Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jun;61(6):2314–2321. doi: 10.1128/aem.61.6.2314-2321.1995

Bioenergetic Response of the Extreme Thermoacidophile Metallosphaera sedula to Thermal and Nutritional Stresses

T L Peeples, R M Kelly
PMCID: PMC1388469  PMID: 16535051

Abstract

The bioenergetic response of the extremely thermoacidophilic archaeon Metallosphaera sedula to thermal and nutritional stresses was examined. Continuous cultures (pH 2.0, 70(deg)C, and dilution rate of 0.05 h(sup-1)) in which the levels of Casamino Acids and ferrous iron in growth media were reduced by a step change of 25 to 50% resulted in higher levels of several proteins, including a 62-kDa protein immunologically related to the molecular chaperone designated thermophilic factor 55 in Sulfolobus shibatae (J. D. Trent, J. Osipiuk, and T. Pinkau, J. Bacteriol. 172:1478-1484, 1990), on sodium dodecyl sulfate-polyacrylamide gels. The 62-kDa protein was also noted at elevated levels in cells that had been shifted from 70 to either 80 or 85(deg)C. The proton motive force ((Delta)p), transmembrane pH ((Delta)pH), and membrane potential ((Delta)(psi)) were determined for samples obtained from continuous cultures (pH 2.0, 70(deg)C, and dilution rate of 0.05 h(sup-1)) and incubated under nutritionally and/or thermally stressed and unstressed conditions. At 70(deg)C under optimal growth conditions, M. sedula was typically found to have a (Delta)p of approximately -190 to -200 mV, the result of an intracellular pH of 5.4 (extracellular pH, 2.0) and a (Delta)(psi) of +40 to +50 mV (positive inside). After cells had been shifted to either 80 or 85(deg)C, (Delta)(psi) decreased to nearly 0 mV and internal pH approached 4.0 within 4 h of the shift; respiratory activity, as evidenced by iron speciation in parallel temperature-shifted cultures on iron pyrite, had ceased by this point. If cultures shifted from 70 to 80(deg)C were shifted back to 70(deg)C after 4 h, cells were able to regain pyrite oxidation capacity and internal pH increased to nearly normal levels after 13 h. However, (Delta)(psi) remained close to 0 mV, possibly the result of enhanced ionic exchange with media upon thermal damage to cell membranes. Further, when M. sedula was subjected to an intermediate temperature shift from 73 to 79(deg)C, an increase in pyrite dissolution (ferric iron levels doubled) over that of the unshifted control at 73(deg)C was noted. The improvement in leaching was attributed to the synergistic effect of chemical and biological factors. As such, periodic exposure to higher temperatures, followed by a suitable recovery period, may provide a basis for improving bioleaching rates of acidophilic chemolithotrophs.

Full Text

The Full Text of this article is available as a PDF (493.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowen B., Steinberg J., Laemmli U. K., Weintraub H. The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res. 1980 Jan 11;8(1):1–20. doi: 10.1093/nar/8.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brierley C. L., Murr L. E. Leaching: use of a thermophilic and chemoautotrophic microbe. Science. 1973 Feb 2;179(4072):488–490. doi: 10.1126/science.179.4072.488. [DOI] [PubMed] [Google Scholar]
  3. Brown S. H., Kelly R. M. Cultivation Techniques for Hyperthermophilic Archaebacteria: Continuous Culture of Pyrococcus furiosus at Temperatures near 100 degrees C. Appl Environ Microbiol. 1989 Aug;55(8):2086–2088. doi: 10.1128/aem.55.8.2086-2088.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark T. R., Baldi F., Olson G. J. Coal Depyritization by the Thermophilic Archaeon Metallosphaera sedula. Appl Environ Microbiol. 1993 Aug;59(8):2375–2379. doi: 10.1128/aem.59.8.2375-2379.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cobley J. G., Cox J. C. Energy conservation in acidophilic bacteria. Microbiol Rev. 1983 Dec;47(4):579–595. doi: 10.1128/mr.47.4.579-595.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox J. C., Nicholls D. G., Ingledew W. J. Transmembrane electrical potential and transmembrane pH gradient in the acidophile Thiobacillus ferro-oxidans. Biochem J. 1979 Jan 15;178(1):195–200. doi: 10.1042/bj1780195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goulbourne E., Jr, Matin M., Zychlinsky E., Matin A. Mechanism of delta pH maintenance in active and inactive cells of an obligately acidophilic bacterium. J Bacteriol. 1986 Apr;166(1):59–65. doi: 10.1128/jb.166.1.59-65.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holden J. F., Baross J. A. Enhanced thermotolerance and temperature-induced changes in protein composition in the hyperthermophilic archaeon ES4. J Bacteriol. 1993 May;175(10):2839–2843. doi: 10.1128/jb.175.10.2839-2843.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hsung J. C., Haug A. Membrane potential of Thermoplasma acidophila. FEBS Lett. 1977 Jan 15;73(1):47–50. doi: 10.1016/0014-5793(77)80011-2. [DOI] [PubMed] [Google Scholar]
  10. Jones R. D., Donaldson I. M. Fractionation of visuoperceptual dysfunction in Parkinson's disease. J Neurol Sci. 1995 Jul;131(1):43–50. doi: 10.1016/0022-510x(95)00043-2. [DOI] [PubMed] [Google Scholar]
  11. Konishi J., Denda K., Oshima T., Wakagi T., Uchida E., Ohsumi Y., Anraku Y., Matsumoto T., Wakabayashi T., Mukohata Y. Archaebacterial ATPases: relationship to other ion-translocating ATPase families examined in terms of immunological cross-reactivity. J Biochem. 1990 Oct;108(4):554–559. doi: 10.1093/oxfordjournals.jbchem.a123241. [DOI] [PubMed] [Google Scholar]
  12. Krulwich T. A., Davidson L. F., Filip S. J., Jr, Zuckerman R. S., Guffanti A. A. The protonmotive force and beta-galactoside transport in Bacillus acidocaldarius. J Biol Chem. 1978 Jul 10;253(13):4599–4603. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lübben M., Schäfer G. A plasma-membrane associated ATPase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Eur J Biochem. 1987 May 4;164(3):533–540. doi: 10.1111/j.1432-1033.1987.tb11159.x. [DOI] [PubMed] [Google Scholar]
  15. Lübben M., Schäfer G. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid. J Bacteriol. 1989 Nov;171(11):6106–6116. doi: 10.1128/jb.171.11.6106-6116.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matin A. Genetics of bacterial stress response and its applications. Ann N Y Acad Sci. 1992 Oct 13;665:1–15. doi: 10.1111/j.1749-6632.1992.tb42569.x. [DOI] [PubMed] [Google Scholar]
  17. Matin A., Wilson B., Zychlinsky E., Matin M. Proton motive force and the physiological basis of delta pH maintenance in thiobacillus acidophilus. J Bacteriol. 1982 May;150(2):582–591. doi: 10.1128/jb.150.2.582-591.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  19. Michels M., Bakker E. P. Generation of a large, protonophore-sensitive proton motive force and pH difference in the acidophilic bacteria Thermoplasma acidophilum and Bacillus acidocaldarius. J Bacteriol. 1985 Jan;161(1):231–237. doi: 10.1128/jb.161.1.231-237.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moffat A. S. Microbial mining boosts the environment, bottom line. Science. 1994 May 6;264(5160):778–779. doi: 10.1126/science.264.5160.778. [DOI] [PubMed] [Google Scholar]
  21. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  22. Trent J. D., Nimmesgern E., Wall J. S., Hartl F. U., Horwich A. L. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature. 1991 Dec 12;354(6353):490–493. doi: 10.1038/354490a0. [DOI] [PubMed] [Google Scholar]
  23. Trent J. D., Osipiuk J., Pinkau T. Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12. J Bacteriol. 1990 Mar;172(3):1478–1484. doi: 10.1128/jb.172.3.1478-1484.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zaritsky A., Kihara M., Macnab R. M. Measurement of membrane potential in Bacillus subtilis: a comparison of lipophilic cations, rubidium ion, and a cyanine dye as probes. J Membr Biol. 1981;63(3):215–231. doi: 10.1007/BF01870983. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES