
BioMed Central

International Journal of Health 
Geographics

ss
Open AcceMethodology
Geostatistical analysis of disease data: visualization and propagation 
of spatial uncertainty in cancer mortality risk using Poisson kriging 
and p-field simulation
Pierre Goovaerts*

Address: BioMedware, Inc., Ann Arbor, MI, USA

Email: Pierre Goovaerts* - goovaerts@biomedware.com

* Corresponding author    

Abstract
Background: Smoothing methods have been developed to improve the reliability of risk cancer
estimates from sparsely populated geographical entities. Filtering local details of the spatial variation
of the risk leads however to the detection of larger clusters of low or high cancer risk while most
spatial outliers are filtered out. Static maps of risk estimates and the associated prediction variance
also fail to depict the uncertainty attached to the spatial distribution of risk values and does not
allow its propagation through local cluster analysis. This paper presents a geostatistical
methodology to generate multiple realizations of the spatial distribution of risk values. These maps
are then fed into spatial operators, such as in local cluster analysis, allowing one to assess how risk
spatial uncertainty translates into uncertainty about the location of spatial clusters and outliers. This
novel approach is applied to age-adjusted breast and pancreatic cancer mortality rates recorded
for white females in 295 US counties of the Northeast (1970–1994). A public-domain executable
with example datasets is provided.

Results: Geostatistical simulation generates risk maps that are more variable than the smooth risk
map estimated by Poisson kriging and reproduce better the spatial pattern captured by the risk
semivariogram model. Local cluster analysis of the set of simulated risk maps leads to a clear
visualization of the lower reliability of the classification obtained for pancreatic cancer versus breast
cancer: only a few counties in the large cluster of low risk detected in West Virginia and Southern
Pennsylvania are significant over 90% of all simulations. On the other hand, the cluster of high
breast cancer mortality in Niagara county, detected after application of Poisson kriging, appears on
60% of simulated risk maps. Sensitivity analysis shows that 500 realizations are needed to achieve
a stable classification for pancreatic cancer, while convergence is reached for less than 300
realizations for breast cancer.

Conclusion: The approach presented in this paper enables researchers to generate a set of
simulated risk maps that are more realistic than a single map of smoothed mortality rates and allow
the propagation of cancer risk uncertainty through local cluster analysis. Coupled with visualization
and querying capabilities of geographical information systems, animated display of realizations can
highlight areas that depart consistently from the general behavior observed across the region,
guiding further investigation and control activities.
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Background
Cancer mortality maps are used by public health officials
to identify areas of excess and to guide surveillance and
control activities. Quality of decision-making thus relies
on an accurate quantification of risks from observed rates
which can be very unreliable when computed from
sparsely populated geographical entities or for diseases
with a low frequency of occurrence [1]. Smoothing meth-
ods have been developed to improve the reliability of
these estimates by borrowing information from neighbor-
ing entities [2,3]. These methods range from simple deter-
ministic techniques (i.e. head banging method [1]) to
sophisticated full Bayesian models [4,5]. Empirical Bayes
smoothers [6,7] and Poisson kriging [8] provide model-
based approaches with intermediate difficulty in terms of
implementation and computer requirements. Although
simulation studies [7,8] have demonstrated the benefit of
smoothing methods for risk prediction, some uncertainty
will always be associated with the estimated risk. In Pois-
son kriging the uncertainty about the risk within a given
geographical entity is modeled by computing a minimum
error variance (kriging) estimate of the risk and the asso-
ciated error variance, which can then be combined to
derive a Gaussian-type confidence interval. Full Bayes
models go one step further and yields the full posterior
distribution of the risk while accounting for the uncer-
tainty in the parameters of the model.

Most studies do not make use of the uncertainty measure
provided by smoothing methods, and only the map of
smoothed rates is reported and used in the analysis. This
is unfortunate since all rate smoothers, including Poisson
kriging, cause the loss of local details of the spatial varia-
tion of the risk. This smoothing potentially affects the sub-
sequent analysis, leading for example to the detection of
larger aggregates of low or high cancer risk in local cluster
analysis while most spatial outliers are filtered out [9]. To
depict the uncertainty attached to risk maps, some authors
recommend mapping the 95th percentile range of the pos-
terior distribution of risk values or the probability that the
risk in each entity exceeds a specific threshold of interest
[4,10,11]. Richardson et al. [12] proposed to use this
probability of exceedence to decide whether an area
should be classified as having an excess risk of cancer.
They discussed different decision rules or loss functions
which represent weighted trade-offs between false-posi-
tive results (i.e. declaring an area as having elevated risk
when in fact its underlying true risk equals the back-
ground level) and false-negative results (i.e. declaring an
area to be in the background when in facts its underlying
risk is elevated).

A major weakness of the uncertainty measures reported in
today's health science literature is that they are area-spe-
cific, that is they inform on the uncertainty prevailing over

a single geographical entity at a time. Except if the risk val-
ues are spatially independent, the probabilities of excess
of a specific threshold computed for several entities do
not provide a measure of uncertainty about whether these
entities jointly exceed that threshold. In addition to a
measure of "local" uncertainty, one thus needs to assess
the "spatial" uncertainty, that is the uncertainty attached
to the spatial distribution of risk values across the study
area. The quantification of spatial uncertainty is particu-
larly important for cluster detection, since the focus is on
risk values for a group of geographical entities considered
simultaneously. This information is not conveyed by a
statistic map of the estimated risk and the associated pre-
diction variance.

Spatial uncertainty modeling has been one of the most
vibrant areas of research in geostatistics for the last 2 dec-
ades [13-15]. Applications, such as modeling the migra-
tion of pollutants in the subsurface environment, require
measures of multiple-point uncertainty, such as the prob-
ability of occurrence of a string of high or low permeabil-
ity values that may represent a flow path or flow barrier
[16]. These joint probabilities are assessed numerically
from a set of realizations of the spatial distribution of
attribute values over the locations of interest. In other
words, the spatial uncertainty is modeled through the
generation of a set of equally-probable simulated maps,
each consistent with the information available, such as
histogram or a spatial correlation function. Stochastic
simulation allows generation of maps that reproduce the
spatial variability of the data without smoothing effect
[17]. The set of simulated maps can also be used to prop-
agate the uncertainty through spatial operators or transfer
functions. For example, the set of simulated permeability
maps can be fed into a flow simulator, yielding a distribu-
tion of response values, such as travel times to the water
table [18].

From the user's perspective, it is important to be able to
visualize the uncertainty in the spatial model of risk val-
ues. Although stochastic simulation offers a way to gener-
ate a large number of potential scenarios, the burden of
manually scrolling through hundreds of different maps
will test the patience of most users and be little informa-
tive. The information contained in the set of simulated
maps is thus often summarized through a static display of
probabilities of exceeding particular threshold or some
measures of the spread of the posterior distribution [13].
By doing so, one however fails to depict the uncertainty
about spatial features and essentially maps the area-spe-
cific measures of uncertainty provided by kriging and
other smoothing methods. To depict visually the spatial
uncertainty, several authors [19,20] have developed algo-
rithms that show the realizations one at a time in rapid
succession, like the frames of an animated cartoon,
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Geographic distribution of age-adjusted breast and pancreatic cancer mortality rates for white femalesFigure 1
Geographic distribution of age-adjusted breast and pancreatic cancer mortality rates for white females. For the 
two top maps, the fill color in each county represents the age-adjusted mortality rates per 100,000 person-years recorded 
over the period 1970–1994 for white females. The class boundaries correspond to deciles of the histogram of rates. The scat-
tergrams illustrate the larger variability in rates observed for counties with small populations.

Breast cancer 
(rate/100,000 person-years) 

Pancreatic cancer
(rate/100,000 person-years) 
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thereby eliminating the burden of manually displaying
each simulated map. Like an animated cartoon, successive
realizations must be similar enough to allow the eye to
catch gradual changes. Such a similarity can be achieved
by ranking the realizations appropriately or by using a
simulation algorithm, called p-field simulation [21-23],
that generates realizations that are incrementally differ-
ent. The animated display of realizations allows one to
distinguish areas that remain stable over all realizations
(low uncertainty) from those where large fluctuations
occur between realizations (high uncertainty).

This paper presents the first application of geostatistical
simulation to model the spatial uncertainty attached to
cancer risk values. This approach combines Poisson krig-
ing and p-field simulation to generate multiple realiza-
tions of the spatial distribution of cancer risk values. These
simulated maps are then fed into a local cluster analysis,
allowing one to assess how uncertainty about the spatial
distribution of risk values translates into uncertainty
about the location of spatial clusters and outliers in cancer
risks. The simulation approach is also used to generate a
series of realizations that are incrementally different and
animations are created using the Space-Time Information
System (STIS) technology [24]. A public-domain executa-
ble for generating multiple risk maps, along with example
datasets, is provided. This novel methodology is applied
to the modeling, visualization and propagation of the spa-
tial uncertainty of age-adjusted breast and pancreatic can-
cer mortality risks for white females in 295 US counties of
the Northeast (1970–1994).

Methods
Data
The methodology for modeling and propagating the
uncertainty about the spatial distribution of health data
will be illustrated using directly age-adjusted mortality
rates for a frequent (i.e. breast) and less frequent (i.e. pan-
creatic) cancer. These data are part of the Atlas of Cancer
Mortality in the United States [25] and were downloaded
from http://www3.cancer.gov/atlasplus/download.html.
The rates were adjusted using the 1970 population pyra-
mid. The analysis focuses on white female rates recorded
over the 1970–1994 period for 295 counties of 12 New
England States. Figure 1 (top graphs) shows the spatial
distribution of age-adjusted mortality rates per 100,000
person-years. Following the recommendations of several
studies on map color schemes [26,27], a double-ended
color scheme with 10 equally-weighted classes (i.e.
boundaries correspond to deciles of the histogram) was
used: a gradient of red is used for rates higher than the
median, while a gradient of blue is used for lower rates.
The bottom scattergrams indicate that extreme high or
low rates are typically recorded for sparsely populated
counties (small number problem). For both cancers, the

population at risk was computed as: 100,000 × the total
number of deaths over the 1970–1994 period divided by
the age-adjusted cancer mortality rate; both datasets are
available on NCI website. The population-weighted aver-
age of the age-adjusted mortality rates is 30.14 per
100,000 person-years for breast cancer and 7.25 per
100,000 person-years for pancreatic cancer.

Poisson kriging
The geostatistical methodology for the estimation of risk
values from empirical frequencies, and its performance
relative to common smoothers, is described in details in
Goovaerts [8]. This section briefly reviews its most salient
features. For a given number N of entities (e.g. counties,
states, electoral ward), denote the observed mortality rates
as z(uα) = d(uα)/n(uα), where d(uα) is the number of
recorded mortality cases and n(uα) is the size of the pop-
ulation at risk. These entities are referenced geographically
by their centroids (or seats) with the vector of spatial coor-
dinates uα = (xα,yα). The disease count d(uα) is interpreted
as a realization of a random variable D(uα) that follows a
Poisson distribution with one parameter (expected
number of counts) that is the product of the population
size n(uα) by the local risk R(uα).

The risk estimate over a given entity with centroid uα, and
the attached prediction variance, are computed from K
neighboring observed rates as:

where CR(ui-uα) is the covariance between the rate meas-
ured at ui and the risk estimated at uα ; the spatial proxim-
ity is here defined in terms of Euclidian distance between
the geographical centroids of the corresponding counties.
The kriging weights λi(uα) are the solution of the follow-
ing system of linear equations, known as the "Poisson
Kriging" (PK) system [28,29]:

where δij = 1 if ui = uj and 0 otherwise, and m* is the pop-
ulation-weighted mean of the rates. The term µ(uα) is a
Lagrange parameter that results from the minimization of
the estimation variance subject to the unbiasedness con-
straint on the estimator. The addition of an "error vari-
ance" term, m*/n(ui), for a zero distance accounts for
variability arising from population size, leading to smaller
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weights for less reliable data (i.e. measured over smaller
populations).

The computation of kriging weights and kriging variance
requires knowledge of the covariance of the unknown
risk, CR(h), or equivalently its semivariogram γR(h) =
CR(0)-CR(h). Following Monestiez et al. [28,29] the semi-
variogram of the risk is estimated as:

where N(h) is the number of pairs of county centroids
separated by a vector h. The different pairs [z(uα)-z(uα+h)]
are weighted by the corresponding population sizes to
homogenize their variance. A permissible model, γR(h), is
then fitted to the experimental semivariogram, i.e. using
weighted least-square regression [30] in this paper.

Modeling local and spatial uncertainty
The uncertainty about the cancer mortality risk prevailing
within the county with centroid uα can be modeled using
the conditional cumulative distribution function (ccdf) of
the risk variable R(uα) defined as:

where G(.) is the cumulative distribution function of the
standard normal random variable. The notation "|(K)"
expresses conditioning to the local information, say, K
neighboring observed rates. The function (5) gives the
probability that the unknown risk is no greater than any
given threshold r. It is modeled as a Gaussian distribution
with the mean and variance corresponding to the Poisson
kriging estimate and variance. Measures of the spread of
the distribution (i.e. variance or interquartile range), as
well as the probability of exceeding any given threshold,
are easily computed and mapped [[13], p. 358–361].
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Example of parameter file required by pfield.exeFigure 2
Example of parameter file required by pfield.exe. This parameter file is used to generate 100 realizations of the spatial 
distribution of mortality risk values for pancreatic cancer. The input information includes the risk estimates and variances cal-
culated by Poisson kriging, and the semivariogram of risk fitted by the program poisson_kriging.exe and displayed in Figure 5 
(right bottom graph).

                  Parameters for P-FIELD simulation 
                  ********************************** 

START OF PARAMETERS: 
pancreasrisk.out               \Poisson_kriging.exe risk output file (GEO-EAS format) 
100pancreas-pfield.out         \Output file for simulations (GEO-EAS format) 
pancreasrisk.out               \File with centroid coordinates 
1 2 3                          \Column numbers for unit ID + X & Y coordinates 
295                            \Number of units to simulate 
100                            \Number of realizations to generate 
69069                          \Random number seed 
32                             \Max. number of previously simulated values 
0.0494                         \Nugget effect 
2                              \Number of basic semivariogram models 
5                              \Type of model (1st structure) 
0.3509                         \Sill 
737.0569    375.8447           \Max. range, Min. range 
348.1476                       \Azimuth for max. range 
1                              \Type of model (2nd structure) 
0.1940                         \Sill 
450.4064    108.2564           \Max. range, Min. range
88.8730                        \Azimuth for max. range 

Type of semivariogram model: 
1 => spherical 
2 => exponential 
5 => cubic 
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Instead of a unique set of smooth risk estimates { (uα),

α = 1,...,N}, stochastic simulation aims to generate a set of
L equally-probable realizations of the spatial distribution

of risk values, {r(l)(uα), α =1,...,N; l = 1,...,L}, each consist-

ent with the spatial pattern of the risk as modeled using

the function γR(h). Simulation of spatial phenomena can

be accomplished using a growing variety of techniques
that differ in the underlying random function model, the
amount and type of information that can be accounted
for, and the computer requirements [13]. The main diffi-
culty for the current application is that there is no meas-
ured risk data; only a semivariogram indirectly computed
from observed rates according to expression (4) is availa-
ble. The lack of target histogram is not an issue for the p-
field simulation approach [21-23]. The basic idea is to

generate a realization {r(l)(uα), α = 1,...,N} through the

sampling of the set of ccdfs by a set of spatially correlated

probability values {p(l)(uα), α = 1,...,N}, known as a prob-

ability field or p-field. Since the probability distributions
are Gaussian (Equation 5), each risk value is simulated as:

r(l)(uα) = F-1(uα; p(l)(uα) | (K)) = (uα) + σPK(uα)y(l)(uα)

 (Equation 6)

where y(l)(uα) is the quantile of the standard normal dis-
tribution corresponding to the cumulative probability
p(l)(uα).

Generating the probability field
The L sets of random deviates or normal scores, {y(l)(uα),
α = 1,...N}, are generated using non-conditional sequen-
tial Gaussian simulation which proceeds as follows (see
[13], p. 380 for more details):

1. Define a random path (i.e. using a random number
generator) visiting each county centroid uα only once.

2. At each location uα determine the mean and variance of
the Gaussian probability distribution of y-values as:

where y(l)(ui) are normal scores simulated at locations
previously visited along the random path and located
within a search radius from uα, and C(ui-uα) is the covar-
iance function of the normal score variable Y for the sep-
aration vector hiα = ui-uα . In this paper, C(h) was
identified to the covariance function of the risk after res-
caling to a unit sill, i.e. C(h) = 1-γR(h)/CR(0). The λi are
kriging weights obtained by solving the following system
of linear equations (simple kriging, SK):

3. Draw a simulated value from the Gaussian ccdf and add
it to the data set. In other words, the simulated value at uα

is y(l)(uα) =  (uα)+σSK(uα) × G-1 [p(l)], where p(l) is a

random number between 0 and 1.

4. Proceed to the next location along the random path,
and repeat the two previous steps.

5. Loop until all N locations (i.e. N = 295 here) are simu-
lated.

The procedure is repeated using a different random path
and set of random numbers to generate another realiza-
tion. Note that the mean and variance of the set of simu-
lated normal scores can sometimes deviate substantially
from zero and one, respectively. Such discrepancies
between model and realization statistics are referred to as
ergodic fluctuations [[13], p. 426]. These fluctuations can

r̂PK

r̂PK

y ySK i
l

i
i

K
* ( )( ) ( ) (u uα λ=

=
∑

1

Equation 7)

σ λα αSK i i
i

K
C2

1

1( ) ( )u u u= − −
=
∑ (Equation 8)

λ αj i j i
j

K
C C i K( ) ( )u u u u− = − =

=
∑         1, , (Equation 9)…

1

ySK
*

Output file created by pfield.exe following the analysis of pancreatic cancer mortality ratesFigure 3
Output file created by pfield.exe following the analy-
sis of pancreatic cancer mortality rates. The output file 
(Geo-EAS format) includes the spatial coordinates of each 
entity centroid and the simulated values for each realization. 
This example shows the first and last few lines of the file (i.e. 
realization 1 to 100).

P-field Realizations 
5
FIPS
X
Y
Simulation # 
Simulated risk 
   9001       1861.838        644.733    1 0.7722E+01 
   9003       1900.101        716.105    1 0.7172E+01 
   9005       1859.648        704.498    1 0.6862E+01 
   9007       1925.468        682.736    1 0.7907E+01 
   9009       1895.472        668.665    1 0.7431E+01 
   9011       1959.665        694.247    1 0.7778E+01 
   9013       1930.567        729.482    1 0.7052E+01 

        :                           :                             :               :              : 

        :                           :                             :               :              : 

        :                           :                             :               :              : 
  54097       1348.353        268.954  100 0.5583E+01 
  54099       1174.226        156.461  100 0.5301E+01 
  54101       1339.905        221.645  100 0.5326E+01 
  54103       1301.494        341.124  100 0.4861E+01 
  54105       1249.198        266.896  100 0.5971E+01 
  54107       1234.482        285.998  100 0.6408E+01 
  54109       1258.615        108.092  100 0.5275E+01 
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be important when the range of the semivariogram model
is large with respect to the size of the simulated area, in
particular when the nugget effect is small [[31,32] p. 128–
133]. In the program pfield.exe described below, each set
of simulated normal scores is rescaled by its mean and
variance to fulfill the underlying assumptions of a stand-
ard normal random function.

Creating animated displays of realizations
One interesting feature of the p-field simulation approach
is its ability to generate easily a series of realizations that
are incrementally different. The algorithm, originally pro-
posed by Srivastava [19] for the simulation of raster grids,
requires the generation of a probability field that is much
larger than the area to be simulated. Multiple realizations
are then generated by shifting slightly the probability field
before sampling the set of ccdfs. This small shift ensures
that, albeit different, the probabilities used to sample the
ccdfs from one realization to the next are very close to
each other, leading to gradual changes between successive

realizations. These realizations can be used as consecutive
frames in an animation, enabling a dynamic and evolving
display of the uncertainty attached to the spatial distribu-
tion of attribute values. A similar approach is here imple-
mented for the simulation of risk values over the non-
gridded set of county centroids; see the Results and Discus-
sion Section.

Local cluster analysis and propagation of uncertainty
Once the rates have been geostatistically filtered or simu-
lated, classical Exploratory Spatial Data Analysis (ESDA)
techniques can be applied to investigate the existence of
local clusters or outliers of high or low cancer risk values.
For example, the local Moran test evaluates local cluster-
ing or spatial autocorrelation [33]. Its null hypothesis is
that there is no association between rates in neighboring
geographical units; i.e. counties in this paper. The working
(alternative) hypothesis is that spatial clustering exists.
For each county, the so-called LISA (Local Indicator of
Spatial Autocorrelation) statistic is computed as:

Output semivariogram file created by poisson_kriging.exe following the analysis of pancreatic cancer mortality ratesFigure 4
Output semivariogram file created by poisson_kriging.exe following the analysis of pancreatic cancer mortal-
ity rates. This output file, called pancreasvariog.txt, includes the semivariogram risk values computed using 15 classes of 20 
km, in four directions with the first direction azimuth starting at 22.5° measured clockwise from the NS axis. This file was cre-
ated by poisson_kriging.exe using the additional files 1 and 2. The parameters of the semivariogram model are copied into 
the parameter file pfield.par required for p-field simulation (Figure 2).

 Risk semivariogram 
 --------------------------------------- 
Lag #    Distance      direct1     direct2      direct3     direct4      Pair #1   Pair #2   Pair #3   Pair #4
    1   0.2482E+02   0.3234E-02   0.1592E+00   0.6616E-01   0.6145E-01        22        25        21        29 
    2   0.4183E+02   0.2804E+00   0.1630E+00   0.2095E+00   0.9681E-01       126       125       122       119 
    3   0.6106E+02   0.2120E+00   0.1725E+00   0.1730E+00   0.2504E+00       148       155       142       149 
    4   0.8031E+02   0.1390E+00   0.2502E+00   0.2335E+00   0.3498E+00       203       191       174       161 
    5   0.1002E+03   0.2970E+00   0.3368E+00   0.2505E+00   0.2130E+00       221       220       189       209 
    6   0.1204E+03   0.2595E+00   0.4329E+00   0.4055E+00   0.3953E+00       275       257       216       245 
    7   0.1399E+03   0.3337E+00   0.3436E+00   0.3667E+00   0.3417E+00       309       283       230       227 
    8   0.1601E+03   0.4192E+00   0.5177E+00   0.6233E+00   0.3653E+00       332       295       240       286 
    9   0.1799E+03   0.4482E+00   0.5159E+00   0.4285E+00   0.4236E+00       371       333       274       268 
   10   0.2002E+03   0.4632E+00   0.5625E+00   0.4824E+00   0.2887E+00       417       343       261       272 
   11   0.2204E+03   0.4896E+00   0.5469E+00   0.4781E+00   0.3353E+00       418       390       264       289 
   12   0.2397E+03   0.4458E+00   0.6437E+00   0.6061E+00   0.4577E+00       405       396       256       258 
   13   0.2601E+03   0.5145E+00   0.6965E+00   0.4410E+00   0.3796E+00       487       427       277       296 
   14   0.2800E+03   0.4096E+00   0.6841E+00   0.4058E+00   0.3438E+00       451       441       254       272 
   15   0.3001E+03   0.4235E+00   0.6637E+00   0.4661E+00   0.3271E+00       490       439       249       266 

 Model fitted 
 ************ 
  Nugget effect:    0.0494 
  Number of basic models:   2 
  Model 1:
  Type: cubic model 
     Sill:    0.3509 
     Max. range, Min. range:     737.0569    375.8447 
     Azimuth for max. range:     348.1476 
  Model 2:
  Type: spherical model 
     Sill:    0.1940 
     Max. range, Min. range:     450.4064    108.2564 
     Azimuth for max. range:      88.8730 
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where (uα) is the kriged risk for the county being

tested, which is referred to as the "kernel" hereafter;

(uj) are the risk values for the J(uα) neighboring coun-

ties that are here defined as units sharing a common bor-
der or vertex with the kernel uα (1-st order queen

adjacencies). All values are standardized using the mean
m and standard deviation s of the set of risk estimates.
Since the standardized values have zero mean, a negative

value for the LISA statistic indicates a negative local auto-
correlation and the presence of spatial outlier where the
kernel value is much lower (higher) than the surrounding
values. Cluster of low (high) values will lead to positive
values of the LISA statistic.

In addition to the sign of the LISA statistic, its magnitude
informs on the extent to which kernel and neighborhood
values differ. To test whether this difference is significant
or not, a Monte Carlo simulation is conducted, which tra-
ditionally consists of sampling randomly and without
replacement the global distribution of rates (i.e. sample
histogram) and computing the corresponding simulated
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Directional semivariograms for breast and pancreatic cancer mortality rates and risks with the model fittedFigure 5
Directional semivariograms for breast and pancreatic cancer mortality rates and risks with the model fitted. 
The semivariograms of raw mortality rates (left column) and the semivariograms of the risk (Equation 4, right column) are 
computed in four directions; azimuth angles are measured in degrees clockwise from the NS axis. The solid curve denotes the 
anisotropic (i.e. direction-dependent) model fitted using weighted least-square regression (program poisson_kriging.exe in 
[8]).
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Maps of breast and pancreatic cancer mortality risks estimated by Poisson kriging and the corresponding kriging varianceFigure 6
Maps of breast and pancreatic cancer mortality risks estimated by Poisson kriging and the corresponding krig-
ing variance. For the two top maps, the fill color in each county represents the cancer mortality risk per 100,000 person-
years estimated for the period 1970–1994; the class boundaries correspond to the deciles of the histogram of rates. The mid-
dle maps display the kriging variance computed using Equation (2); the class boundaries correspond to the deciles of the histo-
gram of kriging variances. Bottom scattergrams illustrate the greater uncertainty of the risk estimated for sparsely populated 
counties.
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neighborhood averages. This operation is repeated many
times (e.g. M = 999 draws) and these simulated values are
multiplied by the kernel value to produce a set of M sim-
ulated values of the LISA statistic at location uα . This set
represents a numerical approximation of the probability
distribution of the LISA statistic at uα , under the assump-
tion of spatial independence. The observed statistic
(Equation 10) is compared to the probability distribution,
enabling the computation of the probability of not reject-
ing the null hypothesis. The so-called p-value is compared
to the significance level α chosen by the user and repre-
senting the probability of rejecting the null hypothesis
when it is true (Type I error). Every county where the p-
value is lower than the significance level is classified as a
significant spatial outlier (HL: high value surrounded by
low values, and LH: low value surrounded by high values)
or cluster (HH: high value surrounded by high values, and
LL: low value surrounded by low values). If the p-value
exceeds the α level, the county is declared non-significant
(NS).

Instead of conducting the local cluster analysis on the set
of smooth risk estimates, one of the key ideas of this paper
is to apply the algorithm to the set of simulated risk maps,
yielding a set of classifications of counties into significant
clusters and outliers, or non significant units. The ensem-
ble of classified maps can be used to compute the proba-
bility that a county belongs to each of the five classes. This
county is then allocated to the class with the highest prob-
ability of occurrence (maximum likelihood classifica-
tion).

Any prior information on the spatial pattern of mortality
risks could be included directly into the randomization
procedure underpinning the test of significance of local
cluster analysis using the approach proposed by Goo-
vaerts and Jacquez [9]. In other words, the null hypothesis
of spatial randomness and uniform risk, corresponding to
the operation of randomization of the outcomes, is
replaced by models that are more realistic. Realizations of
the so-called "Neutral Models" are also generated using
geostatistical simulation. The approach allows the identi-
fication of spatial patterns above and beyond that incor-
porated into the neutral model, enabling, for example, the
identification of "hot spots" beyond background varia-
tion in a pollutant or the detection of clusters beyond
regional variation in the risk of developing cancer [34].

Software
Poisson kriging, including the estimation and modelling
of the semivariogram of the risk, was conducted using the
public-domain executable poisson-kriging.exe described
in Goovaerts [8]. The data and parameter file used for the
estimation of pancreatic cancer risks are provided with the
paper (additional file 1: pancreas.dat, additional file 2:
poisson-kriging.par). Probability fields were generated
using a modified version of the code sgsim.exe from the
public-domain Geostatistical Software Library Gslib [32].
This modified code allows simulation over an irregular
grid of county centroids, and the random deviates are
directly combined with the output of Poisson kriging to
generate simulated risk values. The executable of this p-
field code is provided with the paper (additional file 3:

Reproduction of the risk semivariogram model by the set of risk estimatesFigure 7
Reproduction of the risk semivariogram model by the set of risk estimates. The semivariogram of risk estimates is 
computed in four directions; azimuth angles are measured in degrees clockwise from the NS axis. The solid curve denotes the 
anisotropic (i.e. direction-dependent) model used in Poisson kriging. This graph illustrates the underestimation of the spatial 
variability of the risk by the smooth map of kriging estimates.
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Results of a local cluster analysis conducted on breast and pancreatic cancer mortality rates and estimated risksFigure 8
Results of a local cluster analysis conducted on breast and pancreatic cancer mortality rates and estimated 
risks. The fill color in each county represents the classification into significant low-low (LL) or high-high (HH) clusters, as well 
as high-low (HL) or low-high (LH) outliers. Light gray indicates counties that are not significant at the level α = 0.05; the p-val-
ues were corrected for multiple testing using the Simes adjustment.
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pfield.exe), along with the parameter file used for pancre-
atic cancer (additional file 4: pfield.par). Local cluster
analysis and animation of results were performed using
the Space-Time Information System (STIS) technology
[24].

Figure 2 shows the parameter file, pfield.par, used to gen-
erate 100 realizations of the spatial distribution of pancre-
atic cancer mortality risk values over 295 county
centroids. The text file includes the following informa-
tion:

• Name of the text file including the Poisson kriging risk
estimates and variances. This file is one of the output files
of poisson_kriging.exe.

• Name of the output text file (Geo-EAS format [35]) that
includes the spatial coordinates of each entity centroid
and the simulated values for each realization. The output
file produced by the parameter file pfield.par,
100pancreas-pfield.out, is shown in Figure 3.

• Name of the text file including the ID field and spatial
coordinates of the centroids of the geographical units to
be simulated.

• The column numbers for the observation identification
code (i.e. FIP county), and the variables with the spatial
coordinates.

• The number of geographical units to simulate.

• The number of realizations to generate.

• Random number seed to initiate the random number
generator. This number should be a large odd integer.

• The maximum number of previously simulated values
to use in the computation of kriging weights and kriging
variance (parameter K in Equations 7–9). These values are

selected according to their covariance with the node being
simulated, which accounts for both distance and direction
in presence of anisotropy. Values beyond the range of
autocorrelation (i.e. zero covariance) are not selected
since their weight is systematically zero in simple kriging.

• Parameters of the risk semivariogram model: nugget
effect, number and type of basic semivariogram models,
sill and range(s) of autocorrelation for each model, azi-
muth of the direction of maximum range if an anisotropic
model is fitted. These values are found in the output text
file created by poisson_kriging.exe; see example in Figure
4.

Results and discussion
Semivariograms of cancer mortality risk
The experimental risk semivariograms for breast and pan-
creatic cancer mortality were estimated using equation (4)
along four directions. Figure 5 (right column) shows the
results, while the left column shows the traditional semi-
variograms computed directly from the observed rates.
On each graph, the solid curve denotes the model fitted
using weighted least-square regression. For example, the
traditional semivariogram estimator for pancreatic cancer
was modeled using two cubic models: (min. range = 50
km, max. range = 450 km) and (min. range = 158 km,
max. range = 332 km). The risk semivariogram was mod-
eled using a combination of a spherical model (min.
range = 108 km, max. range = 450 km) and cubic model
(min. range = 376 km, max. range = 737 km).

The semivariograms of the risk are much better structured
and have smaller sills than the corresponding semivario-
grams of the rates. This is expected since the weights in
expression (4) attenuate the influence of extreme rates
computed from small population sizes and subtraction of
the correction term m* reduces the variance even more.
This effect is more pronounced for pancreatic cancer: the
relative decrease in sill value is larger than for breast can-
cer, and the risk semivariogram has a much longer range

Table 1: Results of local cluster analysis of mortality rate and risk maps. Number of counties classified as significant spatial clusters or 
outliers for breast and pancreatic cancers on the original mortality rate maps, kriged risk maps, and on average over the 500 
simulated risk maps.

Maps HH cluster LL cluster HL Outlier LH outlier

Breast cancer
Mortality rates 20 39 2 1
Risk estimates 35 50 0 0
Simulation 37.2 48.2 0.18 0.07

Pancreatic cancer
Mortality rates 5 16 7 0
Risk estimates 42 60 0 0
Simulation 44.5 51.0 0.24 0.08
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Simulated risk maps for breast cancer, and results of the local cluster analysisFigure 9
Simulated risk maps for breast cancer, and results of the local cluster analysis. For the risk maps (left column), the 
fill color in each county represents the breast cancer mortality risk per 100,000 person-years simulated for the period 1970–
1994; the class boundaries correspond to the deciles of the histogram of rates. For the local cluster analysis (right maps), the 
fill color in each county represents the classification into significant low-low (LL) or high-high (HH) clusters, as well as high-low 
(HL) or low-high (LH) outliers. Light gray indicates counties that are not significant at the level α = 0.05; the p-values were cor-
rected for multiple testing using the Simes adjustment.
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Simulated risk maps for pancreatic cancer, and results of the local cluster analysisFigure 10
Simulated risk maps for pancreatic cancer, and results of the local cluster analysis. For the risk maps (left column), 
the fill color in each county represents the pancreatic cancer mortality risk per 100,000 person-years simulated for the period 
1970–1994; the class boundaries correspond to the deciles of the histogram of rates. For the local cluster analysis (right maps), 
the fill color in each county represents the classification into significant low-low (LL) or high-high (HH) clusters, as well as high-
low (HL) or low-high (LH) outliers. Light gray indicates counties that are not significant at the level α = 0.05; the p-values were 
corrected for multiple testing using the Simes adjustment.
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Reproduction of target statistics by the set of simulated risk mapsFigure 11
Reproduction of target statistics by the set of simulated risk maps. The top and middle graphs show the histograms 
of the mean and a priori variance of each set of simulated values. The black dot in the box plot below each histogram is the tar-
get value identified as the average estimated risk or the sill of the risk semivariogram model. Five vertical lines are the 0.025 
quantile, lower quartile, median, upper quartile, and 0.975 quantile of the distribution. Bottom graphs show the directional 
semivariograms of simulated risk values, averaged over all 500 realizations; the solid line depicts the target model fitted in Fig-
ure 5.
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of autocorrelation than the traditional estimator that is
almost pure nugget effect (i.e. no spatial correlation).
Since pancreatic cancer is less frequent than breast cancer,
its mortality rates are more likely to be impacted by the
small number problem and display higher levels of noise.
In particular for breast cancer the semivariogram of the
risk displays a slight anisotropy, with smaller variability
(red curve) along the NE-SW direction for small distances.

Poisson kriging
Risk semivariogram models were used to estimate the can-
cer mortality risk and the associated prediction variance
by Poisson kriging. Following a previous study [8], the

closest 32 neighboring counties were used for the estima-
tion. The risk maps in top of Figure 6 are much smoother
than the original rate maps (Figure 1), since the noise
caused by small population sizes has been filtered. This
smoothing effect is also reflected by the lack of reproduc-
tion of the risk semivariogram model by the set of kriging
estimates, see Figure 7. Especially for pancreatic cancer,
there is a severe underestimation of the short-range varia-
bility, which is a typical feature of kriging and other least-
square interpolation algorithms [[13], p. 372]. These
maps, however, facilitate the visualization of areas of
higher mortality risks, such as the East coast around the
cities of New York and Boston, while West Virginia and

Reproduction of Poisson kriging estimate and variance by the set of simulated risk valuesFigure 12
Reproduction of Poisson kriging estimate and variance by the set of simulated risk values. By construction, the 
mean and variance of the local (i.e. county-specific) distribution of simulated risk values should be equal to the mean (kriging 
estimate) and variance (kriging variance) of the ccdf sampled using the probability field. The scatterplots indicate that the 
ensemble of 500 realizations provides a uniform sampling of the local distributions of probability.
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Summary of local cluster analyses conducted on 500 simulated risk mapsFigure 13
Summary of local cluster analyses conducted on 500 simulated risk maps. For the top maps, the fill color in each 
county represents the most frequent classification observed over 500 simulations of the spatial distribution of breast and pan-
creatic cancer mortality risks: low-low (LL) or high-high (HH) clusters, while light gray indicates counties that have mostly been 
found non-significant at an α level of 0.05; the p-values were corrected for multiple testing using the Simes adjustment. The 
intensity of the shading increases as the classification becomes more certain; the classification likelihood is mapped in the bot-
tom maps.
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Southern Pennsylvania have much lower risks for both
cancers. The two risk maps mainly differ in the Northern
part of the study area, with higher risks for pancreatic can-
cer in Maine. Yet, these predictions are based on sparsely
populated or geographically remote counties, hence the
associated kriging variance is very large; see Figure 6 (mid-
dle maps). Large kriging variances are also found in the
South where mortality risks for both cancers are lower
than average. The bottom scattergrams in Figure 6 illus-
trate the relationship between the kriging variance and the
population size, indicating the expected higher reliability
of risk values estimated from densely populated counties.

Aggregates of counties with lower or higher mortality risks
are easily detected in the local cluster analysis, whose
results are displayed in Figure 8 (bottom graphs). A signif-
icance level α = 0.05 was used and the p-values were cor-
rected for multiple testing using the Simes adjustment
[36]. The analysis of risk estimates indicates significant
low-low clusters (LL) in West Virginia, and part of Penn-
sylvania for pancreatic cancer. Significant clusters of high
risks (HH) are found around New York and Boston for
both cancers.

The comparison of results obtained for the observed mor-
tality rates versus risk estimates illustrates the impact of
noise filtering on the local cluster analysis. For both can-
cers, the few spatial outliers detected for mortality rates are
not significant in terms of risk. For example, the only sig-
nificant low-high outlier for breast cancer, Clinton
County (NY), was caused by the very large and unreliable
age-adjusted breast cancer mortality rate of 38.8 per
100,000 person-years observed in its eastern neighbor,

the small county of Grand Isle (VT); see Figure 8 (left top
graph). The estimated risk in this sparsely populated
county drops to 28.4, leading to a much smaller neighbor-
hood value and the disappearance of the low-high outlier.
Another consequence of the smoothing is the expansion
of the clusters' size. Table 1 indicates that 50% to 400%
more counties are classified as significant clusters based
on risk maps versus the original mortality rates. For breast
cancer, the cluster of low risks in the South now includes
the two high-low outliers detected on the map of mortal-
ity rates. Note also in the western part of the map the high-
high cluster of three New-York counties, including Nia-
gara, which appears after application of Poisson kriging.
This result agrees with the identification of a breast cancer
cluster in the Western New-York area by the New-York
State's Department of Health [37]. Differences between
the classifications of mortality rates and risks are the most
important for the less frequent pancreatic cancer, since the
rates are expected to be less reliable; see Figure 8 (right col-
umn). The LL and HH clusters expanded into much larger
clusters on the classified risk maps, while all seven spatial
outliers were smoothed out.

Stochastic simulation of risk values
A shortcoming of the local cluster analysis in Figure 8 is
that it ignores the uncertainty attached to the predicted
risks. For example, the large cluster of low mortality risk
for pancreatic cancer should be interpreted cautiously
because of the large prediction variance in the Southern
part of the study area. One notices also the absence of spa-
tial outliers for both cancers which, to some extent, results
from the smoothing of high and low values by kriging.
This conditional bias (i.e. overestimation of low values

Impact of the number of realizations on the stability of local cluster analysis resultsFigure 14
Impact of the number of realizations on the stability of local cluster analysis results. The left graph displays the 
absolute change in classification likelihood as the number of simulated risk maps increases from 100 to 500. The right graph 
shows the number of counties that are classified differently as the number of realizations increases from 100 to 500. Both 
curves represent results averaged over 50 random subsets.
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and underestimation of high values) might cause some
counties to be wrongly classified as non-significant too.

Five hundreds realizations of the spatial distribution of
risk values were simulated using the approach outlined in
the Methods Section. Figures 9 and 10 show three realiza-
tions and the results of the corresponding local cluster
analysis. The simulated maps are more variable than the
kriged risk maps of Figure 6, yet they are smoother than
the maps of potentially unreliable rates of Figure 1. Differ-
ences among realizations depict the uncertainty attached
to the risk maps. For example, in Maine and Northwestern
part of New-York state the simulated risk for pancreatic
cancer takes a wide range of values, emphasizing the lack
of reliability of high risk estimates in these regions. Differ-
ences between realizations are much smaller for breast

cancer, which is expected given the higher frequency of
this disease leading to more reliable risk estimates.

Reproduction of a target histogram and semivariogram is
a common way for the geostatistician to assess the quality
of a simulated map [14,18]. Despite the lack of risk data
to compute a target histogram, target summary statistics,
such as mean and a priori variance [38], can be identified
with the mean of the risk estimates and the sill of the risk
semivariogram model, respectively. Figure 11 shows the
histogram of these two statistics computed from the set of
500 simulated maps. The a priori variance corresponds to
the sill of the model fitted to the directional semivario-
grams computed for each set of simulated risk values; this
statistic is a better measure of dispersion than the sample
variance since it accounts for the spatial correlation

Illustration of the p-field approach for generating animated displays of simulated mapsFigure 15
Illustration of the p-field approach for generating animated displays of simulated maps. A large simulation grid is 
first generated by shifting the 295 county centroids by EW increments of 33 km. This large grid is then populated with proba-
bility values using sequential Gaussian simulation and the risk semivariogram models of Figure 5. Last, the probability values are 
used to sample Gaussian local distributions of probability characterized by the Poisson kriging estimate and variance mapped in 
Figure 6 (Monte-Carlo simulation).

33 km shift
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between risk values (i.e. variance of data separated by a
distance larger than the range of autocorrelation). The
black dot in the box plot below each histogram is the tar-
get value, i.e. the average estimated risk or the sill of the
risk semivariogram model. Five vertical lines are the 0.025
quantile, lower quartile, median, upper quartile, and
0.975 quantile of the distribution. The simulated maps
reproduce, on average, reasonably well the two target sta-
tistics, in particular the target mean. The coefficient of var-
iation is smaller for breast cancer relative to pancreatic
cancer. Besides the reproduction of the sill, reproduction
of the shape of the target semivariogram model should
also be assessed. The directional semivariograms of simu-
lated risk values were computed for each of the 500 reali-
zations, and their average is superimposed on the target
model (solid curve) at the bottom of Figure 11. For both
cancers the simulated risk maps very well reproduce the
spatial anisotropy; the sill is slightly underestimated in
the realizations of pancreatic mortality risks, which agrees
with the underestimation of the target a priori variance
noticed on the histogram. Discrepancies between the real-
ization and target semivariograms (i.e. ergodic fluctua-
tions) in this application are, to a large extent, explained
by the large range of autocorrelation (up to 800 km) with
respect of the size of the study area, as well as the small

nugget effect of the risk semivariogram models. Yet, com-
parison of Figures 11 and 7 shows that simulated maps
better reproduce the spatial variability of risk values, as
modeled by the semivariogram function γR(h), than the
corresponding kriged maps.

By construction, the mean and variance of the local (i.e.
county-specific) distribution of simulated risk values
should reproduce the mean and variance of the ccdf that
is repeatedly sampled across all realizations. The ccdf
parameters are the kriging estimate and variance, and
those are plotted against the mean and variance of 500
simulated risk values in Figure 12. The good agreement
between the two sets of statistics, in particular the mean,
indicates that the ensemble of 500 probability fields pro-
vides a uniform sampling of these local distributions of
probability.

Propagation of uncertainty through local cluster analysis
The classified maps in the right column of Figures 9 and
10 illustrate how the uncertainty about risk values trans-
lates into uncertainty about the results of the local cluster
analysis. From one realization to another, the shape and
position of local clusters can change substantially. For
example, the southern part of the cluster of low risk values

Probability fields used to create incrementally different simulated maps of breast and pancreatic cancer mortality riskFigure 16
Probability fields used to create incrementally different simulated maps of breast and pancreatic cancer mor-
tality risk. These large probability fields were generated by sequential Gaussian simulation and used to create 200 realizations 
of simulated risk values according to the procedure described in Figure 15.
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Six consecutive frames of the animated display of mortality risk maps for pancreatic cancerFigure 17
Six consecutive frames of the animated display of mortality risk maps for pancreatic cancer. The fill color in each 
county represents the pancreatic cancer mortality risk per 100,000 person-years simulated for the period 1970–1994; fewer 
class boundaries are selected to enhance the spatial features in all maps.
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Six consecutive frames of the animated display of local cluster analysis results for pancreatic cancerFigure 18
Six consecutive frames of the animated display of local cluster analysis results for pancreatic cancer. The fill 
color in each county represents the classification into significant low-low (LL) or high-high (HH) clusters, as well as high-low 
(HL) or low-high (LH) outliers. Light gray indicates counties that are not significant at the level α = 0.05; the p-values were cor-
rected for multiple testing using the Simes adjustment. The six maps are obtained by performing a local cluster analysis of the 
six maps of simulated pancreatic cancer mortality risks displayed in Figure 17.
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detected on the kriged map for pancreatic cancer becomes
non significant on some realizations; see Figure 10 (bot-
tom right graph). The location and nature of clusters is
much more stable for breast cancer. Table 1 indicates that
slightly more counties are classified as significant clusters
when the analysis is performed on kriged risks instead of
simulated values. A few counties are also now classified as
significant outliers, which confirms the potential bias of
an analysis based on smoothed rates.

The information provided by the set of 500 local cluster
analyses is summarized in Figure 13. The color code in the
top maps indicates the most frequent classification of
each county across the 500 simulated maps. The shading
reflects the probability of occurrence or likelihood of the
mapped class. Solid shading corresponds to classifications
with high frequencies of occurrence (i.e. likelihood > 0.9),
while hatched counties denote the least reliable results
(i.e. likelihood < 0.75). This coding is somewhat subjec-
tive but leads to a clear visualization of the lower reliabil-
ity of the classification obtained for pancreatic cancer
versus breast cancer; a similar conclusion can be drawn
from the probability maps displayed at the bottom of Fig-
ure 13. The classification likelihood, averaged over all 295
counties, is 0.92 for breast cancer versus 0.81 for pancre-
atic cancer. In particular, the classification as low risk areas
for pancreatic cancer exceeds a 0.9 likelihood only for a
few counties in the large cluster detected in West Virginia
and Southern Pennsylvania on the map of Figure 8 (right
bottom). As intuitively expected, less reliable results are
found for counties located on the edge of the clusters as
well as for isolated counties. It is noteworthy that Niagara
county is still classified as a high-high cluster with a 0.6
probability of occurrence. None of the county is predom-
inantly classified as outlier across all realizations.

How many realizations are needed?
The use of stochastic simulation in test of hypothesis relies
on the assumption that the space of solution is sampled
fairly exhaustively and uniformly (equally-probable reali-
zations [18]). It is thus necessary to investigate how con-
clusions change as a function of the number of simulated
maps generated. For example, Figure 14 shows the influ-
ence of increasing the number of realizations from 100 to
500 on the average difference in terms of likelihood val-
ues and classification of counties into significant outliers
and clusters (the reference is the results obtained using
100 realizations). To reduce sampling fluctuations, for
each sample size ranging from 100 to 500 realizations, 50
subsets were randomly selected from the original set of
500 realizations, and the averaged results are plotted in
Figure 14. All curves exhibit a plateau within this range of
number of realizations, although the asymptotic behavior
depends on the type of cancer. Larger classification dis-
crepancies and slower convergence are observed for pan-

creatic cancer, which confirms previous results regarding
its lower classification reliability relative to breast cancer.
Yet, for this case study, enough realizations of the spatial
distribution of cancer mortality risks were generated to
yield a stable classification of counties.

Visualization of spatial uncertainty
A series of 200 incrementally different simulated risk
maps was generated by shifting a very large probability
field by an EW increment of 33 km between realizations;
see an example in Figure 15 for breast cancer. 33 km is the
average distance between centroids of contiguous coun-
ties. East West corresponds to the approximate direction
of largest variability displayed by the risk semivariograms,
and it is expected to lead to a more complete exploration
of the space of uncertainty through the maximization of
differences among realizations. Figure 16 shows the entire
probability fields used for both cancers. The breast cancer
probability field shows clear NE-SW bands of high and
low probabilities, which reflects the anisotropy displayed
by the risk semivariogram model in Figure 5. The anisot-
ropy is much less pronounced for pancreatic cancer. Note
that since the same random numbers and random path
were used in sequential simulation for both cancers, the
locations of high and low values are fairly similar in the
two probability fields.

Figure 17 shows six consecutive realizations of the ani-
mated set created for pancreatic cancer mortality risk; the
entire animation is available as additional file 5: pan-
creas.avi. The most striking feature is the gradual increase
of risk values in West Virginia, while risk values decrease
in the Southeastern part of New Jersey. This gradual
change in spatial pattern of risk values between successive
frames of the animation leads to a gradual change in the
position and nature of clusters and outliers. Figure 18
depicts a shrinking of the low-low cluster in the South,
while the same cluster is expanding to the North. This
change illustrates the lack of reliability of the classification
of these counties as low-low cluster on the map of Figure
8 (right bottom graph), a feature captured by the sum-
mary map of Figure 13 (right top graph). Similarly, a few
counties in the Southeastern part of New Jersey classified
as high-high cluster on Frame # 12 become non-signifi-
cant on Frame #17. The entire animation of local cluster
results is available as additional file 6: pancreas-LCA.avi.

Conclusion
Capitalizing on the abundant geostatistical literature
devoted to the modelling of local and spatial uncertainty
plus the recent development of Poisson kriging, this paper
presented a novel approach, and the corresponding com-
puter code, to generate realizations of the spatial distribu-
tion of risk values. P-field simulation proceeds in two
steps. First, the local uncertainty about the risk prevailing
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within each geographical unit is modelled from the
observed mortality rates and population at risk using
Poisson kriging. The set of local probability distributions
is then sampled using a set of spatially correlated proba-
bility values generated using non-conditional sequential
Gaussian simulation. Through sampling by slowly mov-
ing probability fields, the approach also allows the crea-
tion of incrementally different realizations that can be
used as consecutive frames in an animation, enabling a
dynamic and evolving display of the uncertainty attached
to the spatial distribution of risk values.

Simulated risk maps reproduce the spatial variability of
the risk, thereby overcoming the smoothing effect inher-
ent to all current procedures for stabilization of rate data,
including Poisson kriging. In fact, the map of kriged risk
is but the average of all simulated risk maps, while the
kriging variance corresponds to the variance of the local
distribution of simulated risk values. The probability of
occurrence of multi-point or spatial features, such as
aggregates of counties with low or high cancer mortality
risk, can also be assessed numerically from the ensemble
of realizations. This information can be conveyed through
static maps of spatial clusters and outliers, using a color
code indicating the likelihood of the classification, or
through the dynamic display of the set of classified maps.

The analysis of breast and pancreatic cancer mortality
rates illustrated the potentialities of the approach for
modelling and propagating their spatial uncertainty
through local cluster analysis. Geostatistical simulation
generated risk maps that are more variable than the
smooth risk map estimated by Poisson kriging and repro-
duce better the spatial pattern captured by the risk semi-
variogram model. Differences between realizations were
particularly important for the less frequent pancreatic can-
cer, reflecting for example the uncertainty attached to
higher risk estimates in sparsely populated counties of
Maine and North-western New-York. Such uncertainty
translates into a lack of reliability of some of the spatial
clusters and outliers detected on the map of smoothed
rates. The case study showed how geostatistical simula-
tion permits the quantification of the likelihood of spatial
clusters and outliers detected using Moran's I. Local clus-
ter analysis of the set of simulated risk maps leads to a
clear visualization of the lower reliability of the classifica-
tion for pancreatic cancer versus breast cancer: only a few
counties in the large cluster of low risk detected in West
Virginia and Southern Pennsylvania are significant over
90% of all simulations. On the other hand, the cluster of
high breast cancer mortality in Niagara county, detected
after application of Poisson kriging, is significant for 60%
of simulated risk maps. Sensitivity analysis shows that
500 realizations are needed to achieve a stable classifica-

tion for pancreatic cancer, while convergence is reached
after fewer than 300 realizations for breast cancer.

Maps of cancer incidence as well as mortality rates are fre-
quently used as input to disease clustering procedures
whose purpose is to identify local areas of excess and def-
icit. Most users recognize that rates recorded for small
populations are uncertain, leading to the routine applica-
tion of smoothing methods prior to the analysis. Yet, in
their interpretation of the risk maps, they tend to forget
that the risks themselves are prone to uncertainty and that
some features, such as large clusters of low or high risk,
might just be artifacts of the smoothing method. Ignoring
such uncertainty can lead to misallocation of resources to
investigate unreliable clusters of high risk, while areas of
real concern might go undetected. Instead of a single, and
potentially misleading, map of smoothed rates, the simu-
lation approach provides public health officials with a set
of plausible scenarios for the spatial pattern of risk. Those
permit investigating the impact of risk uncertainty on
alternate intervention and control activities. In the future,
the concept of stochastic simulation of mortality risks will
be combined with the neutral model methodology [9] to
assess geographic clustering using appropriate null
hypotheses that account for the spatial correlation and
background variation modeled from the observed rates
and any ancillary information (i.e. exposure model).
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Additional File 1
Input data file for poisson_kriging.exe. This dataset follows the Geo-EAS 
format and includes, for 295 counties of New England, the following 
information: FIPS code, spatial coordinates of the county geographic cen-
troid, age-adjusted pancreatic cancer mortality rate per 100,000 person-
years, and the population at risk for the 1970–1994 period.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
072X-5-7-S1.dat]

Additional File 2
Input parameter file for poisson_kriging.exe. This text file includes all the 
variables and names of input/output files required by the program, as well 
as the parameters for semivariogram modelling and Poisson kriging.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
072X-5-7-S2.par]
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