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ABSTRACT We developed an algorithm for the automated detection and analysis of elementary Ca21 release events (ECRE)
based on the two-dimensional nondecimated wavelet transform. The transform is computed with the ‘‘à trous’’ algorithm using
the cubic B-spline as the basis function and yields a multiresolution analysis of the image. This transform allows for highly
efficient noise reduction while preserving signal amplitudes. ECRE detection is performed at the wavelet levels, thus using the
whole spectral information contained in the image. The algorithm was tested on synthetic data at different noise levels as well as
on experimental data of ECRE. The noise dependence of the statistical properties of the algorithm (detection sensitivity and
reliability) was determined from synthetic data and detection parameters were selected to optimize the detection of experimental
ECRE. The wavelet-based method shows considerably higher detection sensitivity and less false-positive counts than previously
employed methods. It allows a more efficient detection of elementary Ca21 release events than conventional methods, in particular
in the presence of elevated background noise levels. The subsequent analysis of the morphological parameters of ECRE is
reliably reproduced by the analysis procedure that is applied to the median filtered raw data. Testing the algorithm more rigorously
showed that event parameter histograms (amplitude, rise time, full duration at half-maximum, and full width at half-maximum) were
faithfully extracted from synthetic, ‘‘in-focus’’ and ‘‘out-of-focus’’ line scan sparks. Most importantly, ECRE obtained with laser
scanning confocal microscopy of chemically skinned mammalian skeletal muscle fibers could be analyzed automatically to
reproducibly establish event parameter histograms. In summary, our method provides a new valuable tool for highly reliable
automated detection of ECRE in muscle but can also be adapted to other preparations.

INTRODUCTION

Since their first description by Cheng et al. (1), calcium

sparks have gained an enormous attention as they have been

detected in a variety of cell types such as heart, skeletal,

and smooth muscle (2–4) and increasing evidence of their

physiological importance is at hand (5). Sparks may con-

stitute the elementary building block of intracellular calcium

signaling via ryanodine receptor Ca21 release channels

(RyR) that can be observed in its native environment, i.e., the

intact sarcoplasmic reticulum (SR) or endoplasmic reticulum

(ER). Our knowledge about the dynamics of elementary

Ca21 release has increased along with the extensive work

dedicated to the study of ryanodine receptors with a variety

of methodological approaches on distinct cell preparations

(6). In contrast to lipid bilayer experiments or electrophys-

iological measurements on purified SR vesicles, laser scan-

ning confocal microscopy in combination with fluorescent

Ca21 dyes allows only indirect observation of the RyR

channel Ca21 current. However, the dynamic interplay be-

tween SR, the SR Ca21-ATPase (SERCA), motor proteins,

and mitochondria is largely conserved. Although amphibian

skeletal muscle fibers show rather stereotypical event mor-

phologies, chemically or mechanically skinned mammalian

skeletal muscle spontaneously displays a multitude of Ca21

release morphologies (7). We adopt the term elementary

calcium release events (ECRE), denoting the whole variety

of observed release event morphologies, among them ‘‘sparks’’

(short-lived fluorescence elevations due to the simultaneous

opening of a RyR cluster) and ‘‘embers’’ (long-lived, low

amplitude signals probably representing the opening of a

single RyR Ca21 channel, e.g., Shtifman et al. (8)) as sub-

groups.

A central problem in ECRE imaging arises when the

important kinetics of the sometimes extremely short-lived

(;10 ms) signals are analyzed in detail. For example, fast

scanning of amphibian skeletal muscle cells in the XYT

mode has been used by Brum et al. (9), achieving a scanning

rate of 4 ms / (853 5.3 mm). The temporal resolution can be

further enhanced with two-dimensional (XT) imaging,

scanning the same line (;80 mm) every 0.8–2 ms. The

resulting uncertainty about the relative position of the line

scan with respect to the center of Ca21 release (‘‘off-center’’

imaging) leads to the typical monotonically decreasing

ECRE amplitude histograms (10,11). The effects of confocal

imaging on the measured spark morphology was extensively

studied by Pratusevich and Balke (10) and combined with

mathematical modeling to clarify the relationship between

the source strength and event histograms by Izu et al. (11).

The combined effects of ‘‘off-center’’ imaging and the

nearly Gaussian spark profile lead to a high frequency f of
events with small amplitude a (f ; a�1, (12)). However, it

has been shown that erroneous modes are introduced into

amplitude distributions due to the biased rejection of small
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amplitude events (13) particularly with nonautomated

detection methods (detection ‘‘by eye’’). To overcome this

problem, several automated detection methods have been

published (11,13,14), the most common being the algorithm

of Cheng et al. (15), modified later in González et al. (16) and

Rı́os et al. (12). An interactive detection procedure has been

presented by Sebille et al. (17), which, however, emphasizes

user intervention to include or exclude events by eye

detection. Generally, all of these methods identify sparks by

a rise in fluorescence intensity in a previously low-pass

filtered image. The approach taken by Cheng and colleagues

is based on applying a double threshold to the normalized

image. Let m, s, and k denote the image mean intensity, an

estimate of the background standard deviation and the

threshold parameter, respectively. Then, a high, variable

threshold (m 1 k 3 s, k ; 3.9) is used to identify

statistically significant fluorescence elevations and a lower

threshold (m1 23 s) is applied to check whether the signal

intensity is sufficient to distinguish a spark from small

‘‘random’’ fluorescence elevations. The algorithm by Izu

et al. (11) starts with a thresholding operation to produce a

binary image. A pixel is set to unity (‘‘on’’) if its value does

exceed a threshold equal to the background intensity plus 1.4

times the standard deviation of the background fluctuations,

otherwise it is set to zero (‘‘off’’). The binary image is then

updated Ngeneration times according to the following rule: if

the symmetric Nsize 3 Nsize neighborhood of a pixel (i,j)

contains,Nlive ‘‘on’’ pixels, (i,j) is set ‘‘off’’, otherwise it is

‘‘on’’ in the next iteration. Although both of these methods

prove to be reliable on images with low noise levels, their

performance in terms of detection efficiency and reliability

at higher noise levels is limited. In this study, we have

developed a novel automated detection algorithm based on

the à trous wavelet transform that shows a considerably

improved detection sensitivity and better statistical proper-

ties at high and especially at low signal/noise ratios (SNR

defined as background mean m divided by mean 6SD s).

The wavelet transform is extensively studied in mathematics

(18,19) as well as in a large number of applied sciences such

as acoustics, fluid dynamics, and astronomy (20). The wave-

let transform decomposes the signal of interest in different

spectral bands by an iterative application of band-pass filters.

Image noise can be estimated and reduced in each spectral

band and a denoised version of the image can be recon-

structed. ECRE are then detected in the wavelet transform of

the denoised image. To our knowledge, it has not yet been

used for the analysis of dynamic fluorescence signals from

living cells.

METHODS

Data

Synthetic data sets were used to assess the performance of the algorithm. To

quantify the statistical properties of our algorithm, we produced a data set

representing low-noise experimental data (SNR 3.5) as well as two more

data sets with considerably lower SNR (2.5 and 2.0). Synthetic images

contain 512 3 2048 pixels, equal to the spatial and the temporal dimension

of our experimental XT-images, respectively (87.5 mm 3 4198 ms). A

completely synthetic reference spark with standard parameters (rise time

(RT), 8.2 ms; full duration at half-maximum (FDHM), 16.4 ms; full width

at half-maximum (FWHM), 2.39 mm) was synthesized. It has a single

exponential rise and decay characteristic (rise and decay time constants

independent) and a Gaussian profile in space (see Fig. 5). These functions

provide a good fit to real sparks (21). Images containing sparks, rescaled to

fixed amplitudes, and placed at random positions were produced. Gaussian

noise was added to obtain a desired SNR. We analyzed the amplitude range

from DF/F0 ¼ 0.0–1.0 with an amplitude step size of 0.1 and 20 synthetic

images per amplitude bin. In the amplitude region of interest where the

analyzed statistical parameters rise to their maximum (DF/F0 ¼ 0.2, 0.3),

200 images per amplitude bin were used.

Experimental procedures

Experiments on saponin-treated, permeabilized muscle cells were carried

out as described by Kirsch et al. (7). C57 SV-129 mice were sacrificed

in accordance with the animal handling guidelines laid down by the local

animal care committee and single muscle fibers were obtained from the

extensor digitorum longus muscle. The solutions used correspond to the

mammalian relaxing, internal, and Ringer solution as specified in Kirsch

et al. (7).

Confocal microscopy and fluorescence imaging

The experimental data set was acquired by laser scanning confocal

microscopy of Ca21-fluo-4 fluorescence in saponin-skinned fibers incubated

with 75 mM fluo-4 (Molecular Probes, Eugene, OR). Fibers were imaged

through a w403 water immersion objective (UAPO40wW/340/1.15,

Olympus, Tokyo, Japan) with a confocal laser scanning unit (FV-300,

Olympus) using the 488-nm line of a 20-mW Kr/Ar-laser (Omnichrome,

Melles Griot, Carlsbad, CA) on an inverted microscope (IX70, Olympus).

The fluorescence signal was collected at l. 510 nm using a long-pass filter

and a photomultiplier.

Noise

The wavelet algorithm can be used in its general form on a variety of

different data sets. However, in its specific form presented here it is designed

for the analysis of two-dimensional (XT) dynamic Ca21 measurements with

the fluorescent dye fluo-4. The background fluctuations of these images can

be considered photon noise and follow a Poisson distribution. However, for

the signal intensities achieved in experimental situations (as in ‘‘Experi-

mental procedures’’), a Gaussian distribution yields a good approximation

of the background noise. Fig. 1 b shows a histogram of the background

intensity of a typical line scan image with a Gaussian fit. Fig. 1 a shows

synthetic events embedded in Gaussian (left panel) and Poisson (right panel)

noise and the respective denoised images (lower panels, denoising strength

d ¼ 4.00; definition see below). The signal/noise ratio of the denoised im-

ages is identical for both noise types. Thus, simulation and experimental

observations suggest that the results obtained with Gaussian noise simula-

tions can be applied to the experimental situation.

Another possible way to deal with Poisson noise is by using variance

stabilizing transformations (22). The resulting transform has noise properties

as if the noise originated from a Gaussian distribution, i.e., a Poisson

distributed background can be transformed to a Gaussian distributed noise.

Therefore, we follow the technique employed by Song et al. (13) and Cheng

et al. (15) and embed synthetic sparks in Gaussian distributed noise, thus

achieving a good approximation to experimental conditions and compara-

bility of our results with the literature.
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Image preprocessing

First, the raw image was normalized with respect to an estimate of the

background fluorescence. Therefore, each image row (time axis) was

divided by its mean to remove the t-tubular pattern present in line-scan

images leading to a slight increase of the image SNR. Then, pixels whose

value exceeded a 1.5 s threshold above the mean were set to zero and a

second run of computing the row mean ignoring zero-valued pixels was

done. Finally, every pixel of the raw image was divided by its row mean

value. That produced the normalized image F/Fo used during further

analysis steps.

The wavelet transform

Wavelet-based techniques are computationally efficient time-frequency

methods that decompose an image in a coarse representation and several

‘‘detail’’ levels. The coarse image preserves the large-scale structure and the

mean of the image whereas the ‘‘detail’’ or wavelet levels complement the

coarse level and thus preserve the total image information. The decompo-

sition is achieved by filtering the signal with a set of low- and high-pass filters

as specified below (18). The basis functions for the different resolution levels

are all derived from one elemental function—the scaling function f—by

dilation and translation. This function satisfies the dilation equation (23)

uðxÞ ¼ +
k

hk 3 uð2x � kÞ or

ujðxÞ ¼ +
k

hk 3 uj�1ð2x � kÞ: (1)

Equation 1 expresses the fact that the convolution kernel f can be

constructed as a linear combination of compressed and shifted versions of

itself. The hk are the coefficients of a low-pass filter and determine the form

and the properties of the resulting wavelets. The second form of Eq. 1 is used

to proceed from one resolution level j-1 to the next j and f results from

iteration for j / N. Furthermore, f integrates to 1. The corresponding

wavelet c that serves as a basis for the construction of the detail levels is

given by

cðxÞ ¼ +
k

gk 3 uð2x � kÞ: (2)

The gk are coefficients of a high-pass filter closely related to the low-pass
filter (hk) mentioned above and c integrates to zero (19). This leads to the

important property of detail/wavelet levels to have zero mean. The resulting

wavelets satisfy:

1=2 3 cðx=2Þ ¼ uðxÞ � 1=2 3 uðx=2Þ: (3)

Despite the multitude of possible functions fulfilling these conditions

they show very different characteristics and are therefore not equally suitable

for different scientific applications (24). Our algorithm is based on the two-

dimensional discrete wavelet transform with the cubic B-spline as the

scaling function. Cubic B-splines lead to a scaling function offering various

favorable features such as quasiisotropy and smoothness. This allows a

nonrecursive representation of the scaling function as a piecewise polyno-

mial (25,26):

uðxÞ ¼ 1=12 3 ºjx � 2j3 � 4 3 jx � 1j3 1 6 3 jxj3

� 4 3 jx1 1j3 1 jx1 2j3c: (4)

The implementation of the transform was achieved by the so-called à

trous (with holes) algorithm that yields a nonorthogonal transform. Its

advantage lies in the fact that it is shift invariant and conserves the original

image dimensions, i.e., it is nondecimated. A detailed description of the

properties of the à trous and the Mallat algorithm is given in Mallat (18) and

Shensa (27). Implementation of the algorithm is straightforward: in each step

the image is convolved with a cubic B-spline filter with 2i-1 zeros inserted

between the B-spline filter coefficients at level i, therefore the name ‘‘with

holes’’. The convolution mask in one dimension is 1/16 � [1, 4, 6, 4, 1]. Thus,
we get a series of smoothed images F(k) with F(0) as the normalized raw

image. The wavelet coefficients at level k, W(k), are given by:

WðkÞ ¼ Fðk�1Þ � FðkÞ
: (5)

The decomposition allows the exact reconstruction of the original signal

F(0) by

F
ð0Þ ¼ F

ðkmaxÞ 1 +
k

W
ðkÞ
: (6)

Fig. 2 a shows traces from synthetic and experimental data analyzed with

the à trous wavelet transform. The left panel shows the wavelet transform of

a simulated spark function with additive Gaussian noise. Underlying the

original trace the smoothed signal F(5) is displayed. It has the same mean

as the raw trace and follows the overall trend of the signal. Wavelet levels

W(5)–W(1) follow from bottom to top. The band-pass character of the wavelet

transform is clearly visible. The central panel shows the transform of the

one-dimensional trace of a noisy step function and the right panel shows a

trace of repetitive calcium sparks from skeletal muscle (experimental data).

It should be noticed that the variance of the wavelet coefficients decreases

with level k. The latter feature allows one to remove image noise and to

retain significant coefficients on all wavelet levels as explained in the next

section.

Denoising

Wavelets are a powerful tool for noise removal. Similar to Fourier transform

techniques, wavelet coefficients can be removed and the image reconstructed

FIGURE 1 Noise characteristics. (a) The same simulated ECRE were embedded in Gaussian (left) and Poisson (right) distributed noise at a signal/noise ratio

(SNR) of 2.9. Denoising of the images with the wavelet-based denoising method (bottom panels) resulted in identical SNR values (11.7) for both noise types.

(b) The histogram of fluorescence intensity background fluctuations of an experimental line scan shows a Poisson distribution that is well approximated by a

Gaussian (black solid curve).
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from the remaining coefficients. We used the scheme proposed by Starck

and Murtagh (20). We only want to give a brief outline of the method here.

First, an initial estimate of the background noise standard deviation (s0) is

computed from the pixel values below a 2 3 s threshold, where s denotes

the standard deviation of the image involving all pixels. Compute the

wavelet transform of the image, set all the coefficients that do not exceed a

33 sj threshold (sj being the standard deviation of the wavelet coefficients

on level j) to zero but retain their original values to obtain a noise estimate.

The mean 6SD sj for each wavelet level j is calculated as:

sj ¼ s0 3 ~ssj: (7)

The ~ssj are values for the standard deviation of white Gaussian noise

(WGN) processed by the à trous algorithm obtained from simulations with

synthetic WGN images. The noise estimate is updated from the pixels

having zero coefficients at all levels, taking care to remove the background

signal F(5). The procedure is repeated until convergence and yields the final

estimate sI. A stable estimate is usually reached within few iteration steps.

The image is finally reconstructed from the wavelet coefficients thresholded

at d 3 sI according to Eq. 6. The parameter d will be referred to as the

denoising parameter from now on and provides one of the two basic

parameters of the algorithm determining its final sensitivity and reliability.

Detection

The denoised image is again transformed with the à trous algorithm and ECRE

are detected on the wavelet levels W(k) by applying a simple threshold

operation. With increasing index k there appear events of increasing size and

lower frequency content. Thus, events with sharp spikes such as sparks appear

on high-resolution wavelet levels such asW(2) andW(3) whereas longer events

with slower rise and decay characteristics such as embers tend to appear on

low-resolution levels. Let t denote the detection threshold parameter. The

regions of interest are extracted as pixels with an F/F0 value exceeding a

threshold of t times the standard deviation of the image and produces a set of

binary images. This process is applied to the wavelet coefficients W(k) (k ¼
2. . .4). For high event frequency data containing sharp rising and decaying

events (spark-like) as they occur in voltage clamp experiments with amphibian

skeletal muscle fibers, we used exclusivelyW(2) andW(3) for detection. These

frequency bands contain the important coeffcients that represent spark-like

events. The intersection of the binary images is median filtered to remove very

small areas and yields a set of regions of interest where actual ECRE are

searched for. The parameter t is the other central parameter adjustable by the

user and allows further modification of detection properties. Finally, event

parameters were calculated according to their common definition on three-

point averages through the event center in the median filtered raw data to yield

largely undistorted estimates. Selection conditions were: amplitude DF/Fo $

0.2, FWHM $ 0.6 mm, FDHM $ 5 ms for the conventional algorithm and

DF/Fo$ 0.001, FWHM$ 0.1mm for the wavelet algorithm unless otherwise

indicated. The selection criteria for the conventional algorithm represent

typical values used in practice (e.g., Lacampagne et al. (28)) whereas the

wavelet algorithm could be run effectively without restrictions. The filter bank

structure of the wavelet transform is shown in Fig. 2 b and the overall structure

of the algorithm is presented as a flow chart in Fig. 3. The three main modules

are input and preprocessing, denoising, and detection. The details are

explained in the preceding paragraphs. The code was written in the IDL

programming language (IDL research systems, Boulder, CO). The IDL source

code of the important steps is given in the Appendix.

Statistical analysis

All data are presented as means6SE. Data fits were done with the Sigma Plot

2000 regression tool; test sensitivities and positive predictive values were

fitted to four parameter logistic functions. Statistical analysis was carried out

using the software package Sigma Plot 2000 (SPSS, Chicago, IL). Student’s

t-tests were applied and P-values ,0.05 were defined as significant.

RESULTS

Synthetic data

The algorithm was applied to three different synthetic data

sets with SNR 2.0, 2.5, and 3.5, respectively. The parameters

tested were d ¼ 4.00, 3.75, 3.50, 3.25, t ¼ 3.75, 3.50, 3.25,

FIGURE 2 (a) À trous wavelet trans-

form of different model signals. (Left)

A spark-like event; (middle) a square

pulse (both synthetic with additive

white Gaussian noise); (right) experi-

mental data showing repetitive release

events. The lowest trace is the raw data

and the underlying smooth trace of F(5)

(see text). From bottom to top follow

W(5)–W(1). (b) Filter bank structure of

the à trous wavelet transform. One iter-

ation consists of one convolution of the

signal with a low-pass (LP) and a high-

pass (HP) filter (H and G, respectively).
The low-pass filtered signal is the input

for the next iteration step.
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3.00 (i.e., all combinations of d and t), and additionally t ¼
4.00, 4.50, 5.00 at d¼ 4.00 for the à trous algorithm and k¼
4.7, 4.3, 3.9, and 3.5 for the conventional algorithm. Images

with a SNR varying over a range from 2.0 to 3.5 were

synthesized to show the improved detection efficiency of

the wavelet algorithm especially in the presence of noisy

backgrounds, a major problem in certain experimental

settings. The data set with the highest SNR (3.5) is in good

agreement with our own experimental results obtained from

mammalian skeletal muscle fibers. The statistical parameters

used to quantify our results are (S denotes the event ‘‘spark

occurred’’, D1 and D� denote the events ‘‘detected’’ and

‘‘not detected’’, respectively):

1. Detection sensitivity P (D1|S), i.e., the probability for an

event to be detected or simply the ratio of correctly located

events and the total number of embedded events. To

characterize curve fits, the D50 value is given, defined as

the event amplitude (DF/F0) at 50% detection probability.

2. The positive predictive value (PPV) P (S|D1), i.e., the

probability of an identified event to be a true one. This

can be expressed as

PðSjD1 Þ ¼ PðD1 jSÞ 3 PðSÞ 3 ðPðD1 ÞÞ�1
; (8)

by application of Bayes’ law of probability. Although the

positive predictive value increases when higher sensitivity val-

ues are reached, a higher overall detection probability P (D1)

decreases P (S|D1). This follows from the fact that a higher

overall detection probability is usually associated with low

threshold parameters and less specific detection. Furthermore P
(S|D1) increases with spark frequency P (S), a fact that should
be considered when evaluating data with low event frequen-

cies. PPV50 values are defined in an analogous way to D50

values.

Moreover, we show the receiver operating characteristic

(ROC) of both algorithms defined as follows. The ROC is a

plot of the detection sensitivity versus the false positive

detection rate with the detection parameter (t or k) as the free

parameter. We use 1 � P (S|D1) as a measure for the false

positive detections.

As a reference, we used the algorithm of Cheng et al. (15)

as the most commonly employed for spark detection, which

will be referred to as the ‘‘conventional(1) algorithm’’. We

also compared with the algorithm by Izu et al. (11), which

will be referred to as the ‘‘conventional(2) algorithm’’. The

latter was run with the parameters given in Izu et al. (11),

Ngeneration ¼ 3, Nsize ¼ 7, Nlive ¼ 12 (as defined in the

Introduction).

Synthetic XT-images contained five sparks each, corre-

sponding to 1.36 events/ (100 mm 3 1 s)�1, which is within

the physiological range of spontaneously occurring spark

frequencies in amphibian and mammalian skeletal muscle

(29,7).

Detection sensitivity and positive predictive values (PPV)
prove to be complementary test properties showing an oppo-

site behavior with respect to the test parameters d and t. Fig. 4

illustrates the differences between the algorithms evaluated at

d ¼ 4.00, t ¼ 3.25, and t ¼ 5.00 (wavelet algorithm), k ¼
3.5, 3.9 (conventional(1) algorithm) and for the values given

above for the conventional(2) algorithm. The curve fits for

sensitivity (left column) and PPV (right column) at all noise
levels ((a) SNR 3.5, (b) SNR 2.5, (c) SNR 2.0) are four

parameter logistic functions. Solid and dashed-dotted lines

represent the results obtained with the wavelet-based algo-

rithm (t ¼ 5.00 and t ¼ 3.25, respectively), dashed and dotted

lines represent those of the conventional algorithm(1) (k ¼
3.9, 3.5, respectively) and dashed-double-dotted lines repre-

sent the conventional(2) method. These curves illustrate the

general dependency of the algorithms on the threshold

parameters. The results obtained with the conventional(1)

algorithm at SNR 2.5,D50¼ 0.29, 0.33 at detection thresholds

k ¼ 3.5, 3.9, respectively, are in good agreement with the

previously published results in Cheng et al. (15): D50 ¼ 0.31,

0.34 at k ¼ 3.5, 3.8, respectively (compare also their Fig. 6 A
and Fig. 2). In Fig. 4 it can be seen that the wavelet algorithm

with a high detection threshold (solid line) shows a signifi-

cantly higher sensitivity than the conventional(1) algorithm at

the higher threshold (dashed line) for all SNR. Lowering the

detection threshold of the conventional(1) algorithm increases

its sensitivity and the curve approaches that of the wavelet

algorithm. Again, at its lower threshold, the wavelet algorithm

is the more sensitive algorithm again. The conventional(2)

algorithm has a lower sensitivity than the other two algorithms

at all SNR values tested. The important point here is that using

the wavelet-based method a simultaneous improvement in

both statistical parameters with respect to the conventional

algorithms was achieved.

Another important observation deals with the positive

predictive values. Until now, this value has not been used for

the evaluation of the quality of ECRE detection algorithms.

It has values between 0 and 1 and decreases with an in-

creasing number of false positive detections.

Therefore, it is an important measure counterbalancing the

benefits of high detection sensitivities. Even at the largest

SNR tested, the PPV curve resulting from the conven-

tional(1) algorithm at k¼ 3.5 has a PPV50 of 0.21 but finally

does not exceed 0.66, i.e., even at large event amplitudes

(F/F0 ¼ 2) still 34% of all detected events are false positive.

This is the major reason why higher detection thresholds

(typically;3.9) are necessary when using the conventional(1)

algorithm, as detection efficiency is counterbalanced by false

positive counts. At SNR 2.0 similar relationships between

both techniques emerge. The wavelet algorithm (d ¼ 4.00,

t ¼ 5.00) yields D50 ¼ 0.32 and PPV50 ¼ 0.19 whereas

the conventional(1) algorithm at a common threshold

parameter (k ¼ 3.9) yields D50 ¼ 0.41 and PPV50 ¼ 0.27.

The conventional(2) algorithm shows PPV curves compara-

ble to the conventional(1) algorithm at k ¼ 3.9, especially

at higher amplitudes (DF/F0 . 0.4). Therefore, the con-

ventional(2) algorithm has an overall performance that is
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not superior to the conventional(1) algorithm. Fig. 5 (top
panels) summarizes the differences between the wavelet and

the conventional(1) algorithms using parameter values as

they were applied on our experimental data set, i.e., d¼ 4.00,

t ¼ 3.75 (solid lines), and k ¼ 3.90 (dashed lines).
Sensitivities and positive predictive values are shown for

intermediate noise levels (SNR 2.5). The rising phase of

the curves up to their respective maximum is shown and they

clearly demonstrate the improved detection properties

achieved with the wavelet method for the chosen parameter

combination (D50 ¼ 0.25 and PPV50 ¼ 0.15 for the

wavelet algorithm and D50 of 0.33 and PPV50 of 0.22 for

the conventional(1) algorithm). D50 and PPV50 values for

more parameter combinations are summarized in Table 1.

Thus, in terms of detection sensitivity and reliability a major

improvement with regard to both properties tested can be

achieved using the à trous algorithm.

Fig. 5 (bottom panel) shows the ROC of the wavelet-based

method and of the conventional(1) (conv1) algorithm. The

curve is based on the values obtained at SNR 2.5 and at the

crucial amplitude DF/F0 ¼ 0.3 where both algorithms show

the clearest difference in detection. All t and k values given

above were included. Furthermore, two reasonable assump-

tions are made: i), both algorithms do not detect any events

when t or k tend to infinity, therefore the curve starts at the

origin, and ii), when t or k tend to zero, both, sensitivity and

false positive detection tend to 1 as events cannot be distin-

guished from background. The data points associated with

the wavelet-based method clearly cluster in the upper left

quadrant, whereas the conventional(1) method lies close to a

straight line through the origin. This means that at a given

probability of event detection the wavelet method provides a

higher probability of true detection and must therefore be

considered more efficient.

FIGURE 3 Flow-chart diagram of

the algorithm. The processing direction

starts from the top (input1 preprocess-

ing) downwards to the denoising

procedure. After convergence of the

denoising process, the denoised image

is again transformed and ECRE candi-

dates are localized by the detection

subroutine. Finally, the morphological

analysis (bottom right) of the ECRE is

carried out.
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Event histograms and amplitude distortion

To test the algorithm on experimental-like data, a spark-like

event with a typical morphology (e.g., Kirsch et al. (7))

found in experiments (RT: 8.2 ms, FDHM: 16.4 ms, FWHM:

2.39 mm) was synthesized. It has exponential temporal rise

and decay characteristics and a Gaussian spatial profile. To

simulate actual recording conditions where line-scan images

contain numerous event amplitudes, artificial line-scan images

were produced from the synthetic spark image (XY) via

‘‘off-center sampling’’, i.e., variable scan line to spark center

distance. It should be noted that this procedure influences the

mean and standard deviation of the line-scan image and thus,

the detectability of the other events. To account for this

decrease in spatial event amplitude, which, in general, de-

creases the detectability of an event with increasing distance

from the spark center for a given threshold level, the

following technique was used: the probability density

function (pdf) P for sampling the event in a distance [r, r
1 dr] from the event center is given by

FIGURE 4 Sensitivities (left column) and positive predictive values (PPV, right column) at (a) SNR 3.5, (b) 2.5, and (c) 2.0 for the wavelet algorithm (d ¼
4.00, t ¼ 3.25, dashed-dotted lines; d ¼ 4.00, t ¼ 5.00, solid lines) and the conventional algorithms (k ¼ 3.9, dashed lines; k ¼ 3.5, dotted lines) are shown.
The algorithm as in Cheng et al. (15) is labeled conv1 and the algorithm by Izu et al. (11) conv2. Curves shifted to the left denote improved detection properties.
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Pðr# r# r1 drÞ ¼ 2 � r � dr=R2
; (9)

R denoting the event radius and r the random variable radius.

The pdf for the intensity I is then given by the relation

jPðIðrÞÞ � dIðrÞj ¼ jPðrÞ � drj: (10)

I(r) is the spatial intensity profile of the event and

assuming I(r) to be Gaussian (I(r) ¼ exp(�r2/2)), the

probability density P(I(r)) is inversely proportional to the

intensity I as can be shown by substituting the inverse

function of I(r), r(I) in Eq. 10 and solving for P(I(r)). The
result of analyzing 1000 events is shown for SNR 3.5 and

2.5 in Fig. 6. The amplitude distribution shows the typical

decay expected from the true pdf with a mode introduced at

amplitudes near 0.2 due to the poor detection at very small

amplitudes. The other parameters are distributed with high

accuracy around their actual values, also at the elevated

noise level. Fig. 7 illustrates to what extent event ampli-

tudes are distorted by the analysis procedure. The synthetic

event is shown in the inset. Real amplitudes, which are

below the detection threshold, have to be elevated above the

threshold (by noise) to be detected, therefore the curve in

Fig. 7 is almost flat for amplitudes #0.2. The deviation

from the perfect straight line decreases with increasing

amplitudes as the relative contribution of noise to the

amplitude falls.

Experimental data

Experimental results were obtained from mouse skeletal

muscle fibers chemically skinned with saponin. In these

preparations, ECRE can frequently be observed (7). In Fig.

8, a single simulated event (SNR 2.5, left column), an ex-

perimentally recorded repetitive ECRE (right column), and
the results after processing are shown. Fig. 8, a and g, shows
the normalized raw images. Below, panels b and h show the

results obtained from a simple ‘‘smoothing’’ operation with

a median filter of size 3 3 3 pixels and subsequent boxcar

averaging of size 5 3 5 pixels, a typical preprocessing filter

applied to raw data (similar procedures can be found in Song

et al. (13) and Cheng et al. (15)). The wavelet denoised

images can be seen in Fig. 8, c and i, showing a more

homogenously suppressed background signal and therefore,

a clearer separation between signal and background. The

SNR of the normalized raw image was close to 5 and the

SNR of the smoothed image nearly 21. The wavelet-based

denoising scheme improved the SNR to a value of 68. It

should also be noted, that the accentuation of the repetitive

release event from the background is clearly seen even

though, with a maximum DF/F0 of 0.63, it is far from being

a high-amplitude event. To achieve the same SNR with a

boxcar or a binomial filter, the sharp rise characteristics of a

Ca21 spark would be irretrievably lost.

FIGURE 5 Summary of the statistical

properties of both algorithms (wavelet,

solid lines; conventional, dashed lines) at

SNR 2.5. The parameters used were d ¼
4.00, t ¼ 3.75 (wavelet algorithm), and

k ¼ 3.9 (conventional algorithm). Errors

are presented as mean 6SE (n ¼ 20,

amplitudes 0.2, 0.3 n ¼ 200).
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The fact that high frequencies are preserved by the

wavelet algorithm contributes to the improved detection of

ECRE as seen in panels d–f and j–l. The simulated event was

only detected by the wavelet-based method whereas the two

other algorithms (conv1, k ¼ 3.8 and conv2) gave negative

results. The experimental event was segmented in a different

way by the three algorithms. The wavelet algorithm yields

seven clearly separated release events. The result of the

conventional(1) algorithm (Fig. 8 k) shows the last four

events of panel j as a single connected region. The event

would thus be classified as a single, long event and the

repetitive nature of these events might thus remain unde-

tected. A similar condition is encountered with the conven-

tional(2) algorithm by Izu et al. (11), an even stronger

tendency to fuse closely located regions of interest is

observed (l). A subsequent separation of these events would

require another segmentation process by the analysis proce-

dure. However, the small regions attached to the events in

Fig. 8, j and k, are not counted as individual events in the

analysis procedure, because their morphological character-

istics do not fulfill spark selection criteria. Fig. 8 i shows

another important feature of many ECRE. Repetitive events

often occur on top of a common region of elevated pixel

values. From a multiresolution point of view, one can say

that repetitive events merge on a low resolution level. This

offers a new, objective possibility for the automated detec-

tion and analysis of repetitive ECRE, a release mode frequently

found in experimental recordings that may offer new insights

in the gating of RyR clusters.

High ECRE densities

Under certain experimental conditions like voltage-clamped

amphibian muscle fibers (16), high ECRE frequencies can be

observed. We tested our algorithm on a simulated data set

containing high event densities. Fig. 9 shows such a nor-

malized test image. The events are typically closely spaced

together and have most of their wavelet coefficients in the

high frequency range W(1)–W(3). Because W(1) contains also

noise associated coefficients, we restricted the detection pro-

cedure to wavelet levelsW(2) andW(3) of the denoised image.

The results obtained with this modified detection procedure

and the conventional(1) algorithm are shown in Fig. 9. The

detected events are indicated by a black dot in the peak

region. The left and right panels show the result obtained

with the modified wavelet detection method (d ¼ 4.00, t ¼
3.75) and the conv1 algorithm (k ¼ 3.5), respectively. It is

clearly seen that the adapted wavelet algorithm effectively

separates even highly clustered events and is therefore also

suited for the detection of ECRE in the case of high event

frequencies.

DISCUSSION

We developed an improved method for the automated

detection of ECRE. The novel method is based on the

wavelet transform, a technique closely related to classical

Fourier analysis. The wavelet transform was used in two

ways. First, it was used as an efficient denoising tool and

second, the denoised image was again transformed to detect

ECRE across the wavelet levels. The method yields high

signal/noise ratios, preserving the steep rising phase of spark-

like events. This is possible because the high-frequency

information is not completely discarded as in other filter

methods such as binomial or boxcar filters. The detection

procedure leads to considerably improved detection proper-

ties when compared with conventional methods. In partic-

ular, detection sensitivity as well as detection reliability are

both improved simultaneously with respect to the conven-

tional method of ECRE detection. Interestingly, the differ-

ence between both methods is even more pronounced at

higher noise levels. Therefore, we conclude, that the novel

algorithm is especially useful when low SNR fluorescence

measurements have to be evaluated quantitatively. The

improvement achieved by the wavelet-based method has

important implications for the interpretation of line-scan

TABLE 1 Detection statistics

d t D50 Dmax PPV50 PPVmax

SNR 3.5

0 3.50 0.20 1 0.21 0.66

0 3.90 0.23 1 0.19 0.93

3.25 3.25 0.15 1 0.19 0.99

3.25 3.75 0.16 1 0.18 0.99

4.00 3.25 0.17 1 0.13 0.99

4.00 3.50 0.17 1 0.12 0.99

4.00 3.75 0.17 1 0.12 1

4.00 4.00 0.18 1 0.11 1

4.00 4.50 0.18 1 0.08 1

4.00 5.00 0.19 1 0.09 1

SNR 2.5

0 3.50 0.29 1 0.33 0.61

0 3.90 0.33 1 0.22 0.94

3.25 3.25 0.20 1 0.31 1

3.25 3.75 0.21 1 0.27 1

4.00 3.25 0.24 1 0.16 0.97

4.00 3.50 0.25 1 0.16 0.98

4.00 3.75 0.25 1 0.15 0.98

4.00 4.00 0.26 1 0.14 0.98

4.00 4.50 0.26 1 0.18 0.98

4.00 5.00 0.27 1 0.18 0.98

SNR 2.0

0 3.50 0.34 1 0.37 0.61

0 3.90 0.41 1 0.27 0.93

3.25 3.25 0.23 1 0.39 0.97

3.25 3.75 0.24 1 0.32 0.98

4.00 3.25 0.29 1 0.22 0.96

4.00 3.50 0.29 1 0.22 0.97

4.00 3.75 0.30 1 0.22 0.97

4.00 4.00 0.30 1 0.21 0.98

4.00 4.50 0.31 1 0.18 0.97

4.00 5.00 0.32 1 0.19 0.98
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images that we illustrate with the following example.

Imagine an experiment including two conditions A and B

under which Ca21 sparks are recorded. Under condition A,

an average spark frequency (sparks per image) of 5 (1.36 /

(100 mm3 1 s)�1) is produced and under condition B, a 20%

decrease of event frequency to 4 (1.088 / (100 mm3 1 s)�1)

shall occur. These conditions were realized at SNR 2.5 with

the line-scan sampling technique described above and

analyzed with the conventional algorithm (k ¼ 3.9) and

the wavelet algorithm (d ¼ 4.00 and t ¼ 3.75). Very small

events (DF/F0 , 0.2) cannot be detected by both algorithms;

therefore, both underestimate the true event frequency. In our

setting, the conventional algorithm performed even slightly

better than in Cheng et al. (15) where a SNR of ;3 was

reported. This may be partly due to the fact that our synthetic

spark has a wider peak region than the averaged spark of

Cheng et al. (15). For condition A, the conventional method

yields a mean frequency (sparks per image) of Æfæc ¼ 3.94

(60.97) and the wavelet algorithm Æfæw ¼ 3.75 (60.98). The

difference would not be significant (p ¼ 0.17) using

Student’s t-test. Analysis of condition B yields Æfæc ¼ 3.26

(60.79) and Æfæw ¼ 3.35 (60.74), which would also not be

significant (p ¼ 0.40). However, the difference between

conditions A and B is highly significant using either of the

two methods. This result suggests a similar capability of both

methods to identify correctly both experimental conditions.

However, the rate of false positive detections is a crucial

point here. Although the wavelet algorithm stays well below

1% false detections (condition A, 0.008; condition B, 0.003),

the conventional algorithm has 7.3% erroneously detected

sparks under condition A and 14.4% false positive detections

under condition B. This unacceptably high rate of errors not

only results in a very biased estimation of spark frequencies,

it also introduces a distortion of the event parameters. This

suggests a careful interpretation of low amplitude ECRE

such as lone embers (30) with amplitudes around DF/F0 ;

0.3. This is especially important when absolute fluorescence

FIGURE 6 Event parameter histo-

grams resulting from the analysis of

synthetic images in the line-scan sam-

pling mode. The analysis of the median

filtered raw data yields comparable

results for both noise levels SNR 3.5

(light gray) and 2.5 (dark gray). RT

(8.2 ms), FDHM (16.4 ms), and FWHM

(2.39 mm) can reliably be estimated

from the distribution modes. All ordi-

nates show relative frequencies.

FIGURE 7 Amplitude distortion introduced by the algorithm. Low event

amplitudes are less reliably reproduced because of the additive noise. Events

below the detection threshold have to be elevated above this threshold to be

detected. Therefore, the curve is flat for small amplitudes. The inset shows

the synthetic spark used for the analysis.
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values are being processed, e.g., when release flux estimates

are calculated from fluorescence images. When the results of

both methods are corrected for the erroneous detections, both

still yield a statistically significant difference between groups

A and B. However, in contrast to the conventional method

the results of the wavelet algorithm do not change in a

significant way after the correction. We therefore conclude

that our novel algorithm is a valuable tool for the automated

detection of ECRE. Its accuracy is still good at high noise

levels and low event frequencies. Experimental conditions

that lead to a reduction in spark frequency (31,32) should

benefit to a large extent from the improved algorithm as they

are especially vulnerable to the above demonstrated effects

of false detections. Moreover, the detection of small

amplitude events is facilitated because a low amplitude

threshold does not need to be included in our detection

procedure. In contrast, previously used algorithms applied

low amplitude cutoffs as high as DF/F0¼ 0.4 (28). Although

the iterative scheme of our method leads to an increase in

computation time, this is generally not a problem as event

analysis has yet to be performed in real time. The qualitative

improvements more than outweigh this minor constraint. An

interesting implication of our study is the fact that different

classes of ECRE might allow a more specific detection due to

their frequency content. Right now, we detect all ECRE in

permeabilized muscle cells in the same frequency bands (i.e.,

wavelet levels). The study of high event density data (Fig. 9)

with an adapted detection method and observations on the

wavelet transform of slow events (as discussed in ‘‘The

wavelet transform’’ section and Fig. 2 a) suggest extensions
of the method. A wavelet-oriented approach allows the use

of detection criteria in the wavelet space. These are inher-

ently different from criteria established in the data space

(space/time) and offer the possibility to adapt the detection

method to the nature of the data. Finally it should be

emphasized that the algorithm based on the à trous wavelet

transform may also prove to be most useful for the analysis

of other biophysical recordings with similar features, e.g.,

dynamic fluorescence data from neurons or nonexcitable

cells.

APPENDIX: IDL CODE

; NORMALIZE IMAGE (see Cheng et al. (15))

n_image ¼ NormIm(image)

image ¼ n_image

; DENOISING

delta ¼ 4.

den ¼ Denoise(image,delta)

image ¼ den

; DETECTION

tau ¼ 3.75

det ¼ Detect(image,tau)

FIGURE 8 Direct comparison of denoising and detection properties of the

wavelet-based method (c–d), the conventional method 1 (b, e, h, k), and the

conventional method 2 (f, l). The analysis was carried out on a simulated

event (left column) and raw fluorescence data containing a spontaneous

repetitive Ca21 release event (right column). (b, h) The same data after

‘‘standard’’ preprocessing (3 3 3 median and 5 3 5 boxcar filter). (c,i)
Wavelet denoised raw data. (d, f, j–l) Output of the detection procedures of

the respective algorithms. The single release events appear clearly separated

after the wavelet procedure whereas some of them appear clustered after the

conventional method. However, they still merge on lower resolution levels

as can be seen from the underlying signal elevation in panel i.

FIGURE 9 Simulated line-scan image with high ECRE frequency as it

occurs in voltage-clamped amphibian fibers. Events are spark-like and the

detection is therefore restricted to wavelet levels W(2) and W(3). The result is

almost identical to the conventional(1) algorithm.
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; ANALYSIS computes location, amplitude,

; FDHM, FWHM, RT:

Analyse, n_image, image, det

function Denoise, ima, k

; n-dimensional vector t contains standard deviations of

; the wavelet coefficients W1..Wn of a Gaussian (N(0,1))

; distributed random variable

commonvar, t

y ¼ ima & nx ¼ (size(ima))[1] & ny ¼ (size(ima))[2]

; initialize standard deviation (SD)

sigma0 ¼ 0.0

sigma1 ¼ stddev(y)

eps ¼ 0.001 ; convergence criterium

count ¼ 0 ; init. iteration counter

z ¼ MRA(y) ; compute the à trous transform of y

; z ¼ fltarr(6,nx,ny) W1..W5 -. z(0..4,*,*)

; F5 -. z(5,*,*)

r ¼ fltarr(nx,ny) & n ¼ r

d1 ¼ r & d2 ¼ r & d3 ¼ r & d4 ¼ r & d5 ¼ r

supp ¼ bytarr(nx,ny)

; produce 2D images, W1..W5 -. d1..d5, F5 -. r

r(*,*) ¼ z(5,*,*)

d1(*,*) ¼ z(0,*,*) & d2(*,*) ¼ z(1,*,*) & d3(*,*) ¼ z(2,*,*)

d4(*,*) ¼ z(3,*,*) & d5(*,*) ¼ z(4,*,*)

while (abs(sigma1-sigma0)/sigma1 gt eps) do begin

; compute SD of noise stimate from the

; multiresolution support supp

m ¼ 0.

sd ¼ 0.

sum ¼ 0.

sq_sum ¼ 0.

; threshold wavelet levels d1..d5

T_d1 ¼ (abs(d1) gt 3.*t(0)*sigma1)

T_d2 ¼ (abs(d2) gt 3.*t(1)*sigma1)

T_d3 ¼ (abs(d3) gt 3.*t(2)*sigma1)

T_d4 ¼ (abs(d4) gt 3.*t(3)*sigma1)

T_d5 ¼ (abs(d5) gt 3.*t(4)*sigma1)

supp ¼ T_d1 1 T_d2 1 T_d3 1 T_d4 1 T_d5

if (min(supp) eq 0) then begin

for i¼0, nx-1 do begin

for j¼0, ny-1 do begin

if (supp(i,j) eq 0) then begin

n(i,j) ¼ y(i,j) � r(i,j)

sum 1¼ n(i,j)

sq_sum 1¼ (n(i,j)^2)

m 11

endif

endfor

endfor

sd ¼ sqrt(1./(m-1)*(sq_sum-(1./m)*sum^2))

sigma0 ¼ sigma1

sigma1 ¼ sd

count 11

endif else begin

GOTO, stop_it

endelse

endwhile

stop_it:

; reconstruct the image with the final SD estimate

T_d1 ¼ (abs(d1) gt k*t(0)*sigma1)

T_d2 ¼ (abs(d2) gt k*t(1)*sigma1)

T_d3 ¼ (abs(d3) gt k*t(2)*sigma1)

T_d4 ¼ (abs(d4) gt k*t(3)*sigma1)

T_d5 ¼ (abs(d5) gt k*t(4)*sigma1)

y ¼ d1*T_d1 1 d2*T_d2 1 d3*T_d3 1 d4*T_d4 1 d5*T_d5 1 r

y ¼ median(y,3) ; suppress small areas

return, y

end

function Detect, ima, k

y ¼ ima

z ¼ MRA(y) ; see Denoise

eps¼.001

nx ¼ (size(ima))[1] & ny ¼ (size(ima))[2]

x ¼ fltarr(5,nx,ny) & f5 ¼ fltarr(nx,ny)

im ¼ f5 & x_bin ¼ f5 & xr ¼ f5

f5(*,*) ¼ z(5,*,*)

for i¼1, 4 do begin

im(*,*) ¼ z(i,*,*)

; threshold wavelet levels W2..W5

im1 ¼ median(y*(im gt k*stddev(im)),3).eps

x(i,*,*) ¼ im1

endfor

; logical AND operation over thresholded W2..W5

x_bin(*,*) ¼ (x(4,*,*) AND x(3,*,*) AND x(2,*,*) AND x(1,*,*)) gt 0

; attach integer labels to regions of interest

xr ¼ label_region(median(x_bin,3))

return, xr

end
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