, in principle, includes contributions also from conformational

changes of the coat proteins upon assembly. It should also be emphasized

that Eq. 1 is restricted to a dilute solution and that v is essentially a cell

volume of the order of the volume of a solvent molecule.

Finally, by expressing the chemical potential mn of a particle of size n in

terms of a, the undetermined multiplier can be determined. Thus

mn ¼
@F

@Nn

� �
T;V;Nj 6¼n

¼ �kT
lnQ

@Nn

� �
T;V;Nj 6¼n

¼ kT ln
Nn

ðM � NnÞqn

¼ akTn; (A12)

or

a ¼ mn

nkT
; (A13)

thus determining a. From Eq. A13 we obtain

a ¼ m1

kT
¼ mn

nkT
(A14)

or

nm1 ¼ mn; (A15)

which is the law of mass action. Eq. A6 now becomes
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Nn ¼
Mqne

m1n=kT

11 qne
m1n=kT

: (A16)

This distribution was evaluated numerically for a particular capsid assembly

model some time ago by Zlotnick (36). If partially formed capsids are

suppressed, Eq. A16 leads to Eq. 3, because in the dilute limit, qne
m1n=kT� 1.

APPENDIX B: A SIMPLE MODEL FOR THE
CAPSID BINDING STRENGTH

Here, we briefly review the phenomenological binding free energy of capsid

proteins that does not rely on the concept of conformational switching

recently put forward by two of us (15). For an extensive discussion the

reader is referred to the original publication. Presuming that hydrophobic

interactions drive the assembly of virus capsids (4,16,18) and that the

electrostatic repulsion between the coat proteins oppose it (15,19), we must

have

bDg ¼ �bgHaH 1s
2
lDlBaC (B1)

at the level of a Debye-Hückel approximation (39). In Eq. B1, gH and aH

denote the surface tension and surface area of the apolar patches on the

proteins buried upon assembly, s the net surface charge density of the water-

exposed parts of the proteins, and aC their surface area. Absorbed in aH and

aC are unknown geometrical constants of order unity. The electrostatic

lengths lB and lD are, respectively, the Bjerrum and the Debye screening

lengths defined below. Eq. B1 quite accurately describes the temperature,

ionic strength, and concentration dependence of the assembly of HBV coat

protein when inserted into the theory described in the section Equilibrium

Theory of Virus Capsid Assembly (15). Additional contributions may be

necessary, e.g., when Caspar pairs contribute to the stability of the virus,

such as in Tobamo viruses (22) and in CCMV (1). An extended version of

Eq. B1 that includes the effects of Caspar pairs has recently been shown to

semiquantitatively describe the stability of TMV (W. K. Kegel and P. van

der Schoot, unpublished), a rodlike virus.

The Bjerrum length lB ¼ be2/4pE is the distance over which the

(unscreened) electrostatic interaction between two unit charges equals the

thermal energy, where E denotes the dielectric permittivity of the medium

(in our case water) and e the unit charge. The Debye length lD ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4plBI

p

measures the scale over which electrostatic interactions are screened by the

presence of salt ions, with I ¼ +
i
riz

2
i the ionic strength of the solution

containing a number density ri of ions of zi unit charge (40). For 1:1

electrolytes, lD ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8plBrs

p
in terms of the number density of added salt

rs. This reduces at equal concentration to lD ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24plBrs

p
for a 1:2

electrolyte and to lD ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32plBrs

p
for a 2:2 electrolyte.

It is now immediately clear how the concentration of added salt and

the pH impact on the binding free energy and hence on the critical capsid

concentration given in Eq. 4. At fixed temperature, bDg becomes in-

creasingly negative with increasing ionic strength I and with decreasing net

surface charge s, shifting the critical concentration r
*

to lower values. The

ionic strength increases with increasing concentration of added salt, or, at

constant salt, with increasing valence of added ions. Both predictions are in

agreement with measurements on the coat proteins of TMV, HBV, and

CCMV (1,9,13,14,46,47). The net charge increases with increasing pH

relative to the isoelectric point, which for the coat proteins of most viruses is

(well) below 7, so assembly should be inhibited with increasing pH . 7.

This is also in agreement with measurements on TMV, HBV, and CCMV

(1,9,13,14,46,47).

APPENDIX C: HEAT CAPACITY OF A
CAPSID SOLUTION

The mean binding energy (enthalpy) per coat protein, e, can be calculated

from the free energy according to e ¼ N�1 @bF=@bð ÞN;V¼ fDe, where De[

(@bDg/@b)V is the energy (enthalpy) of a bound monomer and f ¼ qrq/r.

The heat capacity per protein thus becomes

DcV ¼ @e
@T

� �
N;V

¼ De
@f

@T

� �
N;V

1 fDc
B

V; (C1)

with DcB
V ¼ @bDe=@Tð ÞN;V as the heat capacity associated with the bound

state of a protein in a capsid that includes the contribution from the so-called

breathing or phonon modes. If the proteins are harmonically bound to the

capsid, we expect DcV
B # 2kB since the capsid may be viewed as a quasi

two-dimensional crystal (48). Because estimates of De/kBT are typically of

order 10, we must conclude that the contribution DcV
B stemming from the

breathing modes of the capsids are subdominant.

Inserting Eqs. 3 and 4 into Eq. C1, we find

DcV ¼ kB

De
kBT

� �2
qf ð1 � f Þ

11 ðq� 1Þf 1 fDc
B

V: (C2)

In the limit q / N, this expression simplifies to

DcV ¼ kB

De
kBT

� �2
r�

r
1Dc

B

V 1 � r�

r

� �
(C3)

for r $ r*, and to DcV ¼ 0 for r # r*, since f ¼ 1 – r*/r if r $ r* and f¼ 0

otherwise. Hence, the heat capacity jumps from DcV ¼ 0 to DcV ¼
kB(De/kBT)2 at r ¼ r*, showing that we are indeed dealing with a phase

transition. The jump is typical of mean-field theories (44).

Remarkably, the leading contribution to the enthalpy of binding comes

from the hydrophobic effect. From Eq. B1 we obtain

De
kBT

¼ �aHDhH

kBT
1aaCs

2
lDlB � aHDhH

kBT
; (C4)

where DhH is the surface excess enthalpy of the hydrophobic patches on the

coat proteins. In water of near-room-temperature, the constant a has a value

of �0.14, and the second approximate equality is valid for ionic strengths in

excess of, say, 0.01 M. We refer to Kegel and van der Schoot (15) for a more

detailed discussion.
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