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ABSTRACT We use highly efficient transition-matrix Monte Carlo simulations to determine equilibrium unfolding curves and
fluid phase boundaries for solutions of coarse-grained globular proteins. The model we analyze derives the intrinsic stability of
the native state and protein-protein interactions from basic information about protein sequence using heteropolymer collapse
theory. It predicts that solutions of low hydrophobicity proteins generally exhibit a single liquid phase near their midpoint
temperatures for unfolding, while solutions of proteins with high sequence hydrophobicity display the type of temperature-
inverted, liquid-liquid transition associated with aggregation processes of proteins and other amphiphilic molecules. The phase
transition occurring in solutions of the most hydrophobic protein we study extends below the unfolding curve, creating an im-
miscibility gap between a dilute, mostly native phase and a concentrated, mostly denatured phase. The results are qualitatively
consistent with the solution behavior of hemoglobin (HbA) and its sickle variant (HbS), and they suggest that a liquid-liquid
transition resulting in significant protein denaturation should generally be expected on the phase diagram of high-hydrophobicity
protein solutions. The concentration fluctuations associated with this transition could be a driving force for the nonnative
aggregation that can occur below the midpoint temperature.

INTRODUCTION

Protein denaturation and the precipitation of solid phases

from protein solutions pose tremendous challenges in both

biological and pharmaceutical contexts. The formation of

protein aggregates in vivo has been linked to a number of

debilitating pathologies including Alzheimer’s, Parkinson’s,

Huntington’s, and Creutzfeldt-Jakob’s diseases, as well as

sickle cell anemia, Down’s syndrome, and cystic fibrosis

(1–3). Furthermore, the aggregation of protein drugs during

processing, storage, and delivery negatively impacts both

their therapeutic value and their biological safety (4–7). As a

result, there is an urgent need to understand the physical

basis for protein unfolding and aggregation processes.

One of the practical barriers to studying protein stability is

the fact that protein unfolding and refolding events are often

related to protein aggregation (8–10). Moreover, since ag-

gregation processes follow trajectories that pass through

metastable intermediate states, kinetic factors and irrevers-

ibility can significantly complicate the picture (11–15).

Despite these complexities, there is vast experimental support

for the idea that equilibrium fluctuations associated with two

types of thermodynamic stability can play a central role in

initiating and controlling the rate of protein aggregation. The

most familiar type involves conformational fluctuations of

individual protein molecules into nonnative structures (see,

e.g., (2,8,10,16–18)). These structural fluctuations, which

reflect the marginal stability of the native state (19), generally

result in a net increase in the exposure of hydrophobic

residues to the solvent and thus an increase in the driving force

for protein self-association. Consequently, perturbations that

destabilize the native fold, such as modifications to solution

formulations (10) or sequence mutations (9), can also lead to

increased levels of protein aggregation.

A second equilibrium effect that can have a pronounced

influence on the solubility of proteins is the presence of large

protein concentration fluctuations under solution conditions

where liquid-liquid (L-L) phase separation is thermodynam-

ically favored. The main idea here, which is consistent with

both experimental observations and theoretical predictions

(20–28), is that these fluctuations create locally concentrated

quasidroplets (29) of proteins that lead to the formation of a

rich variety of protein phases including crystals, fibers,

amorphous aggregates, and gels. Determining the microscopic

mechanisms of these nucleation events and the subsequent

growth processes remains an outstanding challenge. However,

from a practical viewpoint, the ability to simply predict the

location of the equilibrium unfolding curve and the loci of L-L

phase coexistence on the protein solution phase diagram is an

important step toward forecasting and avoiding unwanted

protein precipitation, even if a molecular-scale understanding

of the subsequent aggregation processes is still lacking.

One prerequisite for making the aforementioned equilib-

rium predictions concerning protein stability is to have a

model that is both tractable and rich enough to describe, at

least qualitatively, the thermodynamics of protein folding/

unfolding and the corresponding protein-protein interactions

of the native and denatured states of proteins in solution.
SubmittedOctober 20, 2005, and accepted for publicationDecember 8, 2005.

Address reprint requests to T. M. Truskett, Tel.: 512-471-6308; E-mail:

truskett@che.utexas.edu.

� 2006 by the Biophysical Society

0006-3495/06/03/1949/12 $2.00 doi: 10.1529/biophysj.105.076497

Biophysical Journal Volume 90 March 2006 1949–1960 1949



Unfortunately, simulating concentrated protein solutions

using the detailed structural models typically employed to

study the folding problem (30–34) is computationally pro-

hibitive. Historically, this issue has been sidestepped by

greatly simplifying the description of protein-protein inter-

actions, in effect treating protein molecules as colloidal

particles (22,35–42).

Although this simplification results in models that can

produce insights into the physics of protein crystallization

and the interactions between stable native proteins, it does

so by largely neglecting the effects of protein sequence, the

polymeric character of the proteins, conformational fluctu-

ations of the molecules, and the thermodynamics of unfolding,

all of which play an important role in determining protein

stability. Clearly, a compromise between the detailed struc-

tural models used to study the protein folding problem and the

colloidal interaction models designed to study protein crys-

tallization is needed.

As a first step toward addressing this issue, Cheung and

Truskett have recently introduced a coarse-grained modeling

strategy (43) that predicts the effects of protein concentration,

temperature, and elementary properties of protein sequence

(e.g., number of hydrophobic and polar residues) on the

native-state stability of proteins in solution. Their approach,

which builds on some of the collective insights provided by

other studies (see, e.g., (44–55), uses random heteropolymer

collapse theory (56,57) to calculate the temperature- and

species-dependent protein-protein interactions and the intrin-

sic thermodynamic stability of the native state. Although this

type of coarse-grained strategy does not treat the geometric

details of secondary and tertiary protein structure, the basic

sequence information provided at the heteropolymer level

allows the approach to successfully predict the qualitative

experimental trends for how protein concentration affects the

native-state stability of several commonly studied proteins

(43). The model also suggests how these experimental trends

can be understood in terms of a competition between attractive

protein-protein interactions and entropic crowding effects.

In this article, we use Cheung and Truskett’s model to

systematically explore the interplay between native-state

stability and the fluid phase boundaries of several solutions

of model globular proteins with different sequence hydro-

phobicities. To accomplish this, we employ some very effi-

cient transition-matrix Monte Carlo techniques that have

been independently developed to study the thermodynamic

properties and phase behavior of pure liquids and mixtures

(58–60). The main findings of our study are as follows.

Solutions of model proteins with low sequence hydropho-

bicity remain in a single liquid phase over a broad range of

protein concentrations and temperatures. In contrast, those

containing proteins with high sequence hydrophobicity

exhibit the type of temperature-inverted, first-order L-L

transition that is associated with aggregation processes in

aqueous solutions of proteins and other amphiphilic mole-

cules (20,21,26,28,61,62). Interestingly, the L-L transition

that occurs in solutions of the most hydrophobic protein

investigated in this study extends significantly below the

midpoint temperature for unfolding Tm, creating an immis-

cibility gap between two very different types of phases—a

dilute solution comprising mostly native proteins and a

concentrated solution of predominantly denatured proteins.

The model’s predicted trends for how protein sequence

hydrophobicity affects the relative locations of the L-L

demixing transition and the equilibrium unfolding curve on

the phase diagram appear to be in good qualitative agreement

with the experimentally observed behavior for solutions of

hemoglobin (HbA) and its sickle variant (HbS) (20,26). In

addition, the results suggest that a first-order L-L transition

causing substantial protein denaturation should generally be

expected on the phase diagram of high-hydrophobicity pro-

tein solutions. The concentration fluctuations associated

with such a transition could, in principle, be an important

thermodynamic driving force for the nonnative aggregation

that occurs below Tm in solutions of high hydrophobicity

proteins such as myoglobin (63). However, further experi-

mental and theoretical studies will be necessary to test this

idea.

Coarse-grained modeling strategy

In this section, we briefly describe the coarse-grained mod-

eling strategy originally introduced by Cheung and Truskett

(43), focusing on the model’s physically salient features and

underlying assumptions. The interested reader is referred to

Cheung and Truskett (43) for the mathematical details and

in-depth discussion of the model. The physical idea under-

lying this approach is that many aspects of native-state

stability and the global phase diagrams of protein solutions

can be predicted using a model that incorporates the intrinsic

stability of an isolated native protein in aqueous solution and

a basic description of the solvent-mediated protein-protein

interactions involving the native or denatured states.

Intrinsic stability of a protein

There is an intrinsic free energy difference DG0
f associated

with each unimolecular protein folding reaction. This

quantity characterizes the temperature-dependent difference

in free energy between the native and denatured states in the

absence of protein-protein interactions. As the protein con-

centration approaches zero (i.e., infinite dilution), DG0
f com-

pletely determines the thermodynamics of protein folding.

At higher protein concentrations, protein-protein interactions

significantly contribute to the free energies of the native and

denatured states. In the coarse-grained modeling strategy

(43), DG0
f is calculated by a random heteropolymer collapse

theory (57). The inputs to the heteropolymer collapse theory

include temperature T, the number of residues in the protein

sequence Nr, the fraction of those residues that are hydro-

phobic F, and the free-energy x(T)kBT associated with
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transferring a hydrophobic residue from the protein core into

an environment where it is in intimate contact with the

solvent. Cheung and Truskett have adopted an approxima-

tion of x(T)kBT introduced by Dill et al. (57) that is es-

sentially a parameterization of experimental transfer free

energy data for a typical hydrophobic amino acid from its

pure phase into water.

To compare model sequence hydrophobicities F with

those calculated from actual proteins, one also needs to

define which amino-acid residues should be considered

hydrophobic. In this article, we refer to F-values of real

proteins that are calculated assuming the following set of

hydrophobic residues: Ala, Gly, Ile, Leu, Met, Phe, Pro, Trp,

Tyr, and Val. Of course, there are alternative choices for the

set of hydrophobic amino acids, which differ slightly from

the one presented above (see, e.g., (57,64,65)), but they

result in the same qualitative trends when incorporated into

the coarse-grained modeling approach. As should be expected

(and is shown in Fig. 1 a), the heteropolymer collapse theory

predicts that moderate increases in the sequence hydropho-

bicity F of a protein results in increased intrinsic stability of

the native state.

Protein-protein interactions

The heteropolymer collapse theory also predicts other struc-

tural characteristics of the proteins that allow for an esti-

mation of the state-dependent, protein-protein interactions.

These include the effective radii of gyration of the native (N)

and denatured (D) states, RN and RD, and the corresponding

fraction of the solvent-exposed residues in each state that are

hydrophobic, Q and F. One assumption in the coarse-

grained model is that the attractive part of the protein-protein

interaction is due primarily to the driving force of proteins to

desolvate their hydrophobic surface residues by burying

them into a hydrophobic patch on a neighboring protein. The

repulsive part of the potential, on the other hand, accounts for

the volume that each individual protein excludes to the

centers of mass of other protein molecules in the solution.

The interprotein potentials are expected to be quantitatively

different for each of the various types of protein-protein in-

teractions (i.e., NN, ND, and DD). First, heteropolymer

collapse theory correctly predicts (see Fig. 1 b) that de-

natured protein molecules generally exclude more volume to

other proteins (RD . RN) than their native-state counterparts

(57). Moreover, denatured proteins display a greater frac-

tional surface hydrophobicity than folded molecules (F .

Q). Mean-field calculations (43) predict that the magnitudes

of the average contact attractions between two proteins will

scale as

eNNðTÞ} xðTÞQ2
kBT; (1)

eDDðTÞ} xðTÞF2
kBT; (2)

eNDðTÞ} xðTÞFQkBT: (3)

Given Eqs. 1–3 and F . Q, it can be expected that contact

attractions involving denatured proteins will generally be

stronger than those involving the native state (eDD . eNN).

Moreover, the attractive strength between proteins increases

with the hydrophobic content F of the protein sequence, as is

illustrated in Fig. 1 c. The proportionality constants that have

been omitted from Eqs. 1–3 simply represent geometric

factors associated with the sizes of the interacting proteins

and are discussed in detail elsewhere (43).

Cheung and Truskett incorporate the interprotein exclu-

sion diameters, sDD/sNN ¼ RD/RN and sND/sNN ¼ (RN 1

RD)/2RN, and the contact energies of Eqs. 1–3, all of which

are derived from the heteropolymer collapse theory (43), into

an effective protein-protein potential Vij (22) that qualitatively

FIGURE 1 Temperature-dependent properties of two different globular

proteins in solution (number of residues Nr ¼ 154; sequence hydrophobicity

F ¼ 0.4 (solid) and F ¼ 0.5 (dashed)) as predicted by the coarse-grained

model (43), based on heteropolymer collapse theory (57). (a) Scaled intrinsic

free energy of folding DG0
f =kBT. (b) The ratio of the effective diameters for

denatured-denatured sDD and native-native sNN interactions. (c) Scaled

strength of contact attractions eDD/kBT between denatured proteins.
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captures many aspects of protein solution thermodynamics

and phase behavior (see, e.g., (22,66)):

VijðrÞ ¼N r , sij;

VijðrÞ ¼
eij

625
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r

sij

� �2

�1

" #6 �
50

r

sij

� �2

�1

" #3

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

r$sij:
(4)

In the above equation, we adopt the notation ij 2 (NN,

ND, DD).

In short, the coarse-grained model represents an effective

binary mixture of native and denatured proteins (the aqueous

solvent only entering through x(T)) connected via the uni-

molecular protein folding reaction. The links between the

intrinsic native-state stability of the proteins DG0
f , the physical

parameters defining the protein-protein interactions (eij,sij),

the protein sequence (Nr,F), and the interactions with the

aqueous solvent x(T) are established by the heteropolymer

collapse model (43,57). As in actual protein solutions, the

fraction of proteins in the native state generally depends on

both temperature and protein concentration. This is because

temperature affects the intrinsic stability of the native state

DG0
f , and both temperature and protein concentration influ-

ence the interaction energy between proteins in solution.

Cheung and Truskett have studied how protein concen-

tration affects the equilibrium unfolding behavior in their

coarse-grained model (43) using reactive canonical Monte

Carlo simulations (67,68). Here, we significantly extend

their analysis to rigorously determine the liquid-state phase

boundaries of concentrated solutions of proteins of varying

sequence hydrophobicity. We approach this biomolecular

system with the understanding that it essentially parallels that

of the classic reactive phase equilibria problem for a binary

solution (see, e.g., (69)). Below we explain how transition-

matrix Monte Carlo simulations provide an ideal technique

for simultaneously determining the thermodynamic phase

boundaries and the protein folding equilibrium curves.

METHODS

Transition-matrix Monte Carlo

We use transition-matrix Monte Carlo (TMMC) simulations to study the

fluid phase behavior of the coarse-grained protein model described above.

Transition-matrix-based sampling methods provide a general means for

precisely calculating the relative free energy of a system along a suitable

order parameter path. When originally developed, the range of applicability

of transition-matrix methods was largely restricted to lattice (discrete)

systems (70–73). Only recently have they gained prominence as a highly

efficient computational method for the thermodynamic properties of

continuum systems (58–60,74–79).

An important general step in the calculation of thermodynamic properties

via molecular simulation is the determination of the relevant order parameter

distribution. Examples of commonly encountered order parameters include

the system’s energy, density, or composition. The order parameter dis-

tribution is of crucial thermodynamic importance because it provides a direct

link to a system’s free energy expressed as a function of that order parameter.

For example, in the case of a pure fluid at some fixed temperature,

knowledge of the number density probability distribution is tantamount to

knowing the system’s free energy, and therefore its thermodynamic

properties, as a function of density (at the same specified temperature).

To calculate the order parameter probability distribution via conventional

Monte Carlo, one would simply collect a histogram of order parameter

values visited by the system during the course of the simulation; this

constitutes a so-called visited-states approach. In contrast, in a transition-

matrix approach, the calculation of the same distribution is based upon

information regarding attempted transitions made by the system from one

order parameter value to another. Transition statistics turn out to be more

informative than visited-states statistics. Notice that precise determination

of the probability distribution requires that all order parameter values be

sampled sufficiently, in particular regions of low probability that are difficult

to access. Because the use of transition statistics alone is unable to overcome

this sampling problem, a biasing scheme is often introduced to encourage the

system to sample uniformly all order parameter values. This combination is

made more robust through the establishment of a feedback mechanism

between the biasing scheme and the collection of transition statistics, thereby

providing a self-adaptive approach to the true equilibrium distribution. The

algorithm is very effective in negotiating rugged free-energy landscapes.

The particular implementation of transition-matrix Monte Carlo used here

was originally introduced and described in detail by Errington and Shen

(60). Therefore, only a brief summary is provided in this section.

In this work, transition-matrix Monte Carlo simulations are performed in

the grand-canonical ensemble. This corresponds to holding fixed the

chemical potentials of each species in a system of volume V at temperature

T. Under these conditions, the macrovariable or order parameter of interest is

the total number of proteins in (equivalent to the concentration of) the

system. In particular, it is the total protein number probability distribution

that is of ultimate interest because it is directly related to the system’s free

energy as a function of concentration. In the case of a binary mixture (native

and denatured species) where the components can react (fold/unfold),

chemical equilibrium is imposed by setting the chemical potential difference

between the components to zero (80), and at the same time, by specifying an

overall activity difference that is equal to the intrinsic free energy of folding

DG0
f (67,68,81). The latter is valid so long as the intramolecular and

intermolecular degrees of freedom can be assumed to be separable. Although

this type of separability is not strictly satisfied in real protein systems, it has

been assumed as a workable starting point in the development of the coarse-

grained model (43). As a result, the only thermodynamic parameters that

need to be specified are: a single chemical potential m; the intrinsic free

energy of folding DG0
f ; volume V; and temperature T.

Transition-matrix Monte Carlo proceeds as a conventional grand-

canonical Monte Carlo simulation for multicomponent systems where the

following types of trial moves are performed: displacements, insertions/

deletions, and identity changes. During the course of the simulation, the

unbiased acceptance probability of every trial move is accumulated in a

so-called collection matrix whose purpose is to provide a convenient

bookkeeping framework. Periodically, the accumulated transition statistics

are used to provide an updated estimate of the total protein number

distribution which, in turn, is used to bias the simulation so that all total

protein number values (concentrations) are sampled uniformly. Although

trial moves are ultimately accepted or rejected based on a biased acceptance

criterion as in multicanonical sampling (82), unbiased acceptance probabil-

ities continue to be accumulated. Notice that this aspect of the method allows

one to introduce periodically a new, more effective biasing function without

having to discard any information that has already been collected.

The total protein number (or concentration) probability distribution

yielded by TMMC is unique to the chemical potential used in the simula-

tion. However, once this probability distribution is determined, histogram

reweighting can be used to determine the distribution at other chemical

potential values (83). In Fig. 2 a, we provide one example of the raw cal-

culated and reweighted distributions for a protein of hydrophobicity F¼ 0.445.
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Furthermore, when combined with isochoric-semigrand averaged quanti-

ties, i.e., mean values of a quantity at fixed total protein number and chemi-

cal potential difference, which are straightforward to collect in a TMMC

simulation, the thermodynamic properties of the system can be calculated.

Note that the isochoric-semigrand averages are independent of the chemical

potential used in the simulation. In Fig. 2, b and c, examples of these averages

are provided. Analysis of the data when more than one phase can exist is

relatively straightforward and is described in Errington and Shen (60).

Simulation details

The transition-matrix Monte Carlo simulations of the coarse-grained protein

model were performed in the grand-canonical ensemble. Interprotein

interactions were described by Eq. 4 and were simply truncated at a distance

r ¼ 2.5 sij. No long-range corrections were employed. All simulations were

performed in a cubic simulation cell of minimum side length L/sNN ¼ 9.

Trial moves consisted of 25% protein displacements, 25% identity changes,

and 50% insertions/deletions. The biasing function was updated every

100,000 Monte Carlo steps. In all cases, TMMC simulations were initiated

with an empty simulation cell and restricted to sample total protein numbers

between 0 and Nmax
t . The value of Nmax

t was initially set to a value of 100,

and then increased after each Nt value in the total protein number range was

visited a minimum of 50,000 times. This process was repeated until the total

concentration range of interest was sampled. We report dimensionless

protein concentration as rs3
NN ¼ Ns3

NN=V. Finally, a constraint was

imposed to prevent the system from crystallizing, a serious problem if one is

focusing exclusively on the liquid-state properties of the model. The product

Q6N
1=2
b is a useful order parameter for this purpose, where Q6 is a global

bond-orientational metric that can distinguish between amorphous and

crystalline particle packings (84–87), and Nb is simply the total number of

bonds or nearest-neighbor pairs in the system. Nearest-neighbor pairs were

defined as proteins with centers of mass closer than that of the first minimum

in the interprotein pair correlation function. We found that Q6N
1=2
b # 2.5

prevented the system from crystallizing, allowing the simulations to visit

both the relevant stable and metastable states. To assess the influence of the

order parameter on the fluid-phase properties, we performed several

simulations between 356 and 359 K using different order parameter values

ranging from 1.5 to 2.5 for the highest hydrophobicity protein, and found

that the phase coexistence properties were unaffected by the order parameter

value. In the results reported in this work, we used Q6N
1=2
b ¼ 1.7.

RESULTS AND DISCUSSION

Here, we apply the advanced Monte Carlo simulation methods

outlined in the previous section together with Cheung and

Truskett’s coarse-grained model to analyze the thermody-

namic behavior of concentrated protein solutions. We choose

a chain length of 154 residues to both extend our previous

work (43) and to study medium sized, single-domain globular

proteins, which this HPC theory models well (57). In addition,

we choose sequence hydrophobicities typical of those found

in the protein data bank (0.40 # F # 0.50) (65). The results

provide a reasonable starting point for addressing two fun-

damental questions that may have important practical impli-

cations for understanding protein stability:

Do solutions of globular proteins generally exhibit the

type of temperature-inverted, first-order L-L phase tran-

sition on their phase diagrams that is associated with

aggregation processes in aqueous solutions of amphi-

philic polymers (61,62) and the sickle variant of hemo-

globin (26)?

If so, how does protein sequence hydrophobicity affect

the relative locations of the L-L phase transition and

the equilibrium unfolding curve on the phase diagram?

This information may provide new insights into the con-

nection between the intrinsic properties of protein molecules

and the conditions for their solutions that can give rise to

various types of insoluble protein aggregates.

As a first step in our analysis, we study the thermodynamic

consequences of concentrating solutions of four model

proteins (Nr ¼ 154, F ¼ 0.40, 0.445, 0.473, and 0.50), each

at their respective infinite dilution midpoint temperatures for

unfolding (see Fig. 3). These hydrophobicities translate from

the total integer segments and nonpolar segments (1.4

segment ¼ 1 residue) defined by Dill (56). Recall that, at

these temperatures, DG0
f for the proteins is identically zero

(i.e., the fraction folded ¼ 0.5 in the infinite dilution limit),

and so there exists no intrinsic thermodynamic preference for

either the native or the denatured state. In other words, any

concentration-induced stabilization (i.e., increased Tm) or

destabilization (i.e., decreased Tm) of the native state or, for

that matter, any L-L phase separation that appears in Fig. 3

can be attributed solely to the protein-protein interactions in

solution.

For the lowest hydrophobicity protein studied (F ¼ 0.40),

Fig. 3 shows that increasing protein concentration leads to

FIGURE 2 Example of raw data and various quantities yielded by

transition-matrix Monte Carlo that can be combined appropriately to

determine the thermodynamic properties of the system. (a) The raw and

reweighted total particle number, or concentration, probability distributions

P. (b) Semigrand average of the number of denatured proteins ND as a

function of the total number of proteins. (c) Semigrand average of the

potential energy per particle u scaled by well-depth of the native-native

interaction eNN as a function of the total number of particles.
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essentially negligible destabilization of folded proteins at

low concentrations, followed by an increase in native-state

stability at very high concentrations. Moreover, the fraction

of folded proteins changes continuously with protein con-

centration, indicating that the solution does not undergo a

first-order L-L phase transition under these conditions. These

results are in good qualitative agreement with the aqueous

solution behavior of the low hydrophobicity protein ribonu-

clease A (F ¼ 0.37), which also displays stabilization of the

native state with increasing protein concentration and ex-

hibits a high native-state solubility (88). Given these pre-

dictions, it is natural to ask what would happen if the same

calculation were carried out for a solution of proteins with

slightly higher sequence hydrophobicity. Fig. 3 illustrates

that solutions of a higher-hydrophobicity protein (F ¼
0.445) display a pronounced concentration destabilization of

the native state at low protein concentrations, followed by

restabilization at higher protein concentrations. This non-

monotonic dependency is in good qualitative agreement with

the experimental behavior of single-phase solutions of the

higher-hydrophobicity protein metmyoglobin (F ¼ 0.52)

over a wide range of pH conditions (89).

The type of basic trends described above for how protein

concentration and sequence hydrophobicity impact native-

state stability in single-phase solutions of globular proteins

have been previously analyzed in the context of Cheung and

Truskett’s coarse-grained model (43), and thus we only

summarize the main ideas here. In short, the concentration

dependencies of native-state stability can be understood in

terms of a balance between destabilizing protein-protein at-

tractions and stabilizing crowding effects. At finite concen-

trations, marginally stable native proteins preferentially

unfold if 1), they have enough local free volume to ac-

commodate the more expanded denatured state; and 2), they

form favorable denatured-native or denatured-denatured

contact attractions with neighboring proteins. As a result,

one generally expects protein-protein attractions to induce

some degree of protein destabilization at low protein con-

centrations. This expectation is consistent with experimental

results that indicate that reversible formation of nonnative

oligomers in solution can play a central role in inducing

protein unfolding (90). Furthermore, as should be expected,

and is in fact illustrated by model calculations in Fig. 1 c,

protein-protein attractions are more favorable on average for

higher-hydrophobicity proteins. This explains why higher-

hydrophobicity proteins typically show a more pronounced

protein-protein attraction-induced concentration destabiliza-

tion than their lower-hydrophobicity counterparts.

On the other hand, since the denatured state is more ex-

panded than the native configuration (see Fig. 1 b), excluded

volume arguments suggest that the native state should

ultimately be restabilized at sufficiently high protein con-

centrations, a phenomenon sometimes referred to as macro-

molecular crowding. The crowding effect is similar in nature

to the confinement-induced stabilization of proteins that has

been studied extensively by experiments (91,92) and com-

puter simulations (49,55,93–95). Note that crowding is

typically more pronounced for lower-hydrophobicity pro-

teins because, as polymer theory predicts, these proteins tend

to exhibit more expanded denatured configurations than

higher-hydrophobicity proteins, all other factors being equal

(96–98). In fact, as is seen in Fig. 3, crowding almost entirely

masks the destabilizing effect of protein-protein attractions

in model solutions of the F ¼ 0.40 protein.

Interestingly, Fig. 3 also illustrates that the highest hy-

drophobicity proteins, F ¼ 0.473 and 0.50, show a qual-

itatively new feature: they each exhibit a first-order L-L

demixing transition when protein concentration is increased

beyond a critical value that depends on both temperature

and sequence hydrophobicity. This type of demixing tran-

sition is manifested as a discontinuity, i.e., an immiscibility

gap, along the fraction folded versus protein concentration

isotherms. The relative proportions of the two coexisting

phases present in the immiscibility gap is determined by the

lever rule (69).

The reason why this type of phase separation occurs in the

model is easy to understand, and, in fact, it is somewhat

analogous to why vapors condense upon isothermal com-

pression if their interparticle attractions are sufficiently large

relative to kBT. In short, increasing protein concentration

from infinite dilution decreases the translational entropy of

proteins in solution, but increases the number of favorable

protein-protein attractions. If the protein-protein attractions

are sufficiently favorable, then the protein solution can mini-

mize its free energy by phase-separating to take advantage of

both effects, i.e., forming a low-concentration phase that

retains high translational entropy of the proteins and a high-

concentration phase that takes advantage of the favorable

protein-protein interactions. Of course, the situation is far

FIGURE 3 Fraction of folded proteins versus protein concentration rs3 at

their respective infinite dilution folding temperatures where DG0
f ¼ 0. The

folding temperatures are listed in the plot, and the open circles indicate

coexistence points for liquid-liquid phase transitions.
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richer for protein solutions than for condensing vapors be-

cause proteins solutions can also shift their relative confor-

mational populations of native and denatured molecules to

take full advantage of the favorable protein interactions in

the high-concentration phase. In particular, as is clear from

Fig. 3, the highest hydrophobicity protein solutions of F ¼
0.473 and 0.50 undergo substantial protein unfolding upon

phase separation to realize the highly favorable denatured-

denatured protein contact interactions. Also, note that the

F ¼ 0.50 protein solution favors phase separation at a lower

value of protein concentration than the F ¼ 0.473 protein

solution, which is in line with the expectation that higher

hydrophobicity proteins tend to show lower solubility in

aqueous solution.

Thus far, by choosing to analyze model protein solutions

at temperatures where DG0
f ¼ 0, we have effectively re-

moved any effect of the intrinsic stability of the protein. In

Fig. 4, we take a step back and view a more comprehensive

data set for the temperature and protein-concentration de-

pendencies of the F¼ 0.40 and F¼ 0.445 protein solutions.

Notice that in both cases, the primary role of temperature is

to destabilize the compact native fold relative to the more

expanded denatured state. As a result, the higher temperature

solutions show protein-protein attraction induced destabili-

zation at lower protein concentrations when compared to the

more stable solutions at lower temperatures. Similarly, the

higher temperature solutions require higher protein concen-

trations than the lower temperature solutions to undergo

crowding-induced restabilization. Finally, protein-protein

interactions are not strong enough, in either of these two

solutions, to cause L-L demixing for the range of temper-

atures and concentrations investigated.

In Fig. 5, we present the temperature and protein-con-

centration dependencies of the fraction of native-state mol-

ecules for the F ¼ 0.473 and F ¼ 0.50 protein solutions.

Recall that the F ¼ 0.473 protein solution has weaker

protein-protein attractions than the higher-hydrophobicity

F ¼ 0.50 solution, and, in both solutions, attractions

involving native species are weaker than those involving

denatured proteins. As a result, a single homogeneous phase

of the F ¼ 0.473 solution persists over the range of

temperatures and concentrations where the native state is the

majority species. However, if this solution is heated to

temperatures where the denatured state is thermodynami-

cally favored, L-L demixing readily occurs. This result is

consistent with experimental observations for the polypep-

tides fibronectin, acylphophatase, and protein G, that indi-

cate the formation of nonnative aggregates are related to

conditions of weakened native state stability (e.g., increasing

temperature (99), adding denaturants (100), and destabiliz-

ing mutations (101,102)). In contrast, for the F ¼ 0.50

solution, we find that protein-protein attractions are strong

enough to drive L-L phase separation even for temperatures

well below Tm, where the native state is thermodynamically

favored. More comprehensive representations of the L-L

phase boundaries for the F ¼ 0.473 and F ¼ 0.50 model

protein solutions are shown in Fig. 6.

The predicted trends for how sequence hydrophobicity

affects the relative locations of the equilibrium unfolding

curve (i.e., the concentration-dependent Tm) and the L-L

phase transition in Cheung and Truskett’s model appear to be

in good qualitative agreement with the experimentally de-

termined behaviors of solutions of hemoglobin HbA (F ¼
0.566) and its more hydrophobic sickle variant HbS (F ¼
0.570). In particular, HbS shows a temperature-inverted, L-L

transition that extends far below the equilibrium unfolding

curve and coincides with physiological conditions (20,21,26,

28,103). In contrast, for solutions of the less hydrophobic

HbA protein, the analogous L-L transition appears to occur

above the equilibrium unfolding curve, and at temperatures

FIGURE 4 Fraction of folded proteins versus protein concentration rs3

for the model proteins Nr ¼ 154, F ¼ 0.40 and 0.445. The isotherm values

for the F ¼ 0.40 protein are 330, 332, 334, 336, 337.73, 338, 340, 342, and

344 K. The isotherm values for the F ¼ 0.445 protein are 348, 350, 351.8,

352, 354, and 356 K.
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much higher than are physiologically relevant. For the case

of the sickle variant HbS solutions, the pathological ag-

gregation associated with the L-L transition is the polymer-

ization and self-assembly of protein fibers (20,26,28,103).

However, even when HbS is liganded to geometrically

hinder this fiber formation, its solutions still apparently show

an inverted L-L transition that, instead, facilitates the for-

mation of amorphous protein aggregates (26).

As discussed earlier, the fluctuations associated with the

type of first-order, L-L transitions shown in Fig. 6 create

locally concentrated regions that can facilitate the precipi-

tation of various insoluble protein structures. The fact that

considerable protein unfolding occurs in the particular tran-

sitions predicted here makes it likely that the resulting

protein aggregates would have a distinctly nonnative char-

acter. However, Cheung and Truskett’s coarse-grained model,

at least in its present form, does not contain sufficient structural

detail to study the formation of these nonnative protein

precipitates. In fact, in Conclusions we mention some possible

extensions to the model to help address this issue. Nonetheless,

the ability of the coarse-grained model to predict the relative

locations of the L-L transition and the equilibrium unfolding

curve on the phase diagram can still allow for some further

qualitative comparisons to the solubility and aggregation

behavior observed in experimental protein systems.

For example, based on the phase diagram of the solution

of F ¼ 0.50 protein shown in Fig. 6, one would predict that

nonnative aggregation processes could readily occur in high-

hydrophobicity protein solutions at temperatures far below

FIGURE 5 Fraction of folded proteins versus protein concentration rs3

for the model proteins Nr ¼ 154, F ¼ 0.473 and 0.50. The isotherm values

for the F ¼ 0.473 protein are 352, 353, 354, 355, 356, 357, 358, 358.43,

359, 360, and 361 K. The isotherm values for the F ¼ 0.50 protein are 354,

355, 356, 357, 358, 360, 361, 362, 363, and 363.93 K. Open circles

represent coexistence points for a liquid-liquid phase transition.

FIGURE 6 Liquid-liquid coexistence curves for protein solutions in the

temperature versus protein concentration rs3 plane for the model proteins

Nr ¼ 154, F ¼ 0.473 and 0.50. The darker circles indicate the equilibrium

unfolding curves, and the lighter circles bound the liquid-liquid coexistence

regions. All lines act as guides to the eyes.
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Tm, conditions where the native state is nominally stable. As

we mentioned above, this type of behavior does, in fact,

occur for the sickle variant of hemoglobin HbS (F ¼ 0.570)

(20,21,26,28,103,104). However, substantial aggregation

below Tm is also experimentally observed via spectroscopic

measurements in solutions of the high-hydrophobicity pro-

tein myoglobin (F ¼ 0.52) (63). In contrast, based on the

lack of an L-L demixing transition for the lower hydro-

phobicity proteins below Tm, one would expect that

low-hydrophobicity proteins could avoid the formation of

insoluble nonnative aggregates under conditions where the

native state is thermodynamically favored. This type of

predicted behavior is also consistent with the high solubility

of the low hydrophobicity protein ribonuclease A (F¼ 0.37)

for temperatures below its equilibrium unfolding curve (88).

CONCLUSIONS

To summarize, we have employed robust transition-matrix

Monte Carlo simulation to rigorously determine the equilib-

rium unfolding curves and the fluid phase boundaries of

protein solutions of several model proteins with varying

sequence hydrophobicity. The coarse-grained model (43) for

the protein solutions derives the intrinsic stability of the

native fold and the solvent-mediated, protein-protein interac-

tions between native and denatured states from a hetero-

polymer collapse theory. This model was chosen because it

is computationally tractable to analyze both its native-state

stability and its global phase behavior. Moreover, it has

already been shown to capture some of the nontrivial rela-

tionships between protein concentration and the native-state

stability of several commonly studied proteins (43).

Our main findings can be summarized as follows. Solu-

tions of proteins with low sequence hydrophobicity are

predicted to exhibit a single liquid phase over a wide range of

protein concentrations and temperatures. On the other hand,

solutions containing proteins with high sequence hydropho-

bicity display the type of temperature-inverted, first-order

L-L transition that is typically associated with hydrophobic

aggregation processes of amphiphilic molecules in aqueous

solutions. One of the most interesting results is that the L-L

transition that occurs in solutions of the most hydrophobic

protein that we study extends far below the equilibrium

unfolding curve, creating an immiscibility gap between two

very different types of phases—a dilute solution comprising

mostly native proteins and a concentrated solution of

predominantly denatured proteins.

The predicted trends for how sequence hydrophobicity

modifies the relative locations of the L-L phase transition and

the equilibrium unfolding curve appear to qualitatively agree

with the observed solution behavior of hemoglobin HbA and

its sickle variant HbS. Moreover, the results suggest that a

first-order L-L transition resulting in significant protein

denaturation should be expected to be found on the phase

diagram of high-hydrophobicity protein solutions. The

concentration fluctuations associated with such a transition

could, in principle, be an important thermodynamic driving

force for the nonnative aggregation that occurs below Tm in

solutions of high hydrophobicity proteins such as myoglo-

bin. Nonetheless, further experimental and theoretical stud-

ies will be necessary to thoroughly test this prediction.

Finally, we recognize that, although many of the predic-

tions of this study are interesting, they derive from a highly

coarse-grained equilibrium model for protein solutions.

For example, this model does not capture the irreversible

formation of protein aggregates that are observed experimen-

tally (13). Although we predict that protein solutions will

ultimately be restabilized due to molecular crowding, solution

kinetics also play an important role in real protein environ-

ments, and may prevent this restabilization. However, using

this model, we are able to study the complicated nature of the

underlying driving forces for protein stability in solution.

Future studies that utilize this strategy may gain quanti-

tative results, at the expense of computational time, by using

more protein-specific collapse models that incorporate details

such as amino-acid residue correlations, folding intermediates,

or more information about the conformational fluctuations

of the denatured state. A more rigorous treatment of protein

solvation that can handle basic charge, salt, and pH effects

(see, e.g., (105) and (106)) would also broaden significantly

the applicability of the model. The effect of these additional

solvation parameters are nontrivial and difficult to predict

offhand, and we are working toward incorporating electro-

static interactions into our model. Currently, we are exploring

avenues to study directionality of the effective protein-protein

interactions, albeit in a coarse-grained manner. We expect the

added orientational aspects to lead to richer, more featured

phase diagrams, perhaps including the self-organization tran-

sitions (107) that are a central component of many biological

assembly processes.
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